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ABSTRACT

Compartmentalisation is thought to have been a crucial step
in the origin of life. To help us bridge the gap between self-
assembly processes behind the formation of bio-compart-
ments and metabolic and information bearing processes we
refer to DPD and P Systems Simulations. In this paper we
outline a new software platform linking a high level abstract
computational formalism (P Systems) with a molecular scale
model (Dissipative Particle Dynamics) by linking the mem-
branes which delimit the cellular regions within P Systems
to self-assembled phospholipid based vesicles in DPD. We
test the platform by modelling a passive transport process
involving vesicles containing membrane inclusions similar to
pore complexes such as a-hemolysin. In doing so, we illus-
trate the usefulness of the modelling approach and derive a
more realistic parameter set for the P system through the
dissipative particle dynamics simulation.
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1.6 [Simulation and Modelling]: Model Development;
1.6 [Simulation and Modelling]: Types of Simulation—
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General Terms
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1. INTRODUCTION

Research in ALife has always been tightly coupled to ad-
vances in complex systems, which are understood here as
systems where a large number of entities interacting repeti-
tively and (usually) far from equilibrium. Complex systems
analysis has traditionally relied on systems of differential
equations, statistical mechanics and other formal techniques
to represent some aggregated average of the behaviour that
emerges when the entities interact. In contrast, the bulk
of ALife research in the last 20 years has been done with
a more ad-hoc bottom-up engineering approach by design-
ing or evolving the rules that govern the local interactions
of the entities in the system as to produce certain emergent
behaviour. Emergence in this context is interpreted as a pro-
cess within the system that could not have been predicted
from merely inspecting the rules but that it is observed only
by running the simulation (for early examples of flocking
and herding emergent behaviour see [24]).

Some of the earliest landmarks in ALife (T. Rays Tierra
for example) were based on an individual based modelling
framework, which were highly abstract and quite limited in
the simulated details (i.e. physical and chemical laws) of the
environment where the agents performed their interactions.
K. Sims virtual creatures incorporated a more accurate (al-
beit still arbitrary) physical reality into the ALife system.
In turn, this increase in the detail of the environmental in-
teractions allowed richer emergent processes to be observed.
Later work incorporated a more detailed biology through
the addition of developmental processes, differential gene
expression and genetic regulatory networks endowing ALife
simulations with greater realism [5, 7]. In the same vein, the
Graded Autocatalysis Replication Domain (GARD) model
has been used to simulate the behaviour of an ensemble of
mutually catalytic molecules, resulting in emergent proper-
ties such as self reproduction with mutations[18, 28, 29, 30].
Thus, as computing resources became more accessible and
our biological knowledge deepened, more and more levels of
physical, chemical and biological details were included in a
bottom-up fashion into ALife simulations[15].

Recent advances in analytical biotechnology, computa-
tional biology, bioinformatics and microbiology are trans-



forming our views of the complexity of biological systems,
particularly the computations they perform (i.e. how infor-
mation is processed, transmitted and stored) in order to
survive, adapt and evolve in dynamic and sometimes hos-
tile environments. In this paper we capture some of these
more recent biological insights, in particular those related
to cell biology, as to develop sophisticated ALife simulations
of cellular-like systems. Furthermore, while we propose to
stick to the traditional engineering approach of building AL-
ife systems from the bottom-up we would like to extend
current research practice towards a more computationally
formal and rigorous approach to the design and implemen-
tation of ALife research.

For this purpose we present a software platform based on
P system modelling and DPD simulations. The former is
used to formally capture what are universally accepted to
be the three key required functional components of a mini-
mal cell[23], namely, compartments, metabolism and infor-
mation polymers (e.g. DNA, RNA, proteins, etc). The lat-
ter is used to model bottom up the self assembly of the
compartments formally represented in the P systems. We
demonstrate that it is possible, in principle, to bridge the
gap between a rigorous mathematical formalism for cell-like
systems based on P systems and the self-assembly of com-
partments based on DPD simulations. At a later stage, we
plan to introduce into this platform features based on the
GARD model, such as compositional inheritance, compo-
somes and clustering-based compotypes[28, 29, 30].

2. REPRODUCING THE KEY ELEMENTS
OF LIFE IN SIMULATION

Biological life is immensely complex and varied, and this
makes a universal definition difficult. To avoid such a defi-
nition, D. Harel[12] and Cronin et al. [4] recently proposed
a test similar to the Turing test for intelligence than can
be applied to artificial life. However, certain properties
can be thought of as being integral to much of the cellu-
lar based life of the planet. Three of these properties in
particular have been of interest in synthetic biology (when
applying the bottom-up design approach) and protolife re-
search[22]. These are encapsulation or separation of cellular
sub-volumes within containers, a metabolism which involves
the refining, extraction and storage of energy from the sur-
rounding medium and some form of information transfer,
capturing and propagating the physical manifestation of the
life form over much longer time scales than the life of single
organism. We next discuss in more detail each of these key
components.

2.1 The Container

The importance of a container demarcating the artificial
cells physical boundary between self and non-self was recog-
nised [19] by the very first investigation into the origins of
life research community as being an essential experimen-
tal distinction rather than only a philosophical axiom. Key
contemporary studies [17, 25, 22] have also emphasised the
crucial role of the container as a barrier that regulates (e.g.,
controls energy and raw material flow such that artificial cell
may be sustained far from equilibrium) and protects (e.g.,
controls the dissipation of information molecules associated
with the identity of the artificial cell) other functional com-
ponents of the cell.
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2.2 Metabolism

The primarily spatial control of the container is juxta-
posed by the primarily temporal control of metabolism. It
is likely the most context dependent of the three building
blocks since whilst an artificial cell might successfully use its
own information codes locked within its own suitable func-
tionalised containment, the fuelling of the artificial cell will
depend on what is available from the environment. The
metabolism harvests raw materials from the environment, a
process that is dictated by local availability and stoichiome-
try but that may manipulate concentration or catalysis pro-
cesses as to achieve the functional aims of the artificial life
form. One of the major goals of artificial life endeavours is
to show how metabolism can give rise to container construc-
tion[28, 29].

2.3 Information

Our traditional views of conventional life often encourages
focus upon life codes, the most celebrated being that con-
veyed by nucleic acids. The forms of information and the
methods by which it propagates may, however, be varied.

The concept of the survival of a given unit of information
is intimately tied up with the notion of life. The ability of
one gene to confer fitness upon the organism that carries it,
is the primary mode of selection and evolution.

Although nucleic acids are the most pervasive method of
information storage and transfer in cells, information may
be present in other forms, not only in a discrete set of cod-
ing molecules but also in e.g., the time-averaged position of
one functional container molecule with respect to another.
For example in [3] Cairns-Smith theorised that evolutionary
processes could occur in crystals by propagations of imper-
fections in the crystalline structure. Another notable exam-
ple is the storage and transmission of compositional infor-
mation, as manifested in the GARD model. Here, it is the
counts of molecules within a protocellular entity, rather than
the sequence of subunits in an informational biopolymer,
that is being transmitted to progeny [28, 29, 31]. This is in
analogy to the epigenetic transmission of maternal mRNA
counts to a daughter cell.

3. SIMULATION METHODOLOGY

In the rest of this paper we describe a simulation method-
ology which bridges the gap between an abstract formal-
ism including explicitly the three elements of life described
above, namely containers, metabolism and information pro-
cessing, (P Systems) and a molecular scale simulation (DPD).
In describing this methodology, we aim to create a multi-
scale design and simulation tool for artificial life, enabling
models to be expressed and prototyped in the abstract and
biologically intuitive formalism, and then verified in DPD.
By simulating the system in more detail, a concordance be-
tween the P System and DPD simulation results can be
found, enabling a more realistic parameterisation of the P
systems model. As many extensions to P systems have been
shown to be Turing complete [21] the formalism is a syntax
that enables construction of schema that are simultaneously
concise and biologically apt, while also being highly com-
putable. Once the P system model can be shown to correlate
well with the results from the DPD simulations (which are
limited in terms of time scale), it will be possible to perform



extended simulation and modelling with the constrained P
system. Also, membrane processes which are implicit within
the current formalism can be investigated explicitly. Thus
conceptual and practical refinements at both ends of the
scale are, in principle, possible.

3.1 P Systems

P Systems are a nature inspired computational paradigm,
first proposed by Gh. Paun[21], that includes explicitly the
three key properties of life described above. If a connection
between P Systems and in vivo processes can be made, then
P systems can be used as a concise and biologically relevant
design tool for Alife systems, synthetic biology and protolife
research. Indication that this is indeed possible comes from
recent studies of P systems for systems biology|[1, 2].

In this formalism, membranes are the containers, each de-
limiting a region containing a multiset of objects represent-
ing molecules and potentially other membranes into which
objects can be communicated. These multisets are subject
to rewriting rules governing the evolution of the system.
The application of rules is analogous to a metabolism where
some objects are consumed to create others, and can there-
fore model complexation, gene transcription, translation and
post-translational modifications discretely.

Regions and rules are mapped to membranes using labels
which determine their initial configuration and subdivide
functionality within the system. Information is embodied in
the state of the P system: the current membrane hierarchy,
object multiplicity and rule applicability determine its next
potential transition.

A P system of (degree m) is formally defined as:

.,wm,Rl,RQ...,Rm),
O is a finite and non-empty alphabet of objects;

= (Oa/"’awlyw%"

e 4 is a membrane structure containing m membranes
indexed 1,2,...,m. The membrane structure can be
represented formally as a rooted tree but can also be
depicted as a non-intersecting Venn diagram or nested
pairs of indexed square brackets;

® Wi,Ws2,..
in regions 1,2, ..., m of the membrane structure, writ-
. 2
ten in the form a®b2c;

Ri, Ro,..., Ry, are finite sets of rewriting rules as-
sociated with regions 1,2,...,m, which in the sim-
plest’ form permitting communication of objects be-
tween membranes are written:

(1)

where u is a multiset of objects from O and v € (O x
Tar), where Tar = {here,in, out}; here is the region
with which the rule is associated, out the ascendent
region or the environment in the case of the outer
membrane, in a non-deterministically chosen descen-
dent membrane. The importance of the constant c is
discussed below.

u —= (v, tar)

The application of rules in a P system was originally per-
formed in a non-deterministic and maximally-parallel man-
ner, where any rule that at each step can be applied to the

"More complex rule forms and special operators such as
membrane dissolution that extend the functionality of P sys-
tems exist in the literature but are not required here.

., Wy, are the initial multisets of objects present
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system is chosen randomly with equal probability and ap-
plied exhaustively to the multiset in its associated region,
not unlike L-Systems. The system evolves in uniform steps
until no further rules can be applied. Processes such as
communication of objects between regions occur instantly
and without regard for concentration gradients or membrane
permeability. Such an execution model is entirely incompat-
ible with modelling of biological and chemical systems where
reactions occur individually and on time scales many orders
of magnitude removed.

To move towards a more realistic simulation with P sys-
tems, we employ a version of Gillespie’s well known Stochas-
tic Simulation Algorithm (SSA) [8] modified for the multi-
compartmental structure of P systems. The stochastic rate
constant ¢ associated with rules of the form (1) is used to
compute the propensity of a rule which, in proportion to the
availability and combinatorial product of reactants, com-
putes a suitable time to wait before that rule can be applied
and so schedules rule application following Gillespie’s theory
of stochastic kinetics. For second-order reactions:

| clallb] a#b
propensity = { . \a\(|;\—1) a—b

Despite the usefulness of the P Systems formalism as an
abstract computational device[21], it is not clear if the in-
teractions involving membranes or the membrane structures
themselves are models of entities that are feasible in wvitro.
In P systems, regions have no spatial element, and complex
processes such as membrane fission and fusion are conceptu-
alised as atomic operations, rather than complex processes
in their own right. Because of this reduction in the level
of detail (which is necessary to produce a concise compu-
tational formalism) it is desirable to know whether models
created in P systems maintain a connection with biologi-
cal or chemical cells, or if the models are too abstract to
effectively analyse models of biochemical systems.

In order to evaluate the accuracy of a stochastic P system
description, we propose a mapping between the high level
abstract formalism and a low level molecular scale parti-
cle dynamics model, namely Dissipative Particle Dynamics
(DPD). By expressing the membrane structures as a set of
pre-assembled vesicles within molecular simulation, it will
be possible to determine numerically if the structural and
stoichiometrical dynamics as described in the formalism are
stable and represent the original design intention when im-
plemented in vitro. By analysing the dynamic behaviour of
the membrane structures described in P systems models, it
will be possible to alter or constrain P Systems to create
more realistic ALife models.

3.2 Dissipative Particle Dynamics

When attempting to model systems at the molecular scale,
increasing the level of detail quickly leads to equations that
are not solvable using analytical methods, and so it becomes
necessary to perform numerical simulations to determine the
dynamics of the system. Molecular Dynamics has become
the standard tool for simulation of molecules in disciplines
where quantitative accuracy is paramount, such as compu-
tational chemistry. However, the simulation length and time
scales which are feasible in Molecular Dynamics with current
hardware is limited by the complex and long range forces
acting between particles, and so we turn instead to a more
coarse grained model intended for the study of fluid dynam-



ics, Dissipative Particle Dynamics (DPD)[13]. Although the
DPD model was originally proposed for the study of com-
putational fluid dynamics, reformulations with respect to
statistical mechanics[6], the relative ease with which inter-
particle parameters can be derived[11, 10] and the inclusion
of polymers within the model has meant that the method is
used for simulation and modelling of a number of different
equilibrium processes.

DPD employs an approach in which a certain number of
molecules of a given type compose a single “bead” or coarse
grained particle within the simulation, in the case of wa-
ter each bead is equivalent to approximately three water
molecules in volume. The total number of particles within
the system is therefore greatly reduced when compared with
the total number of molecules in the actual system. As the
particles being simulated represent several molecules, the
interactions between them must also be coarsened, and so
the dynamics of the systems are described by a simple re-
pulsive force (the conservative force), that declines linearly
with inter-particle distance and conserves momentum. De-
spite the simplicity of the potentials the model has been
shown to be very useful for describing hydrophobic interac-
tions and has been successfully applied to the simulation of
micelles, bilayer and vesicle formation [20, 10, 9]. One draw-
back with the DPD method is the incorrect reproduction of
some transport properties, for example the schmidt number
of fluids in DPD is much lower than experimentally observed
values for real fluids[11]. However, as we seek a qualitative
rather than quantitative understanding of vesicle based P-
Systems, we consider this innacuracy acceptable.

Three forces describe the pairwise, symmetric interactions
between particles that are within the force interaction radius
in DPD, these are the conservative force, as described above,
and defined as follows:

FS =a(l- |:,i|)

(2)

Where r;; is the vector pointing from particle j to particle 4,
|ri;] is the distance between particle ¢ and particle j, o is the
maximum repulsion between the two particle types and r. is
the cut-off distance. The dissipative and random forces act
together to define the system temperature, the dissipative
force is defined as follows:

F = —yw® (rij) (ij - vij)P

(3)

the unit vector pointing from particle

Tij

Where ﬂ'j = AL
j to particle i, and w;; is the difference in velocity between
particle j and particle i. The dissipative force acts to reduce
the amount of energy in the system by reducing particle
velocities if they are approaching one another.

The random force introduces energy into the system by
inducing a force with random magnitude between particle
pairs, and is shown below:

FlR = JwR(Tij)eijAtil/zf'ij (4)
Where 6;; is a random variable with unit variance, zero
mean, and no memory between time-steps or particle pairs.

In order to correctly reproduce the canonical temperature,
the dissipative and random forces are coupled with weighting
functions w? (ri;) for the dissipative force and w®(r;;) for
the random force. One of these functions may be chosen
arbitrarily, and we use the random force weighting proposed
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by Groot and Warren[11]:

Wiy ={ &7 )

The dissipative weight function is then derived from the fol-
lowing relation:

when(r < 1)
otherwise

WP (r) = [WH(r)? (6)

The v and o parameters are used to set the system tem-
perature and related as follows:

o = 2vkpT (7)

where « controls the magnitude of the dissipative force, and
o controls the magnitude of the random force. The total
force acting between each pair of particles is then given by
the summation of these three forces.

The equations of motion are integrated using a modified
Velocity-Verlet method first described by Groot and War-
ren[11]. In order to differentiate between substances, the
«a parameter in the conservative force is set differently for
different particle types, for example, interactions between
amphiphile tail beads and water will be highly repulsive,
and so have a high « value. Polymers are modelled in DPD
by tying beads together with a simple harmonic spring force

Fi5 = k(ri; — o) (8)

where k is the bond strength parameter, and r¢ is the pre-
ferred bond length. Constraints on bond angles can be in-
cluded with a harmonic 3-body potential[14]

1
= ZKg(0 — 6p)*

; (9)
Where Ky is the angle force strength parameter, 6 is the
angle between the two bonds and 6 is the preferred angle.

We use a self developed parallel implementation of DPD
designed to run on a distributed memory cluster. A simula-
tion of 375,000 particles running for 10,000 DPD time units
takes approximately 20 hours on 8 processors.

Us

4. REALISING P SYSTEMS IN DPD

In our methodology P systems membranes delimiting re-
gions are represented by vesicles composed of model am-
phiphiles. Biological vesicles are small volumes of fluid en-
capsulated by a phospholipid bilayer separating the internal
volume from the external environment. They are formed
and utilised within cells for transportation, metabolism and
storage. While cell membranes are highly complex, function-
alised structures performing a range of sensing and filtration
tasks for the cell, P system membranes make no explicit ref-
erence to this functionality. Therefore we start with vesicle
membranes, which can be considered as model cell mem-
branes and add functionality as necessary with respect to
the systems being modelled. Simulations of systems based
on small vesicles (with diameters in the nanometre range)
have already been successfully simulated in DPD[20].

Vesicle formation is a self-assembly process which occurs
due to the hydrophobic exclusion of hydrocarbon chains in
the amphiphiles. These chains disrupt the matrix of hy-
drogen bonds between the water molecules leading to un-
favourable energy configurations [27]. In DPD, the hydropho-
bic effect can be modelled by correct parameterisation of a
simple repulsive force acting between the solvent and hydro-
carbon chain particles.



4.1 Amphiphile Parameters

For all simulated amphiphiles in this work, we use a model
amphiphile which is similar to that used in [26] for simu-
lation of fusion of vesicles with a planar bilayer. The am-
phiphiles are subdivided into volumes of 90A and the result-
ing beads are “bonded” using simple Hookean spring forces.
The amphiphile configuration is shown in figure 1 where the
red (darker) particles make up the hydrophilic head, and the
green (lighter) particles compose the hydrophobic tails. All
bonds between amphiphile particles have a preferred length
of 0.7 DPD units? and a strength of 100K, an angle force
with strength 6k,T is applied to each sequential triplet of
beads in the tail chains, with a preferred angle of 180° and
an angle force with strength 3k,T and preferred angle of
90° is applied at the point where the two tail chains join
the head group. It was found that amphiphiles with these
parameters rapidly self-assemble into vesicles.

We use the following conservative force parameters, for
interactions between particles of the same type a = 25, for
tail-water bead interactions o = 80, for tail-head interac-
tions a = 80 and for head-water interactions aw = 15. The o
and 7 parameters are set to 3.00 and 4.5 respectively, result-
ing in a temperature equivalent to room temperature. The
time step, At was set to 0.05 DPD time units and the empir-
ical parameter for the Groot Warren integration scheme A
was set to 0.65. To produce a corresponding representation
of the P system within DPD, it is necessary to create an
initial condition for the simulation containing the required
structure of vesicles.

Figure 1: The structure of the amphiphile used
(top), a schematic representation of a pore (left),
the initial configuration (centre) and the configura-
tion after 1000 time steps (right).

4.2 Modelling Pores

To facilitate the exchange of molecules between compart-
ments we designed pores which assemble into the vesicle
membrane. The model pore is a roughly circular inclusion
and is constructed from two layers, the outer layer repro-
duces the hydrophobic/hydrophilic profile of the bilayer, and
the inner layer is simply composed of tethered solvent par-
ticles, which act as a buffer between the hydrophobic beads
in the outer layer and the solvent beads passing through the
pore. Without this buffer, we found that amphiphiles would

2The unit length in DPD is the force interaction radius, as
a single bead has a volume of 90A, the interaction radius is
therefore 6.463A.
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embed within the pore during the self-assembly process, ef-
fectively blocking it as water particles were unable to pass
the hydrophobic tails of the amphiphile.

Figure 1 shows the pore design, the initial configuration
of the pore, and the pore after simulation for 10,000 time
steps; the darker particles in the external layer of the pore
mimic the properties of the bilayer. All bond lengths be-
tween particles having a preferred length of 0.5 DPD units,
and the maximum bond strength parameter k for all pore
bonds was set to 100k,T. Although in the initial configu-
ration the pores are hexagonal in shape, they quickly relax
into a circular structure with a diameter of roughly 18A.
Each pore has seven layers, the top and bottom layers con-
tain hydrophilic particles in the outer layer, and the middle
five layers contain hydrophobic particles. This profile was
chosen to mimic the cross sectional dimensions of the bilayer.

5. MODELLING DIFFUSION

In order to demonstrate the multi-scale simulation method-
ology, we start with a very simple diffusive system con-
taining two regions, one encapsulated within the other, and
study the effect of poration on the encapsulated membrane
by tracking the movement of solvent particles from within
the region to the external environment. In biological mem-
branes, transport proteins are of great importance, essen-
tially acting as the interface between the intra-cellular and
extracellular environments. The selective permeability af-
forded by these

proteins enables the nutrients of cell metabolism to pass
into the cell, even against a concentration gradient, and
waste to pass out of the cell without leaving the intra-cellular
volume vulnerable to contamination[16]. Membrane pores
vary greatly in complexity and diameter, from passive Porin
proteins which select based on molecular size to large, com-
plex ATP activated proton pumps and gated ion channels
which open or close based on presence or absence of an ac-
tivator, such as a ligand binding and inducing a conforma-
tional change in the protein.

5.1 Self-Assembling Porated Vesicles

In order to create the porated vesicle representing the P
system region, DPD simulations were performed starting
with a number of amphiphiles and pore polymers distributed
randomly about the simulation space of 50° in DPD units
with a number density of 3, resulting in simulations contain-
ing 375,000 particles in total. The simulation space was ini-
tialised by randomly distributing DMPC amphiphiles, such
that 19% of the total number of particles belongs to DMPC
polymers. The percentage of particles belonging to pores
was then varied in the range of 0.25 — 1.5% in increments of
0.25% (Table 1 shows the results of these simulations).

Each simulation was integrated for 200,000 time-steps (and
vesicles were found to typically form after 100,000 steps),
the resulting porated vesicles were then extracted from the
simulation output and used as the initial conditions for the
diffusion simulations. Figure 2 shows a snapshot of the vesi-
cle self-assembly process, initial configuration for a porated
vesicle formation simulation, a snapshot of a vesicle contain-
ing 7 pores within the membrane and the corresponding P
system.

In order to measure the rate of diffusion, the internal sol-
vent particles of the vesicle were tagged yellow (the inter-
action parameters for these tagged particles remained the



Table 1: Simulations of vesicle formation, with mem-
brane pore inclusions

Total Pores included in | Resulting vesicle
number of | vesicle membrane | diameter estimated
pores from volume(nm?)

2 1 15.41

5 2 10.94

8 4 12.40

11 7 15.61

13 11 16.05

16 14 18.10

pore’ yellow'™ blue™™"

yeliow pore  pore (vellow,in)

blue pore > pore (blue,in)
pore’ yellow''™™ blue**®

yellow pore S pore (vellow,out)

blue pore &> pore (blue,out)

e¢=0.013355

Figure 2: A snapshot of the DPD simulation
showing the self-organisation of amphiphiles in mi-
celles/vesicles at 20,000 time steps (left), a fully de-
veloped porated vesicle (at time step 200,000)(cen-
tre) and the P System mathematical structure re-
lated to the centre vesicle (right).

same as for normal solvent) and the vesicle was surrounded
by un-tagged blue solvent. Table 2 shows number of tagged
and un-tagged particles within each vesicle at the initial con-
dition, and the length of each simulation in time steps.

Table 2: Initial particles counts within each vesicle

Number| Number of | Number of | Simulation

of tagged solvent | un-tagged sol- | length (time-
pores particles vent particles | steps)

1 21120 173 2,400,000

2 7378 250 600,000

4 10900 169 400,000

7 21772 245 400,000

11 23265 767 400,000

14 32352 2182 400,000

5.2 A P System Model of Diffusion

We first attempt to model the above system with a stochas-
tic P system and then improve it by correlating its behaviour
with that of a DPD simulation, using the sets of parameters
given in table 2 as the initial multisets for the P systems.
The number of pores in the vesicle membrane is varied to
investigate the effect each pore has on the rate of diffusion
across the membrane.

The P system specification used in all experiments is:

e an alphabet of objects O = {yellow, blue, pore};

e the membrane structure g = [1 [2 ]2 ]1, as shown in
figure 2;

e 2 sets of communication rules R,, modelling diffusion

of yellow and blue particles in and out of region m:

R — yellow pore —* (pore, here) (yellow, in)
| blue pore == (pore, here) (blue,in)

R — yellow pore — (pore, here) (yellow, out)
7\ blue pore - (pore, here) (blue, out)

In the initial experiment an arbitrary value of ¢ of 0.001
was assigned to all rules, this ensured that the propensity of
each rule was dependent solely on the relative concentration
of yellow and blue particles within each membrane.

The initial multisets of this experiment were taken from
the 1 pore DPD simulation noted in table 2. The nature of
the simple rules employed here require a pore to be in both
the internal and external regions as objects of one region are
not visible to rules of another.

wi = yellow'**blue* ' **pore’

wy = yellow? °blue' P pore?

Figure 3 shows the movement of solvent objects between
regions in the system over the simulation length. Yellow
particles moved out of the vesicle and blue particles enter
the vesicle due to high concentrations of these particles in
regions 2 and 1 respectively. The simulation reached equi-
librium after approximately 1,500,000 time steps. As the
concentrations approached equality all rules have similar
propensities and an equilibrium is maintained of approxi-
mately 10,000 yellow and 10,000 blue objects in each multi-
set. The simulation was terminated at 2,400,000 time steps.

In the equivalent DPD simulation, yellow tagged solvent
exits while blue solvent enters until the levels of internal
blue and internal yellow reach similar amounts, which is
an equilibrium between internal and external concentrations
of yellow. The disparity between the results of these two
methodologies was reasoned to be due to the fairly constant
size of the vesicle constraining the amount of solvent it can
hold whereas a P system membrane is an abstract container
and its multiset can take any integer number of objects.
In this P system any configuration of initial multisets or
membranes would eventually share the objects evenly.

o int yellow DPD o ext yellow DPD x int blue DPD - total yellow
+int yellow P o ext yellow P
b !
20000 75, L p2gRRRRRAAE

1 %% g %%

v 1, R

3 15000 + o * L=

€ i R+
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Figure 3: Equilibration in the initial P system model
does not match DPD.



5.3 A Refined P Systems Model

Molar concentration is the number of moles per litre of
volume. We refined the P system model above by intro-
ducing the notion of volume into the membrane definition
and incorporating that volume into the propensity function.
By definition solvent particles comprise the medium of the
DPD simulation and as such are a suitable indication of vol-
ume within the system. The volume of a region is, in this
instance, calculated to be the sum of the multiplicities of
the yellow and blue particles in the initial multiset divided
by 3, the number density in DPD. In systems with greater
numbers of object types the cardinality of the multiset may
be a more suitable alternative. In the improved model the
propensity function was changed to divide the rate constant
by the volume:

propensity = % |water||pore|

In this way volume acts to reduce the propensity of rules in
larger volumes, modelling the reduced likelihood of a partic-
ular particle being in the proximity of a pore.

By simulating the refined P system with initial multisets
shown in table 2 and comparing the timecourses a rate con-
stant of 0.013355 was empirically determined.
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Figure 4: Plot of the concentration of external yel-
low particles from both P system and the DPD sim-
ulations over 400,000 time steps which a range of
pores.

With this value for ¢ the behaviour of the P system very
closely matches that of the DPD simulations as shown in
Figure 4. It can be observed that simulations with more
pores had a greater initial rate of yellow efflux and achieved
greater concentrations. The exception is the single simu-
lation which achieves a higher final concentration than the
simulation with 2 pores. This is due firstly to the number
of pores in the membrane multiplying the propensity of the
rules, and secondly the size of vesicles required to contain
more pores which determined the numbers of tagged parti-
cles in the system.

Figure 5 plots of the change in concentration over time
during the first 50,000 steps against the number of pores
in the simulation. The rate of efflux for yellow particles
increases linearly with the number of pores in the membrane,
increasing by 0.0037 for each additional pore.

The results show that despite the difference in scale, the
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Figure 5: Rate of yellow efflux is proportional to the
number of pores in a membrane.

P systems model can be calibrated to match the observed
behaviour of diffusion in the DPD model. By linking the two
in this way, we bridge the scale gap between the abstract
model and more realistic low level simulation.

6. CONCLUSIONS

In this paper we have outlined a prototype multi-scale
model for simulation and design of artificial life processes
at length scales approaching those of the smallest bacte-
ria. By coupling the P systems formalism with a coarse
grained particle dynamics simulation, and calibrating the
high level model with results from the low level simulation
we have shown that designs can be expressed quickly as P
systems, and high level stochastic analysis performed. If the
design shows promise, then the system can be represented
within DPD as a set of vesicles, and the dynamics of the
system fully explored. We show that this method is viable
by analysing diffusion in a simple system of porated mem-
branes, and by refining the model described we produce a
stochastic P system that correlates well with the behaviour
from the DPD simulation. This P system can then be used
in more complex designs of artificial life systems, or for gain-
ing insight into the behaviour of the system over longer time
scales. Notably, once a P system model has been fine tuned
to a DPD simulation it is possible to perform model check-
ing, we will report on this in a future publication.

We have produced a P systems model that is capable of
modelling diffusion in DPD by parameterisation with a lower
level model. Although the system being modelled is very
simplistic when compared to ALife processes, the results il-
lustrate a proof of concept for the modelling framework. An
extension of P systems that includes volume as a requisite
and mutable property of abstract membranes that model bi-
ological membranes could be used to modelling cell growth
and division.

As computational power increases, it will become possi-
ble to explore in simulation larger more complex systems
in increasing levels of details, and so we see this as a first
step towards a multiscale simulation environment allowing
design and evaluation. The P Systems and DPD models
are chosen as they are relevant in the simulation of artificial
life. However, there is no reason why DPD could not be re-



placed by Molecular Dynamics when the computing power
for simulations at the same scale as DPD become available.

In future work, we intend to explore more complex sys-
tems and ALife processes with the modelling framework,
with the addition of chemical reactions to the DPD model,
so that P system rules can be more faithfully represented.
This could be done, among others by a judicious incorpora-
tion of the GARD modelling tools, which are based on ex-
plicit incorporation of a set of chemical reactions, including
membrane entry and exit of molecules from the environment,
as well as metabolic interconversions.
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