Behavior-based Speciation for Evolutionary Robotics

Leonardo Trujillo,
Gustavo Olague
EvoVisién Project,
CICESE Research Center,
Ensenada, B.C., México.
[trujillo,olague]@cicese.mx

ABSTRACT

This paper describes a speciation method that allows an evolution-
ary process to learn several robot behaviors using a single execu-
tion. Species are created in behavioral space in order to promote
the discovery of different strategies that can solve the same naviga-
tion problem. Candidate neurocontrollers are grouped into species
based on their corresponding behavior signature, which represents
the traversed path of the robot within the environment. Behav-
ior signatures are encoded using character strings and are com-
pared using the string edit distance. The proposed approach is bet-
ter suited for an evolutionary robotics problem than speciating in
objective or topological space. Experimental comparison with the
NEAT method confirms the usefulness of the proposal.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms
Theory, Algorithms

1. INTRODUCTION

In evolutionary robotics (ER) [3] a robot’s perception-action loop
is determined by a control mechanism that is artificially evolved.
Behaviors emerge from the interactions of a situated agent with
the environment. In ER, neural networks are used for robot con-
trol and an evolutionary algorithm (EA) is used to design and/or
train the best possible NN to solve a given task. This work ex-
tends the single-solution approach by incorporating speciation into
the evolutionary process. Through speciation the ER system is able
to find different strategies for a single navigation problem; see [5].
When a search space is multimodal EAs employ speciation in or-
der to find as many fitness peeks as possible. Speciation meth-
ods can be divided into two main groups. In one, EAs attempt to
decompose a problem and generate specialized solutions for sub-
problems. In the other, EAs attempt to find problem solutions that
“perform different versions of basically the same job”. A notewor-
thy example of the latter group is the NEAT method [4], a speciat-
ing GA for neuro-evolution. NEAT allows for crossover operations
between networks with different topologies. Also, NEAT simu-
lates incremental learning by starting from an initial topology and
incrementally adding nodes and synapses, and protects topologi-
cal innovations through speciation. However, building complexity
with varying topologies is of less interest if different species do
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Figure 1: a) The top row shows speciation carried out in fit-
ness space. Next, speciation based on NN topology. Finally,
behavior-based speciation. b) Two sample behavior signatures.
Each node is labeled, an the path consists of the string of vis-
ited nodes. ¢) Training environment: (1) represents the initial
position for behavior signature generation; (2 - 5) each of the
starting positions and headings for the training epochs. The
topological map of this environment is the same as in b).

not exhibit a different functional response. The NEAT method can
only guarantee a diverse set of network topologies not a diverse set
of input-output mappings because two NNs can produce the same
functional response even if they are topologically different. In the
current work, it is hypothesized that if an appropriate comparative
measure can be defined, then species will develop in different re-
gions of behavior space, see Figure 1a.

2. BEHAVIOR-BASED SPECIATION

Speciation in behavioral space requires: 1) a behavior represen-
tation, and 2) a similarity measure. In this work, behaviors are
represented through signatures expressed as character strings, and
are compared using the string edit distance. In order to compre-
hend the speciation process the distinction between a behavior and
an individual must be stressed. An individual is a neurocontroller
z, while a behavior is the navigation strategy a induced by the
sensory-motor mapping of = within an environment £, written as

z % a. A behavior is a subjective concept, while S, represents
an objective characterization of a. S, is obtained by way of an
interpretation process denoted by .

Definition 1: Let x represent an individual neurocontroller and

a the behavior induced by x within environment &, written as £
a. Then, the behavior signature S, represents a description of
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Figure 2: The ER system used to evolve several behaviors.

behavior a, obtained through a behavior interpretation process
1, written as 1 (a) < Sa.

Two examples of signatures are shown in Figure 1b. The en-
vironment is represented using a topological map where V' is the
set of nodes. A neurocontroller x, starting from an initial node
vy € V, will guide the robot across the map generating a path S
represented by the sequence of visited nodes S = v;, ..., Up.

N-GLD: Normalized Levenshtein distance. The Generalized
Levenshtein Distance (GLD), also known as the edit distance, com-
pares strings by various edit operations. Given an alphabet 3 and
v,u € 3, the operations A — v, v — u, and u — A, represent
insertions, substitutions and deletions respectively. It is possible
to define the edit transformation Ts, s, = T1,T1>.. 7] as a se-
quence of edit operations that transforms S, into S,. If a function
~v(v — u) > 0 assigns a non-negative weight to each edit opera-
tion, then the total weight of Ts, s, is computed by (7, s, )
22:1 ~(T3). The GLD, which is a metric under certain conditions
[6], is defined as GLD(Sq, Sy) = min{y(Ts,,s,)}. To account
for the common situation in which |S.| # [Ss|, the normalized
GLD dn—_c¢rp for two strings S,, S, € X* is given by

2-GLD(Sq, Sy)
(1Sa] +|Ss]) + GLD(Sa, Sp) ’
where @ = max {y(v — A),y(A — u), v,u € I} [6].

Species behaviors: A population P = {x1, z2...z;..xn } of N
neurocontrollers x, can be divided into M different species Ry,

P=U,_, Re where RiNR k#L. (2

Furthermore, let f(x) represent the fitness value of neurocontroller
x within environment €. Then, the species behaviors of population
‘P within £ is given by the multiset B = {al, ..aty ...aL} of L

ON—GLD(Sa, Sp) = - (D

g for

behaviors, such that V o € B if = & ot and x € Ry, then
f(x) >sup{f(y)|Vy € Rx, y #z} N f(z) >h,

where h is called the behavior threshold, set empirically.

The ER system. Figure 2 is a high-level view of ER system, in-
tegrated into the Kephera Simulator [1], where the parameters, EA,
and training environment are loaded. The initial population con-
tains an homogeneous collection of NN topologies. The minimal
topology is a fully connected NN with 8 input neurons (sensors)
and 2 output neurons (actuators). This is followed by the basic
NEAT method which is a straightforward generational GA with fit-
ness proportional selection. Species formation proceeds as follows.
Given a similarity threshold v a new individual « is added to the
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Figure 3: Performance plots (left-to-right): a) average and best
fitness; b) number of nodes in best; and ¢) number of species.
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Figure 4: Species behaviors for each method.

first species B where its signature’s distance to a randomly selected
species member y € B is dn—crp(z,y) < . If no such species
is found, then a new species A is created for x. Signatures are ob-
tained for each NN placing the robot in node vy (Figure 1c). The
training environment is similar to the one in [2], it offers a multi-
modal landscape in behavioral space. Fitness encourages behaviors
where the robot navigates by: 1) moving forward in a straight line;
2) moving as fast as possible; and 3) avoiding collisions.

3. EXPERIMENTAL RESULTS

The EA parameters: # runs = 6; population size = 100; genera-
tions = 50; compatibility threshold: ynv—grp = 0.4, yNEaT = 3;
behavior threshold: h = 3.7. Figure 3 has three performance
curves, all are plotted relative to the number of generations and rep-
resent the averages over all runs. In the first graph performance is
mostly equivalent. The second graph shows that NEAT produces
more complex individuals. In the last graph, N-GLD generates
more species; populations tend to be highly diverse. Figure 4 shows
five species behaviors, found in a single run for each method. In
summary, the N-GLD produced a set of species behaviors that are
unique, while NEAT could not do the same.

4. CONCLUSIONS

This paper describes a behavior-based speciation method that en-
courages several navigation strategies to evolve within a single pop-
ulation. The proposed method found several unique solutions for
the same problem, while topological speciation could not.
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