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ABSTRACT
We compare the efficacy of the Enforced Sub-Populations
(ESP) and Collective Neuro-Evolution (CONE) methods for
designing behavioral specialization in a multi-rover collective
behavior task. These methods are tested for Artificial Neu-
ral Network (ANN) controller design in an extension of the
multi-rover task, where behavioral specialization is known to
benefit task performance. The task is for multiple simulated
autonomous vehicles (rovers) to maximize the detection of
points of interest (red rocks) in a virtual environment. The
task requires rovers to collectively sense such points of inter-
est in order for them to be detected. Results indicate that
the CONE method facilitates a level of specialization appro-
priate for achieving a significantly higher task performance,
comparative to rover teams evolved by the ESP method.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Algorithms

Keywords
Neuro-Evolution, Collective Behavior, Specialization

1. INTRODUCTION
Research in simulated and physical collective behavior sys-

tems, has often attempted to replicate the success of cer-
tain biological social systems at decomposing the labor of a
group into composite specialized and complementary roles
in order to accomplish global goals that could not otherwise
be accomplished by individuals, and to increase global task
performance. The mechanisms motivating emergent special-
ization have been studied in biological [7], multi-agent [13],
and multi-robot [2] systems. However, collective behavior
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design methods for harnessing and utilizing emergent spe-
cialization for the benefit of problem solving and increasing
task performance in such systems are currently lacking.

This paper describes the application of CONE (section
4) and ESP [8] to the extended multi-rover task. This task
extends that described by [1] and requires solutions for con-
trolling teams of simulated planetary exploration rovers that
seek to maximize the value of points of interest (red rocks)
detected in a continuous simulation environment. Rover
ANN controllers are evolved in order to control rover sensor
and actuators functionality, for the purpose of maximizing
red rock detection. The research of [10] elucidated that be-
havioral specialization (at either the individual rover or team
level) is beneficial for task performance in this extension of
the multi-rover task. Furthermore, [10] demonstrated that
heuristic based systematic search methods are not appro-
priate for achieving optimal performance in the extended
multi-rover task, and that such heuristic methods are signif-
icantly out-performed by NE multi-agent control methods.

1.1 Neuro-Evolution (NE)
NE is selected as the collective behavior design approach,

given that NE has been successfully applied to complex col-
lective behavior control tasks, for which there is no clear
mapping between sensory inputs and motor outputs [8]. Fur-
thermore, NE is most appropriately applied to multi-robot
tasks for which there is no clear mapping between sensory
inputs to motor outputs [2]. NE methods have been success-
fully applied to the multi-rover task [1]. However, extending
this task to include the notion of using NE to facilitate emer-
gent specialization, in order to increase task performance,
has not yet been investigated.

1.2 Research Goal
To conduct a comparative study in order to evaluate the

CONE versus the ESP methods for deriving ANN controllers
in the multi-rover task. We aim to support the research hy-
pothesis that the CONE method derives a level of behavioral
specialization appropriate for the attainment of a high level
of task performance comparative to related methods.

1.3 Task Performance Evaluation
The evaluation criterion for individual and rover team task

performance is the total value of red rocks detected. To avoid
the problem where each rover evolves ANN controllers that
maximize their own fitness function, yet the system as a
whole achieves low values of the global fitness function, a
difference evaluation function [1] is used (section 5.8).
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1.4 Research Hypothesis
In a multi-rover task, which benefits from specialization,

CONE derives a degree of specialization appropriate for achiev-
ing a higher task performance comparative to related meth-
ods. To test this hypothesis, the task performance and emer-
gent specialization observed using the CONE and ESP meth-
ods for ANN controller design is compared.

1.5 Specialization
Specialization is measured at the ANN behavioral level,

and defined according to the frequency with which a rover
switches between executing distinct actions during its life-
time [7]. The lower the frequency of changing actions, the
higher the degree of specialization. Given that a rover can
execute v distinct actions, where one action can be executed
per iteration in a lifetime of T iterations, the degree of spe-
cialization (S) is calculated as the frequency with which a
rover switches between each of its v actions (f (v)) divided
by T. That is, S is calculated as in equation 1.

S = 1− f(v)

T
(1)

A value of S close to one indicates a high degree of spe-
cialization. That is, where a rover specializes to primarily
perform one action, and switches between this and the other
v -1 actions with a low frequency. A value of S close to zero
indicates a low degree of specialization. That is, a rover is
non-specialized, performing the v actions, and switching be-
tween these actions with a high frequency. For simplicity, if
S > 0.5 then a rover is labeled specialized. If S ≤ 0.5 then
a rover is labeled non-specialized. The specialization label
corresponds to the most executed action. The possible spe-
cialization labels are: Long Range Detectors, Medium Range
Detectors, Short Range Detectors, or Movers (section 5.7).

2. METHODS
The Enforced Sub-Populations (ESP) and Collective Neuro-

Evolution (CONE) methods use the same genotype encod-
ing, crossover and mutation operators, as well as the same
mechanism to adapt the number of sub-populations (ANN
size) as a means of countering fitness stagnation.

Genotypes: A genotype is encoded as a string of 18 (14
input + 4 output weights) floating point values representing
ANN weights connecting all sensory input neurons and all
motor output neurons to a given hidden layer neuron.

Crossover and Mutation: A child genotype is pro-
duced using single point crossover [5], and Burst mutation
with a Cauchy distribution [8]. Mutation of a random value
in the range [-1.0, +1.0] is applied to each gene (connec-
tion weight) with a 0.05 degree of probability, and weights
of each genotype are kept within the range [-10.0, +10.0].
Burst mutation is used to ensure that most weight changes
are small whilst allowing for larger changes to some weights.

Adapting the Number of Sub-Populations: The
sub-population number (ANN size) is adapted whenever the
fitness progress of at least one of the fittest 20% of ANN
controllers stagnate for 15 generations. The number of sub-
populations in population i (the population from which a
stagnating ANN is derived), is adapted via applying a neu-
ron lesion mechanism [8]. The lesion mechanism evaluates
the contribution of individual hidden layer neurons to over-
all ANN behavior, and accordingly increases or decreases
the number of sub-populations.

3. ENFORCED SUB-POPULATIONS
ESP is a NE method for evolving a ANN controller that

is appropriate for solving non-Markovian control tasks with
sparse reinforcement such as double pole balancing [8]. ESP
allocates and evolves a separate neuron population for each
of the u hidden-layer neurons in an ANN. A neuron can
only be recombined with other neurons from its own popu-
lation. Multi-ESP creates n populations for deriving n ANN
controllers. Each population consists of u sub-populations,
where the fittest neuron is selected from each sub-population
to form a hidden layer of one ANN. This process is repeated
n times for the n controllers. In Multi-ESP there is no re-
combination between corresponding sub-populations in dif-
ferent populations. Recombination only occurs within sub-
populations. The example in figure 1 also illustrates a Multi-
ESP setup using three populations for deriving three ANN
controllers in a collective behavior task. However, the inter-
population recombination depicted is not used in Multi-ESP.
Multi-ESP is further described in related work [15].

4. COLLECTIVE NEURO-EVOLUTION
CONE is an extension of the ESP [8] and Multi-ESP

[15] methods. CONE creates n genotype populations for
n ANN controllers operating in a collective behavior task
environment. Figure 1 exemplifies the CONE architecture
with three populations for deriving three ANN controllers
in a collective behavior task. Like related NE methods [8],
CONE segregates the genotype space into n populations of
genotypes. Each genotype population is further segregated
into multiple sub-populations. From each sub-population,
one hidden layer neuron is derived and one ANN is then
constructed from the set of hidden layer neurons. The num-
ber of sub-populations within genotype population i equals
the number of hidden layer neurons in an ANN that is de-
rived from genotype population i. Accordingly, ANN-1 and
ANN-2 (derived from genotype populations 1 and 2, respec-
tively) consist of three hidden layer neurons, whilst ANN-3
(derived from genotype population 3) consists of four hid-
den layer neurons. A genotype represents a set of input and
output connection weights of one hidden layer neuron. One
gene represents one input and one output connection weight.
Each gene is a floating point value within a given range.

4.1 GDM: Genotype Difference Metric
One contribution of the CONE method is the implementa-

tion of a self-regulating Genotype Difference Metric (GDM).
The GDM regulates genotype recombination based upon
genotype similarity. The GDM facilitates emergent special-
ized behavior via exploiting genotype similarities between
ANN controllers, whilst avoiding deleterious offspring that
result from recombining genotypes specialized to different
functions. The GDM differs from similar metrics such as the
compatibility threshold (δt), used by the NEAT method [13],
that protect innovation and encourage diversity through spe-
ciation. GDM measures the difference between initially seg-
regated populations, and regulates recombination between
these populations based upon differences calculated for the
fittest genotypes in each population. Where as, NEAT cal-
culates the weight difference between a given genotype and
other genotype ANN encodings in an initially unsegregated
population. If less than δt, then the genotype is placed in
an existing species, otherwise another species is created. δt
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is dynamic, so given a target number of species, the system
raises the threshold if there are too many species, and lowers
the threshold is there are too few species.

The GDM calculates the Genetic Distance (GD) between
two genotypes ga and gb. The GD is an average Euclid-
ian based weight distance [14] between ga and gb, where
ga and gb contain the same number of genes, and have the
same minimum and maximum weight values. A normalized
GD value is initialized within the range: [0.0, 1.0]. GDM
regulated recombinations only occur between corresponding
sub-populations spa and spb, in different populations (sec-
tion 4.4). The GD between ga and gb is calculated as follows.

δ(ga, gb) = W̄ (2)

Where, W̄ is the average weight difference between genes in
ga and gb. That is:

W̄ =
∑

iεN

|ga(wi)− gb(wi)|
N

(3)

Where, N is the size of any genotype g selected from a given
sub-population, and wi is the connection weight value of
gene i. The GDM only operates on genotypes within the
elite portion of spa and spb. The term elite portion refers
to the fittest 50% of genotypes (mh) in a given genotype
population. The average weight difference between sub-
populations spa and spb (S̄P ) is thus calculated as follows.

S̄P =
∑
iεmh

W̄

mh
(4)

Where, m is the number of genotypes in spa and spb, and
mh = m

2
.

4.2 Genotype Recombination and Mutation
Recombination occurs between two parent genotypes and

results in the production of one offspring genotype. Prior
to recombination, parent genotypes are split into two sets of
genes. The first set represents the input connection weights
of the encoded neuron. The second set represents the out-
put connection weights of the encoded neuron. These corre-
sponding sets of genes are then recombined using one-point
crossover [5]. The two recombined sets of genes are then
joined in order to form a complete offspring genotype. After
genotype recombination, mutation is applied to each gene
of each genotype with a predefined degree of probability.
Burst mutation with a Cauchy distribution [8] is used in
order to ensure that most weight changes are small whilst
allowing for larger changes to some weights. Recombination
operators are applied in the following cases.

1. All genotypes in all sub-populations have been tested
and evaluated in a given number of task trials (that is,
one generation of the CONE evolutionary process).

2. If the elite portions within corresponding sub- popu-
lations are within a given GD (section 4.1). In this
case, the fittest 50% portions of all corresponding sub-
populations that are within the given GD value are re-
combined. If more than two corresponding sub- pop-
ulations are within the GD value of each other then
sub- populations are randomly paired and recombina-
tion occurs between each pair of sub-populations. If
there is a remainder sub-population after the random

pairing, then recombination occurs within this remain-
der sub-population. If at least three sub-populations
have the same genetic difference between each other,
then the elite portions of two randomly selected sub-
populations are recombined. Recombination then oc-
curs within the elite portions of any leftover subpopu-
lations.

If the elite portion of a given sub-population is not within
the GD of any corresponding sub-population recombination
occurs within the sub-population. Pairs of genotypes are
randomly selected from within the elite portion of the sub-
population. All pairs produce enough offspring genotypes
to replace the current sub-population. One-point crossover
was selected as a genotype recombination mechanism given
its simplicity, general effectiveness as a genetic operator [5].
Two parent genotype recombination was selected given em-
pirical evidence supporting the efficacy of two-parent recom-
bination in a broad range of fitness landscapes [4], [3].

4.3 Sub-Population Recombination
The GD value is adapted in two successive stages. First,

as a function of genetic relatedness between corresponding
sub-populations and the fitness progress of each ANN con-
troller. Second, as a function of behavioral relatedness be-
tween ANN controllers and the fitness progress of each ANN
controller. In both cases, a heuristic for GD regulation ei-
ther increases or decreases the value of GD by a portion of
1%. This did not change the GD value by too much per
regulation, thus missing potentially useful GD values, and
is also not too small so as to slow or inhibit the finding of
an effective GD value.

4.3.1 Recombinations for Regulating Recombination
Two heuristics are applied for regulating the GD value as

a function of genotype recombinations and fitness progress.

1. If the number of recombinations between correspond-
ing sub-populations is increasing over the previous V
+ W generations, and fitness stagnates or is decreasing
over this same period, then decrement the GD value.

2. If the number of recombinations between correspond-
ing sub-populations is decreasing or stagnates over the
last V + W generations, and fitness stagnates or is
decreasing over this same period, then increment GD.

4.4 Corresponding Subpopulations
For recombination that occurs between sub- populations,

sub-populations must be corresponding. Corresponding sub-
populations are situated in different genotype populations,
where there are n genotype populations. All genotypes
within any given sub-population have the same tag. A geno-
type’s tag specifies what position a neuron (decoded geno-
type) assumes in the hidden layer of an ANN. That is, sub-
population j within populations i and k, where i 6= k and k ≤
n, are corresponding. This is the case if genotypes contained
within sub-population j (of populations i and k) represent
neurons assigned to the same hidden layer position of ANN
controllers i and k.
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4.5 CONE Process

1. Initialization. n genotype populations are initialized
with u sub-populations. Each sub-population contains
m genotypes. Sub-population j contains genotypes
corresponding to neurons assigned to position j in the
hidden layer of an ANN derived from genotype popu-
lation i, where j ≤ u, and i ≤ n.

2. ANN Testing. ANN controllers are derived and tested
by systematically selecting each neuron from each of
the u sub-populations (within a given genotype pop-
ulation) and testing it with u-1 other neurons (in the
context of a complete ANN). The other neurons are
randomly selected from the other u-1 sub-populations,
such that no neuron is selected more than once. This
same process is repeated n-1 times for deriving another
n-1 ANN controllers from the other n-1 genotype pop-
ulations, such that n ANN controllers are collectively
tested and evaluated in the task environment. Each
ANN is tested for a lifetime of q epochs, where q ≥
m ∗ n. An epoch is a task trial that is executed for w
simulation iterations. Each epoch tests different task
and environment dependent conditions.

3. Evaluation. After each epoch, each ANN is assigned a
fitness value f, which is also assigned to each of the neu-
rons participating in the hidden layer of an evaluated
ANN. The fitness assigned to a neuron is cumulative
with the number of epochs that the neuron partici-
pates in. An average neuron fitness is calculated as a
neuron’s accumulated fitness divided by the number of
epochs the neuron participates in.

4. Processing. The testing and evaluation of neurons
continues until all neurons within all sub-populations
(within all genotype populations) have been tested at
least r times and assigned a fitness. As with SANE
[9] the testing and evaluation of each neuron r times
constitutes one generation.

5. Recombination. Each generation, all genotypes are
ranked by fitness, and recombination occurs within
and between sub-populations (section 4.2). A sufficient
number of genotype offspring are produced in order to
replace current sub-populations.

6. Mutation. At the end of each generation, a mutation
operator (section 4.2) is applied with a given probabil-
ity to each gene of each genotype.

7. Check for fitness stagnation. If fitness within at least
population (ANN controller) has not progressed in V
generations, then adapt the GD (section 4.3).

8. Reiterate steps [2, 7] until a desired collective behavior
task performance is achieved.

5. EXTENDED MULTI-ROVER TASK
Each rover attempts to maximize the value of red rocks

detected over the course of its lifetime as well as to maximize
the value of red rocks detected over the course of the rover
team’s lifetime (section 5.8). The complexity of the multi-
rover task described in [1] is extended to include multiple

Figure 1: An example of Collective Neuro-Evolution.

rover actions (section 5.7). Each action yields a cost and
benefit tradeoff, giving each rover the possibility of exploit-
ing specialization to a given action as a means of increasing
its own task performance. Related research in the extended
multi-rover task [10], has highlighted that behavioral spe-
cialization increases task performance at both the individ-
ual and rover team level. Furthermore, these case studies
demonstrated that applying a systematic search method for
controlling a rover team is not appropriate for attaining a
high degree of task performance in the extended multi-rover
problem. That is, the constraints of limited rover energy,
sensor and actuator capabilities.

Table 1 presents rover and environment parameter set-
tings. Rover parameter settings are those used by individ-
ual rovers, such as battery energy, sensor and actuator costs,
sensor range and speed of rover movement. The range values
presented for rover movement correspond to percentage val-
ues of the environment size, where the environment width
and height are equal for these experiments. Environment
parameter settings are those that define the simulation en-
vironment, such as the number of rovers, width and height
of the environment and the individual and total value of red
rocks in the environment.
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Multi-Rover Simulation Parameters

Rover lifetime 2500 iterations

Rover movement range 0.01

Rover movement cost 1.0

Red rock detection sensor range Variable

Red rock detection sensor cost Variable

Red rock detection sensors accuracy Variable

Rover detection sensor range 0.02

Rover detection sensors cost 0.05

Rover detection sensors accuracy 1.0

Rover initial energy 1000 units

Initial rover positions Random

Environment width 1.0

Environment length 1.0

Individual red rock value [1, 10]

Total red rock value in environment 40000

Red rock value distribution 2D Gaussian
mixture model

Table 1: Multi-rover simulation parameters.

5.1 Collective Red Rock Detection
Detection of red rock value requires the successful detec-

tion of a red rock by at least two rovers during the same
simulation iteration. The probability that a rover success-
fully detects a red rock is determined by a rover’s current
detection sensor setting (table 2). If at least two rovers con-
currently and successfully detect a red rock, it is marked
as detected and its value recorded. The red rock is then
removed from the simulation environment so as it is not de-
tected again.

5.2 Continuous Simulation Environment
The simulation environment is a two dimensional contin-

uous plane, where one rover can occupy any given x, y posi-
tion. Movement is calculated in terms of real valued vectors.
Distance calculation to other rovers and red rocks uses the
squared Euclidean norm, bounded by a minimum observa-
tion distance δ2

min
1. Equation 5 specifies this metric.

δ(p, q) = min‖x− y‖2, δ2
min (5)

5.3 Red Rock Distribution
The simulation environment is populated with 40000 red

rocks, distributed according to a two dimensional Gaussian
mixture model [12]. The mixture model is specified with
four centroids, set in static locations, where the radius of
each determines the spatial distribution of red rocks. Dis-
tributions with ten radii ρ = [0.50, 0.45, 0.40, 0.35, 0.30,
0.25, 0.20, 0.15, 0.10, 0.05] are tested. Distributions range
from approximately uniform (environment type 1 ) through
to clustered (environment type 10 ), respectively. The radii
values are percentages of environment size, where the en-
vironment width and height are equal. Each red rock has
an integer value equal to one, where the sum of all values
equals 40000. Red rock locations are random within a given
distribution and thus initially unknown to rovers.

1A minimum distance prevents singularities [1] when a rover

Red Rock Detector
Sensor Setting

Accuracy Range Cost

Minimum (Setting 1) 1.0 0.02 0.25

Medium (Setting 2) 0.5 0.03 0.5

Maximum (Setting 3) 0.25 0.05 1.0

Table 2: Red rock detection sensor settings.

5.4 Red Rock Detection Sensors
Each red rock detection sensor covers one quadrant in a

rover’s sensory Field Of View (FOV). Eight sensors provide
a 360 degree FOV. Red rock detection sensors need to be ex-
plicitly activated with one of three settings. This constitutes
one action. Detection sensor settings are: low, medium, and
high, where settings determine the sensors’ range, accuracy,
and cost of usage (table 2). Accuracy denotes the degree of
probability with which red rocks are successfully detected.
Range is defined as a portion of the width of the simulation
environment, where width and length are equal. Cost is the
energy used each time the red rock detection sensors are ac-
tivated. Red rock detection sensor q returns the sum of red
rock values in sensor quadrant q, divided by the squared dis-
tance to the rover. Detection sensor values are normalized
within the range [0.0, 1.0]. That is:

S1,q,t =
∑
qεJq

1

δ(Lq′Lq,t)
(6)

Where, Jq is the set of red rock values in sensor quadrant q
(up to sensor range). Lq is the location of red rock q, and
Lη,t is the location of rover η at time t. Detection sensor
values are normalized within the range [0.0, 1.0]. Red rock
detection sensor q returns the value of red rocks in sensor
quadrant q (< = [rv0, rvk], where there is a maximum of k
red rocks within each sensor quadrant).

5.5 Rover Detection Sensors
The purpose of rover detection sensors is to prevent colli-

sions between rovers. Eight rover detection sensors covering
a 360 degree FOV are constantly active and have a fixed
accuracy, range and cost (table 2). Rover detection sensor q
returns the sum of rovers in sensor quadrant q, divided by
the squared distance to this rover. Rover detection sensor
values are normalized within the range [0.0, 1.0]. That is:

S2,q,i,t =
∑

i′εNq

1

δ(Li′Li,t)
(7)

Where, Nq is the set of rovers in sensor quadrant q.

5.6 Movement Actuators
A rover’s heading is calculated from two motor output

values in the ANN controller (MO-3 and MO-4 in figure
2). These output values determine the vectors dx and dy.
A rover’s heading is determined by normalizing and scaling
these vectors by the maximum distance a rover can traverse
in one simulation iteration. That is: dx = dmax(o1 - 0.5),
and dy = dmax(o2 - 0.5). Where, dmax is the maximum
distance a rover can move in one simulation iteration, o1

and o2 are the values of motor outputs MO-3 and MO-4.

is very close to a red rock.
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Figure 2: Rover ANN controller. HL: Hidden Layer,
SI: Sensory Input, MO: Motor Output.

5.7 Artificial Neural Network Controller
A rover uses a recurrent ANN in order to map sensory

inputs to motor outputs. Figure 2 presents 22 sensory input
neurons ([SI-0, SI-21]) as being fully connected to six hid-
den layer neurons. Input neurons [SI-0, SI-7] accept input
from each of eight rover detection sensors. Input neurons
[SI-8, SI-15] accept input from each of eight red rock de-
tection sensors. Input neurons [SI-16, SI-21] accept hidden
layer neurons activation values from the previous simulation
iteration. Motor output neurons ([MO-0, MO-4]) are fully
connected to six hidden layer neurons. Hidden and motor
output neurons are sigmoidal neurons. Motor output values
are normalized in the range: [0, 1].

5.7.1 Action Selection
Each time step, the motor output with the highest value

is the action executed. The four rover actions are as follows.

1. Activate red rock detection sensors with setting 1 (MO-
0 in figure 2).

2. Activate red rock detection sensors with setting 2 (MO-
1 in figure 2).

3. Activate red rock detection sensors with setting 3 (MO-
2 in figure 2).

4. Move in direction calculated from dx and dy ([MO-3,
MO-4] in figure 2).

5.8 Rover Fitness Functions
A global fitness function, G(z ), is defined as a function

of the total red rock value detected by all rovers in a team
(section 5.8.1). The goal of a rover team is to maximize
G(z ). However, rovers do not maximize G(z ) directly. In-
stead each rover η attempts to maximize its own private
fitness function gη(z). It is important to note that G(z )
does not guide evolution, but rather provides a measure of
rover team performance, based upon the contributions of
individual rovers. The private rover fitness function guides
the evolution of each rover’s ANN controller (section 5.8.2).

5.8.1 Global fitness evaluation
G(z ) calculates the sum of the value of red rocks detected

(V ), for all n rovers. For any given experiment, an average
V is calculated over all epochs of all rover lifetime’s. The
highest V is then selected from each rover’s lifetime in order
to calculate G. G is defined in equation 8.

G =
∑

n

∑
t

∑
i

Vi,η,t

minηδ(Li, Lη,t)
(8)

Where, Vi,η,t is the value of red rock i detected by rover η at
simulation time t. Li is the location of red rock i, and Lη,t is
the location of rover η at simulation time t. Where, t ≤ T,
and T is equal to the number of simulation iterations in any
given rover’s lifetime. Vi,η,t is an indicator function, and re-
turns the value of red rock i if and only if, at simulation time
t, η is a rover where δ(Li, Lη,t) ≤ red rock detection sensor
range (section 5.5), and a second rover is also successfully
detecting red rock i (section 5.1).

5.8.2 Private fitness evaluation
The private fitness function gη(z) calculates the value of

red rocks detected (V ) by a given rover over the course of the
rover’s lifetime. An average V is calculated over all epochs
of the rover’s lifetime. The highest V is then selected in
order to calculate gη. gη is defined in equation 9.

gη =
∑

t

∑
i

Vi,η,t

minδ(Li, Lη,t)
(9)

Where, gη is equivalent to the global fitness function when
there is only one rover.

6. EXPERIMENTS
Experiments apply ESP and CONE for evolving ANN

controllers in teams of 20 rovers in ten test environments
(section 5.3). Each experiment executes a method for 20
simulation runs. Each simulation consists of 500 genera-
tions. A generation corresponds to the lifetime of each rover
in the team. A rover lifetime lasts for 50 epochs, where each
epoch consists of 2500 simulation iterations. An epoch rep-
resents a task scenario that tests different rover starting po-
sitions and orientations in the simulation environment. An
elite portion is the fittest 20% of a genotype population.
Results in figure 3 are averages calculated over 20 runs.

6.1 ESP
Six sub-populations are initialized, where each sub-population

contains 2000 genotypes. A homogenous rover team is cre-
ated via randomly selecting one genotype from the elite por-
tion of each sub-population. These six genotypes are then
decoded into neurons which form the hidden layer of an ANN
rover controller. The ANN is copied 20 times in order to
form a team of rover clones.
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Fittest ESP Evolved Team Compositions

N-S Movers SRD MRD LRD S Fitness

29% 16% 12% 17% 26% 0.45 4303

Fittest Multi-ESP Evolved Team Compositions

N-S Movers SRD MRD LRD S Fitness

3% 24% 41% 8% 24% 0.76 4670

Fittest CONE Evolved Team Compositions

N-S Movers SRD MRD LRD S Fitness

8% 17% 27% 20% 28% 0.91 5565

Table 3: Fittest ESP, Multi-ESP and CONE evolved

teams. Fitness: Red rock value detected. S : Maximum

degree of specialization measured for this team. N-S :

Non-Specialized. SRD: Short Range Detectors. MRD:

Medium Range Detectors. LRD: Long Range Detectors.

Lesioned Sub-Group CONE Multi-
ESP

ESP

Movers 31.90% 32.87% 35.95%

Short Range Detectors 40.34% 45.98% 55.81%

Medium Range Detectors 35.75% 40.12% 62.02%

Long Range Detectors 32.56% 39.10% 53.92%

Table 4: Rover team performance when specialized sub-

groups are systematically lesioned.

6.2 Multi-ESP/CONE
One genotype population is initialized for each of the 20

rovers, where each population contains six sub-populations,
and each sub-population contains 100 genotypes. A het-
erogenous rover team is created via deriving one ANN con-
troller from each genotype population. That is, for each of
the 20 populations, one genotype is randomly selected from
the elite portion of each sub-population. These six geno-
types are then decoded into hidden layer neurons which form
the hidden layer of an ANN rover controller.

6.3 Evolved Team Compositions
Table 3 presents the team compositions of individually

specialized rovers derived by the highest performing ESP,
Multi-ESP and CONE evolved teams. Specifically, these
teams consist of specialized sub-groups, where sub-groups
are defined according to the number of individual special-
izations of a given type (section 1). That is, either: Short-
Range Detectors, Medium-Range Detectors, Long-Range De-
tectors, Movers, or non-specialized.

6.4 Method Comparisons
In order to draw conclusions from this comparative study,

a set of statistical tests are performed in order to gauge
respective task performance differences between rover teams
evolved with the ESP, Multi-ESP, and CONE methods.

6.4.1 Statistical Tests
The Kolmogorov-Smirnov test [6] confirms that the data

sets representing results of Multi-ESP, ESP and CONE evolved
teams (figure 3) for all environment types, conform to nor-
mal distributions. That is, P = [0.64, 0.51, 0.85], [0.9, 0.99,

0.58], [0.54, 0.89, 0.84], [0.97, 0.77, 0.86], [0.73, 0.37, 0.75],
[0.61, 0.99, 0.39], [0.61, 1.0, 0.98], [0.84, 0.95, 0.98], [0.43,
0.91, 0.80], [0.84, 0.57, 0.86], respectively. In order to de-
termine if there is a statistical significance of difference be-
tween data presented in figure 3, an independent t-test [6]
is applied. A statistical significance of 0.05 is selected, and
the null hypothesis is stated as the data sets not signifi-
cantly differing. For each environment type, the t-test is
applied to results of ESP and CONE, ESP and Multi-ESP,
and finally to Multi-ESP and CONE evolved teams. For the
ESP and CONE comparison, P = [0.97, 0.077, 0.18, 0.0001,
0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001], respectively.
For the ESP and Multi-ESP comparison, P = [0.58, 0.064,
0.45, 0.0001, 0.0007, 0.0001, 0.0001, 0.0021, 0.0001, 0.0083],
respectively. For the Multi-ESP and CONE comparison, P
= [0.51, 0.77, 0.92, 0.0012, 0.0001, 0.0002, 0.0028, 0.0001,
0.0001, 0.0001], respectively. This result indicates that, ex-
cept for environment types [1, 3] there is a significant differ-
ence between ESP, Multi-ESP, and CONE evolved teams.
This result supports the hypothesis that CONE, on aver-
age, evolves teams with a higher level of task performance
comparative to related methods (section 1.2).

6.4.2 Lesion Study
A lesion study conducted at the ANN controller sub-group

level supports the hypothesis that CONE evolves a degree
of behavioral specialization (S in table 3) appropriate for
achieving a comparatively higher task performance. Specif-
ically, each specialized sub-group of rovers is removed from
the fittest CONE evolved team and the team executed again
over 20 experimental runs. The removed sub-group is re-
placed with another sub-group of rovers using heuristic con-
trollers with hard-wired non-specialized behaviors [11]. This
same sub-group lesioning procedure is repeated for each of
the specialized sub-groups in the fittest ESP and Multi-ESP
teams. Table 4 presents the re-evaluated performances of the
fittest ESP, Multi-ESP and CONE evolved teams when each
of the specialized sub-groups are systematically removed and
replaced with non-specialized sub-groups. The values in ta-
ble 4 are percentages of original performances, and indicate
that, on average, the fittest CONE evolved team is more de-
pendent upon the specialized sub-groups for accomplishing a
high task performance, where as the fittest ESP and Multi-
ESP teams are less dependent. The degree of specialization
derived for the fittest CONE evolved team is theorized to
facilitate the comparatively higher task performance. How-
ever, this is subject to further study.

6.4.3 Genotype Difference Metric Analysis
The CONE method is re-applied for evolving rover teams

in a new set of multi-rover experiments. In this set, the
GDM for regulating genotype recombination between popu-
lations was not active. In this case, genotype recombination
only occurs within sub-populations of any given population.
Average red rock detection results calculated over 20 exper-
imental runs are compared with previous results yielded by
ESP and Multi-ESP evolved teams. Table 5 presents results
from the re-execution of teams evolved using CONE (with-
out the GDM) for environment types [1, 10]. The third and
fourth columns present the results previously attained by
ESP and Multi-ESP evolved teams. These results are also
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Average Evolved Rover Team Performance

Environment
Type

CONE:
GDM Off

ESP Multi-ESP

1 4403 4354 4489

2 4346 4441 4371

3 4192 3969 4215

4 4035 3409 4075

5 4129 2879 4150

6 3394 2738 3390

7 3476 2716 3459

8 3189 2584 3220

9 3284 2602 3297

10 3090 2514 3070

Table 5: Performance of CONE evolved rover teams re-

executed without the Genotype Difference Metric (GDM).

presented in figure 3. A statistical comparison2 of respective
method results in table 5 elucidated that teams evolved by
CONE without the GDM, yielded a task performance com-
parable to Multi-ESP evolved teams. However, these CONE
evolved teams yield a higher task performance comparable
to ESP evolved teams. These results indicate that the GDM
for regulating genotype between populations is beneficial to
the task performance of CONE evolved rover teams.

7. CONCLUSIONS
This research compared the task performance of simulated

rover teams operating with ANN controllers and evolved
with the ESP and CONE methods in a collective behavior
search and find task. Results indicate that CONE derives
a degree of emergent specialization that is appropriate for
deriving a higher collective behavior task performance, com-
parative to ESP and Multi-ESP evolved teams.
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