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ABSTRACT

This paper presents a communication-less multi-agent task
allocation procedure that allows agents to use past experi-
ence to make non-greedy decisions about task assignments.
Experimental results are given for problems where agents
have varying capabilities, tasks have varying difficulties, and
agents are ignorant of what tasks they will see in the future.
These types of problems are difficult because the choice
an agent makes in the present will affect the decisions it
can make in the future. Current task-allocation procedures,
especially the market-based ones, tend to side-step the issue
by ignoring the future and assigning tasks to agents in a
greedy way so that short-term goals are met. It is shown here
that these short-sighted allocation procedures work well in
situations where the ratio of task length to team size is small,
but their performance decreases as this ratio increases. The
adaptive method presented here is shown to perform well
in a wide range of task-allocation problems, and because it
requires no explicit communication, its computational costs
are independent of team size.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms

Algorithms, Experimentation

Keywords

multi-agent systems, task allocation, adaptive systems

1. INTRODUCTION

Imagine two autonomous rovers foraging for rocks on
Mars. RowerS is very strong and can pick up heavy rocks,
whereas RoverW is weak and can only pick up small ones.
The rovers approach a small rock that both of them can
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carry and must make a decision about who should take it.
If the agents are able to communicate with each other, then
each can inform the other about their valuation of the task,
and a decision can be reached about who is best fit for the
job. RowverS is found to be “over-fit” for this simple task,
and so, they decide it is best for RoverW to take it. Their
decision allows RoversS to be available for more appropriate
jobs that might come along in the near future.

Negotiation-based task allocation procedures require a-
gents to communicate with one another in order to come to a
consensus about who should take on which tasks. However,
in certain situations, it may be prohibitive, or impossible,
for agents to explicitly communicate their task valuations
with each other. Complicating the matter further is the fact
that it is not always best to assign tasks in a greedy manner
because agents may not know what sort of tasks they will
see in the future. For example, should RoverS pick up a
small rock if RoverW is currently occupied, or is it better
for RoverS to ignore this simple task and try to find bigger
rocks? If RoverS assumes that all rocks are small because
it has never come across a big one, then it might be best for
it to take a small rock. However, if RoverS assumes that it
will see another big rock because it has already seen plenty
of them, then it should become less apt to pick up small
ones in order to use itself more appropriately.

Both empirical and analytic techniques will be used to
answer the following questions: Under what conditions
should an agent behave greedily by always taking tasks when
given the opportunity? When should an agent ignore tasks
because past experience indicates that a more appropriate
task will present itself in the near future? In particular,
we will explore the relationship between team size and task
length in problems where agents have varying capabilities,
tasks have varying difficulties, and the distribution of those
task difficulties is unknown to the agents.

The results show that a non-greedy task allocation pro-
cedure requiring no explicit communication can, in certain
situations, perform better than communication-based, greed-
y approaches. The presented task allocation procedure
is adaptive, and so, is able to handle many different
task difficulty distributions. Also, because there is no
communication between the agents, the computational cost
of the algorithm is independent of team size.

2. BACKGROUND

Multi-agent task allocation is the problem of assigning
tasks to agents so that some overall goal or goals are
met. This definition is left general because the problems



a roboticist faces when designing a multi-robot decision-
making process in a foraging domain are analogous to the
problems an operating systems designer faces when writing
algorithms for deciding how best to assign processes to
CPUs on a multiprocessor machine. In each case, there
exists a set of agents, a set of tasks, a utility measure
for each agent-task pair, and the problem of divvying up
the tasks to agents so that some overall goals are satisfied.
The task allocation problem is central to cooperative multi-
robot systems research [9, 11, 13, 14, 15, 18], multiprocessor
scheduling design [3], problems in economics [6], and even
of interest to biologists as they learn about division of labor
within insect colonies [2, 5, 17].

Gerkey and Matari¢ [9] give a taxonomy for multi-robot
task allocation problems and present the computational
complexity analysis of the problems in each class. Although
their goal was to classify multi-robot problems, their study
is general enough to apply to most multi-agent situations.
Some task allocation problems are nothing more than
instances of the Optimal Assignment Problem, and thus,
can be solved with both centralized linear programming
techniques [10] and distributed, auction-based algorithms
[1, 8. In both cases, agents must be able to determine
their own valuation of the tasks, communicate these with
each other, and then make a decision about who should take
what task so that the goals are met. More information on
these types of problems and their solutions can be found in
Gale’s [6] work on using linear algebra to perform economic
analysis, Kuhn’s [10] Hungarian Method and Bertseka’s [1]
distributed auction-based algorithm for solving assignment
problems, and Gerkey and Matari¢’s [8] auction-based algo-
rithm for multi-robot task allocation problems.

The problems described above are examples of assignment
problems where the goal is to maximize the overall utility
of the mapping between agents and tasks. These types
of problems have been shown to be in the computational
complexity class P. However, task allocation becomes much
more difficult when each task requires a certain amount of
time to complete, there are more tasks than there are agents,
and we must come up with a schedule for assigning tasks
to agents so that some deadline is met. These types of
problems are scheduling problems and are known to be NP-
complete [3, 7]. Complicating the matters further are on-line
problems (or dynamic task allocation problems [12]), where
the set of tasks is not known a priori and task allocation
decisions must be made without knowledge of what tasks the
future will bring [4]. El-Rewini et al. [3] present variants of
the scheduling problem, heuristics and algorithms that solve
these variants, and also take into account how the costs of
communication between processors affect the problems. The
algorithms in [3] are centralized and may not be applicable
in the distributed, multi-agent context where agents are not
always able to communicate with each other or with a central
controlling device.

Because we cannot rely on a centralized unit to take
care of all processing needs in a distributed, multi-agent
system, new types of task allocation methods must be
designed. Realistically, these methods must be able to deal
with communication errors and other types of noise that
could result from the agents obtaining erroneous input from
their environment. MurbocH (8] is a distributed, auction-based
task allocation method designed for cooperative multi-robot
teams in noisy environments. Agents utilizing MurbocH use
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anonymous publish/subscribe broadcast communication to
determine who is best for the task at hand. One known
drawback of Murbock is that it is a greedy solution, i.e., it
makes no predictions about the future, and thus, may assign
tasks in non-optimal ways. In [8], the designers of Murpocs
state that “... from the perspective of the robots, which are
model free, the tasks appear to be randomly generated ...
Without a model of the world, planning provides no benefit.”

Biologists have reported that insects can use past experi-
ence to create divisions of labor within the colony [2, 5, 17].
These studies show that agents can appropriately manage
the ratio of TypeA to TypeB workers. For example, an ant
that sees a large amount of food while foraging becomes
more likely to forage in the future, whereas an ant that
rarely came across food will have reduced its likelihood to
forage again and instead will concentrate on other tasks
such as cleaning the nest or tending to the brood. This
self-adaptive, threshold idea has been used by roboticists
to create a forager/loafer allocation scheme in a multi-
robot foraging domain in order to help alleviate the robot-
robot interference problem [11]. Lerman et al. [12] use
mathematical models and experimental results to show that
robots can use past experience to create an appropriate
division of labor based on the proportion of TypeA to TypeB
tasks in the environment. Our work investigates how agents
can use past experience to make non-greedy decisions to
improve the performance of the team when there is one type
of task and its difficulty spans a continuous range.

3. THE PROBLEM

Before describing the multi-agent task allocation problem
used throughout the remainder of this paper, we give the
formal definition of the MULTIPROCESSOR SCHEDULING (MS)
problem from which it is derived [7]:

PROBLEM: MULTIPROCESSOR SCHEDULING

INSTANCE: Set T of tasks, number m € Z7+
of processors, length I(t) € Z%' for each
teT, and a deadline g€ Z7.

QUESTION: Is there an m-processor schedule
for T that meets the overall deadline ¢, i.e.,
a function o : T — Z such that for all

u > 0, the number of tasks ¢t € T for which

o(t) <u<o(t)+1(t) is no more than m and
such that, for all ¢t €T, o(t)+1(t) < q7

MS, known to be NP-complete [3, 7], is asking for a
mapping of tasks to processors such that no processor
is computing two tasks at once and all of the tasks are
completed before the deadline is reached. We introduce a
simple extension to MS that takes into account situations
where tasks are too difficult for some agents. This new
problem will be referred to as CAPABILITY CONSTRAINED
MULTI-AGENT TASK ALLOCATION (CCMATA).

PROBLEM: CCMATA

INSTANCE: Set of tasks 7', set of agents A,
difficulty d(t) € [0,1], length I(t) € ZT,
maximum capability maxzC(a) € [0,1] for each
a€ A, and a deadline q € Z; .

QUESTION: Do functions o :7T — Zg and w:
T — A exist, such that



1. VteT, d(t) < mazC(w(t)),
2. Vt1,t2 eT, (O’(t1) SO’(tg) A\

U(t1)+l(t1) > G(tg)) = w(t1) 7é w(tg), and
3. VteT, o) +1(t) <q7?

Constraint 1 ensures that each task is completed by an
agent that is capable of working on it, e.g., an agent that
can lift fifty grams will not pick up rocks that weigh greater
than fifty grams. Constraint 2 ensures that each agent is
taking one task at a time, and Constraint 3 makes sure that
the deadline is met.

CCMATA can model a wide range of task assignment and
task scheduling problems. Assignment problems, where the
goal is to assign at most one task to each agent so as to
optimize some cost function, can be modeled by setting
q = 1 and the lengths of all tasks to one. Traditional
scheduling problems, where more than one task may need
to be assigned to each agent, can be modeled by setting the
maximum capability of each agent to one.

CCMATA does not provide a way to “hide” tasks from agents
so that they are ignorant of what the future will bring.
Because of the way decision problems like CCMATA and MS
are constructed, an algorithm to solve an instance of these
problems is aware of each task up-front and can create
a schedule accordingly. However, in dynamic, uncertain
environments, not all of the tasks are known a priori. To
explore these types of on-line problems, a simulation based
on the CCMATA problem is constructed.

4. EXPERIMENTAL SETUP

4.1 Simulation

A simulation based on CCMATA is used to understand how
the performance of task allocation procedures is affected
by team size, task length, and task difficulty distribution.
The simulation returns the amount of time it took for the
agents to complete all of the tasks. At each time step
of the simulation, the agents not working on a task are
presented with a randomly selected task. Depending on the
task allocation procedure being used, the agents will either
communicate with each other to decide who should take the
task or will make individual decisions about whether to take
or ignore the task. There will be times when all of the agents
are busy working on their respective tasks and other times
when the given task is too difficult for any available agent to
complete. In both of these cases, the task is put back into
the task pool and will be made available some time in the
future. An agent is made unavailable to complete any other
task while it is working on its current one.

The simulation is used to determine when it is best for
agents to become selective about which tasks they take.
It allows for the exploration and understanding of how the
decision and learning episodes during each time step affect
the performance of the task allocation procedures. The
general, abstract design of the simulation allows us to focus
on the behaviors of the task allocation procedures without
having to worry about the details of designing navigation
controllers for mobile agents or figuring out how the agents
actually complete the tasks.

4.2 Agent capabilities

In the experiments, each of the agents, a1, a2, ..., a4, is
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assigned a maximum capability equal to mazC(a;) =
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This assignment gives an even distribution of capabilities,
and because maxC(a|4|) = 1, we are ensured that each task
can be completed by at least one agent. This method of
assigning agent capabilities was chosen over a more random
approach in order to allow for a better analysis of the results.

To model an agent’s tolerance to simple tasks, each agent
is given a minC (minimum capability) value. The minC
value of an agent will always be greater than or equal to zero
and less than or equal to its maxzC value. An agent can take
a task only when the difficulty of the task is greater than or
equal to its current minC value and less than or equal to
its maxC value. The details of how the initial minC values
are assigned and how they change over time are different for
each task allocation procedure.

4.3 Task allocation procedures

Task allocation procedures should attempt to keep the a-
gents busy most of the time in order to maximize parallelism.
The task allocation procedures described below will be
tested on various task difficulty distributions to determine
when and why a certain procedure performs well or poorly.

4.3.1 GreedyTAP

GreedyTAP (Greedy Task Allocation Procedure) models
the market-based task allocation procedures described in [9]
and works by having agents communicate with each other
in order to decide who is best fit for the current task. The
agent whose maxC value is closest to, but not less than, the
difficulty of the task will take it.

GreedyTAP will always assign a task to an agent as long
as one of the available agents can complete the given task,
i.e., all agents have a minC value of zero that never changes.
In certain situations this may not be optimal as there are
times when it is best for a capable agent to ignore easy tasks
even when it is the only one currently available to complete
the task.

4.3.2 StaticToleranceTAP

StaticToleranceTAP is a first step towards a strategy
that attempts to determine when it is best for an agent
to ignore easy tasks in the hopes that the near future
will bring along tasks more appropriate for the agent.
StaticToleranceTAP makes each agent responsible for a
mutually exclusive range of task difficulties. For example, if
we have three agents A, B, and C with maxC values of %, %,
and 1, respectively, then A’s minC' value will be 0, B’s minC'
value will be %, and C’s minC value will be % This will
work well in situations where the task difficulty distribution
is uniformly distributed because it will give each agent an
equal share of tasks.

One drawback of StaticToleranceTAP is that it requires
a priori knowledge of the capability of each agent in order
to determine which range of tasks each agent should take.
Also, if the task difficulty distribution is heavily weighted
towards easy tasks, the agents with high minC' values will be
underutilized because they will be ignoring most of the tasks.
A method that allows for agents to adapt their tolerance to
tasks of low difficulty is required to handle these situations.

4.3.3 DynamicToleranceTAP
DynamicToleranceTAP allows agents to adjust their

tolerance to easy tasks based on the types of tasks they

have seen in the past. This procedure makes for a much



more robust solution than StaticToleranceTAP because
it allows agents to pick up the slack of their teammates that
are unable to complete tasks or are overwhelmed with an
abundance of tasks.

DynamicToleranceTAP can be implemented in many
ways, but we chose a very simple implementation so that we
can focus on the types of scenarios where it benefits to have a
method like DynamicToleranceTAP and leave the job of
finding different implementations as future work. Initially,
the minC value of each agent is set to equal its maxC value.
An agent lowers its minC value by a predefined constant o
when it sees a task with a difficulty below its current minC
value. An agent raises its minC' value by 3 after it accepts
a task. (If minC + (3 is greater than the difficulty of the task
the agent just accepted, then minC is only raised to equal
the difficulty of the task.) This increasing tolerance for easy
tasks can be seen as a simplified version of the impatience
value in Parker’s ALLIANCE architecture [16]. However,
unlike ALLIANCE, the method presented here does not
require agents to communicate with or observe each other.

This procedure allows agents to determine when to ignore
easy tasks in order to utilize themselves in an efficient
manner. If the distribution of task difficulties is skewed
so that most of the tasks are easy, agents will repeatedly
see easy tasks, and so, will lower their minC values so
they can become useful and take these tasks. However,
when agents are finding that they can complete most of the
tasks they see, their minC values will stay fairly constant,
and the agents will continue taking the tasks that are
appropriate for them. These two dynamics should allow
for DynamicToleranceTAP to perform relatively well,
regardless of team size, task length, and task difficulty
distribution.

4.4 Task difficulty distributions

The task difficulty distribution of a multi-agent task
allocation problem refers to how the difficulty of each task is
assigned. The three task difficulty distributions chosen for
this paper are diverse enough to give a good indication of
how the three task allocation procedures would perform in
a range of situations.

4.4.1 Task Distribution 1

Task Distribution 1 (TD1) gives each task a difficulty
chosen from a random, uniformly distributed number in the
range of [0,1). This models unpredictable situations where
agents have no idea of what types of tasks they will come
across.

4.4.2 Task Distribution 2

With Task Distribution 2 (TD2), most of the tasks will
have a low difficulty. Specifically, 40% of the tasks will have
a randomly chosen difficulty in the range of [0, 1), 30% in
the range of [+, 1), 20% in the range of [1,2), and the
final 10% of the tasks will have a difficulty in the range
of [3,1). This distribution allows us to determine whether
DynamicToleranceTAP has any merit, since the agents
with high maxzC' values should reduce their tolerance to easy
tasks in order to help out their teammates.

4.4.3 Task Distribution 3

Task Distribution 3 (TD3) assigns to half of the tasks
a difficulty just above zero, while the other half have a
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difficulty slightly above 0.8. Any agent with a maximum
capability at or below 0.8 will only be able to complete the
easy half of the tasks, while the other agents can complete
all tasks. An efficient task allocation procedure would assign
an equal number of the easy tasks to the agents with a
maximum capability at or below 0.8. The other half should
be split evenly among the remaining agents.

5. EXPERIMENTS AND RESULTS

The experiments are used to examine the effects of team
size, task length, and task difficulty distribution on the
performance of the three task allocation procedures. For
each run, the number of tasks is 1000, and to determine
how team size affects performance, experiments will be run
with both 10 and 50 agents. When the team size is 10 the
length for all the tasks is either 2, 5, 10, 20, or 50, and
when the team size is 50 the length is either 10, 25, 50,
100, or 250. For each combination of parameters, we record
the amount of time it takes for the agents to complete the
1000 tasks. These times are then averaged over 1000 runs.
When using DynamicToleranceTAP, a and (3 are set
to equal . Experiments not shown here indicate that

[Al”
a and [ have large effects on performance and that T
seems to be a good value for both parameters. Because

the goal of this paper is to determine when a method
like DynamicToleranceTAP is useful, and not to design
an optimal DynamicToleranceTAP-like procedure, the
study of optimal o and ( values is left as future work.

Table 1 shows the data collected from the experiments.
Each pair of numbers represents the average time and
standard deviation required for all 1000 tasks to be complet-
ed over 1000 runs. Table 1 is broken up into six sub-tables.
Sub-Tables 1 and 2 show the data for Task Distribution 1
for team sizes 10 and 50, respectively. Sub-Tables 3 and
4 give the data for Task Distribution 2, and the remaining
two sub-tables show the data for Task Distribution 3. The
column headings show the task length () for the runs. The
bold value in each column shows the best (lowest) average
time for a task distribution and task length combination.
Italicized numbers show the worst (largest) times.

To begin the analysis, we define r to be the ratio of task
length to team size for any particular run. The results
show that as r approaches 1, a change in the ordering of
performance for the three task allocation procedures occurs.
For example, for Task Distribution 1 and a team size of
10 (Sub-Table 1 in Table 1) GreedyTAP is more efficient
than the other two methods when r < 1; however, when
r > 1, GreedyTAP performs worse than the other two
procedures.

If we compare the bolded and italicized numbers in the
corresponding columns of team size 10 and team size 50
for a particular task difficulty distribution, we find that
they almost always match. (The only instances where the
orderings are different is when » = 1 for Task Difficulty
Distribution 1 and 3.) This analysis indicates that the
relative performances of the task allocation procedures are
dependent on the ratio of task length to team size and not
on the absolute values of team size or task length. Because
the performance of a task allocation procedure is shown to
be dependent on r, we focus our analysis on the results of
one team size, namely team size 10.



Sub-Table 1 Task Distribution 1, Team Size 10

l=2,r=1 l=5r=3 1=10,r=1 1=20,r=2 1=50,r=5
Greedy TAP 1014.40 (4.36) 1161.22 (27.71) 1913.22 (66.22) 3791.42 (144.57)  9590.06 (362.54)
StaticTolTAP 1102.29 (9.56) 1408.91 (16.87) 1935.91 (27.71) 3031.01 (64.52) 6438.08 (197.20)
DynamicTolTAP | 1053.51 (7.42) 1275.66 (32.28) 1959.79 (68.60) 3556.38 (141.55) 8459.45 (358.01)
Sub-Table 2 Task Distribution 1, Team Size 50

1=10,r =1 1=25r=3% 1=50,r=1 1 =100, r =2 1=250,r=5
Greedy TAP 1018.25 (6.45) 1187.93 (72.33) 2281.04 (179.34)  4936.52 (373.55)  12605.87 (1000.70)
StaticToITAP 119540 (13.66) 155240 (29.08) 2210.53 (70.57) 3663.10 (182.67) 8184.04 (520.26)
DynamicTolTAP | 1045.47 (15.08) 1364.00 (85.58) 2370.42 (182.02) 4745.61 (369.37) 11902.61 (944.43)
Sub-Table 3 Task Distribution 2, Team Size 10

l=2,r=1 l=5r=3 1=10,r=1 1=20,r=2 1=50,r=5
Greedy TAP 1003.68 (1.33) 1020.15 (5.31) 1409.28 (30.45)  2713.64 (67.85) 6788.68 (171.45)
StaticTolTAP 1122.68 (10.07)  1516.12 (19.83) 2259.50 (42.19) 3849.06 (94.23) 8808.73 (291.21)
DynamicTolTAP | 1034.98 (4.21)  1109.00 (12.16)  1503.61 (34.95)  2637.85 (68.87) 6224.52 (172.84)
Sub-Table 4 Task Distribution 2, Team Size 50

1=10,r=1 1=25r=1 1=50,r=1 =100, r=2 1=250,7=5
Greedy TAP 1010.71 (1.08) 1030.15 (8.68) 1461.51 (91.49)  3057.94 (201.19) 7668.53 (558.74)
StaticTolTAP 1238.61 (15.17)  1715.13 (43.45)  2685.70 (104.80)  4653.69 (257.42) 10857.25 (716.05)
DynamicTolTAP | 1022.69 (4.25)  1091.91 (33.06)  1573.84 (99.72)  3028.17 (214.52) 7439.18 (546.55)
Sub-Table 5 Task Distribution 3, Team Size 10

l=2,r=1 l=5r=1 1=10,r=1 1=20,r=2 =50,r=5
Greedy TAP 1002.00 (0.00) 1446.62 (10.21)  2596.28 (10.74) 5182.60 (30.99) 13198.79 (94.69)
StaticTolTAP 1500.53 (15.99)  3002.20 (20.20) 5504.87 (21.90) 10509.17 (23.21) 25512.14 (25.43)
DynamicTolTAP | 1003.96 (0.75) 144891 (9.68)  2593.29 (8.95) 5059.23 (10.64) 12568.44 (49.00)
Sub-Table 6 Task Distribution 3, Team Size 50

1=10,r =1 1=25r=1 1=50,r=1 =100, r=2 1=250,7=5
GreedyTAP 1010.00 (0.00) 1346.53 (7.61) 2553.61 (5.18) 5145.07 (36.42) 13150.31 (145.75)
StaticTolTAP 5506.20 (22.58)  13008.68 (23.62)  25511.37 (25.53) 50511.87 (26.01) 125513.55 (25.53)
DynamicTolTAP | 1014.41 (1.17) 1349.85 (7.29) 2556.28 (5.40) 5042.19 (4.91)  12539.15 (4.94)

Table 1: The six sub-tables show the average performance of the three task allocation procedures for a

particular task difficulty distribution, team size, and task length combination. The standard deviation of
that average is shown in parenthesis. [ is the length of the tasks, and r is the ratio of task length to team size.
Bolded values indicate the lowest (best) average found for a particular task distribution and task length, and
italicized values indicate the highest (worst) times out of the three task allocation procedures.

5.1 Analysis of TD1

Task Distribution 1 assigns task difficulties by generating
a uniformly distributed, random number in the range
of [0,1). Sub-Table 1 of Table 1 shows that Greedy-
TAP performs better than the other two task allocation
procedures when » < 1, but when » > 1 StaticTol-
eranceTAP performs best. FExcept for when r = 1,
DynamicToleranceTAP never performs worse than both
of the other two procedures, indicating that the adaptive
procedure works well in the uniformly distributed case,
regardless of the size of r.

Why does the change in performance for GreedyTAP
and StaticToleranceTAP take place at r = 17 When a
task is assigned to an agent, the agent has to wait the whole
length of that task before it can take on another one. As
l increases, the agent has to wait a longer time before it
can take other tasks. While an agent works on its current
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task, more difficult tasks, which may be more appropriate
for the agent, could come along. However, because the agent
is busy working on its current task, these more appropriate
ones must be put back into the task pool if no other capable
agents are available. If the agent would have just ignored
the easy task, it could have waited and taken on a task more
fitting to its capability. To test this hypothesis, we count
the number of times there were agents available for work but
none of them chose to complete the current task because the
task difficulty was not in any agent’s minC to maxC range.
If the hypothesis is true, then this count should be greater in
the cases where the performance is worse. Figure 1 confirms
this hypothesis, as the plots directly correlate to the results
from the Sub-Table 1 in Table 1. When the team size is less
than 10, Greedy TAP has agents available to complete the
current task more often than StaticToleranceTAP, and
so GreedyTAP performs better, but, when the team size
is greater than 10, StaticToleranceTAP performs best.
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Figure 1: This plot shows the number of times there
were agents available for work but none of them
decided to take the current task. Each point shows
the average of 1000 runs. Larger values indicate
worse performance.

Another way to analyze the behaviors of the allocation
procedures is to see how many tasks they allocate to each
agent. Because each agent takes the same amount of time
to complete each task, task allocation procedures should
try to allocate the same number of tasks to each agent.
Figure 2 shows the average number of tasks each of the ten
agents took for the three task allocation procedures when
the team size is 10 and [ = 50. Recall that Agent 1 has a
maximum capability of 0.1, Agent 2 of 0.2, Agent 3 of 0.3,
etc. Figure 2 shows StaticToleranceTAP assigning an
equal share (about 100) of tasks to each of the ten agents.
On the other hand, GreedyTAP assigns about 4 times
more tasks to the most capable agent (ai0) than the least
capable one (a1). DynamicToleranceTAP does a better
job than GreedyTAP at evenly distributing the tasks, as
it assigns about 2.5 times more tasks to aio than a;.

When tasks take a relatively short time to complete, it is
best for the agents to take on tasks even if the difficulty of
those tasks is well below their maximum capability. As the
task length increases, agents should be more careful about
which tasks they take in order to prevent themselves from
being tied up with a simple task for a very long time.

5.2 Analysis of TD2

Task Distribution 2, which gives most of the tasks a low
difficulty, allows us to determine if DynamicTolerance-
TAP can appropriately adapt the highly capable agents’
tolerance to easy tasks so that they assist their teammates.
The analysis of Task Distribution 1 showed that when
task difficulties are uniformly distributed and r is large,
StaticToleranceTAP performs best because each agent
is responsible for an equal share of tasks. This is fine
for the uniformly distributed case, but in situations where
the task distribution is biased towards a small range of
task difficulties, the performance of StaticToleranceTAP
will greatly decrease because a small set of agents will be
responsible for a large set of tasks and the other agents have
no way of assisting their teammates.

Sub-Table 3 of Table 1 shows that when r < 1, Greedy-
TAP has the best performance, and DynamicTolerance-
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Figure 2: This graph shows the average number of
tasks each agent was assigned for Task Distribution
1, team size 10, and length 50. The agents on the left
are the least capable, whereas the agents on the right
are the most capable ones. Results are averaged over
100 runs.

TAP has the best performance when r > 1. Once
again, the greedy approach works well as long as the
task lengths are short, whereas a more appropriate task
assignment is required to improve the performance when
the task lengths are long. Figure 3 shows the average
number of tasks each of the ten agents took for the three
different task allocation procedures when 50. As
expected, StaticToleranceTAP assigns most of the tasks
to the agents with low maxzC values. Both GreedyTAP
and DynamicToleranceTAP do a good job at evenly
distributing tasks to the agents. The even distribution of
tasks is the reason for DynamicToleranceTAP’s good
performance and indicates that this method allows agents
to adapt to situations where task difficulties are not evenly
distributed.

5.3 Analysis of TD3

Task Distribution 3 is used to examine how well Dy-
namicToleranceTAP can distribute tasks evenly among
agents. For these experiments, 50% of the tasks have a
difficulty just above zero, while the remaining 50% have
a difficulty just above 0.8. In the case of 10 agents, only
2 of them (a9 and aip) can complete the more difficult
tasks. An optimal task allocation strategy would assign
half of the difficult tasks to one of those two agents and
the other half to the second agent, while the tasks with
low difficulty would be split evenly among the remaining 8
agents. Figure 4 shows that DynamicToleranceTAP and
GreedyTAP are able to divide up the two sets of tasks
evenly. StaticToleranceTAP is unable to divide up the
tasks among the agents in these types of problem scenarios.
DynamicToleranceTAP appropriately assigns about one
half of the 0.8 tasks to each of the two most capable agents
and assigns an even amount of the remaining 500 tasks to
the other 8 agents. GreedyTAP assigns a slightly larger
number of tasks to the two agents with the highest maxC
values.

With 10 agents, an optimal strategy takes around -
time steps to complete, where |T| is the number of tasks, and
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Figure 3: This graph shows the average number of
tasks each agent was assigned for Task Distribution
2, team size 10, and length 50. The agents on the left
are the least capable, whereas the agents on the right
are the most capable ones. Results are averaged over
100 runs.

[ is the task length. Since there are 1000 tasks, an optimal
strategy should take around 12500 time steps to complete if
[ = 50. Sub-Table 5 shows that DynamicToleranceTAP
takes about 12568 time steps to complete. This is very
near what an optimal strategy could do. The results have
shown that DynamicToleranceTAP is a viable solution
to the task allocation problem, regardless of task difficulty
distribution, team size, or task length.

6. CONCLUSION

This paper addresses an issue known to be inherent to
greedy, multi-agent task allocation procedures [8]:

from the perspective of the robots, which
are model free, the tasks appear to be randomly
generated ... Without a model of the world,
planning provides no benefit.

Given a task and a set of available agents, a greedy solution
will always assign the task to an agent, even when all of the
available agents are “too fit” for the task. These approaches
need a mechanism that allows agents to ignore, or put aside,
tasks when they see them. By putting aside tasks that are
not well suited for the available agents, a task allocation
procedure is, in a trivial sense, planning for the future. It is
shown here that, even when tasks are randomly generated,
agents can build up simple models of their world that allow
them to appropriately ignore tasks that they are not suited
for. In situations where it takes a long time to complete
tasks, this simple ignoring-task strategy is shown to reduce
the amount of time required to complete all tasks when
compared to greedy approaches.

An extension of the MULTIPROCESSOR SCHEDULING (MS)
problem is used to model problems where agents have
varying capabilities and tasks have varying difficulties and
lengths. A simulation based on the new problem is designed
to model real-world scenarios where agents are ignorant
of the tasks that will be presented in the future. The
comparison of the performances of three task allocation
procedures on three different task difficulty distributions
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Figure 4: This graph shows the average number of
tasks each agent was assigned for Task Distribution
3, team size 10, and length 50. The agents on the left
are the least capable, whereas the agents on the right
are the most capable ones. Results are averaged over
100 runs.

show that the ratio of task length to team size has a large
impact on the performance of the team.

The first task allocation procedure models the greedy,
market-based approaches used in cooperative multi-robot
domains. This procedure assigns the current task to the
agent that is found to be best-fit for the task and requires
agents to be able to communicate their task-valuations with
each other in order to come to a consensus about who should
take the task. A key problem with this method is that it can
end up assigning a very trivial task to a very capable agent,
thus occupying the agent with a task it probably should not
be working on. This inefficient use of resources is shown to
cause a decrease in performance when the amount of time
it takes to complete a task is large relative to team size.

To remedy this problem, a task allocation procedure
that never assigns simple tasks to very capable agents is
examined. With this method, agents are assigned mutually
exclusive ranges of tasks that they can complete. In order
for this method to be efficient, the assignment of ranges
to the agents must correlate with the distribution of task
difficulties. If the latter is not known, the system designer
cannot assign the former to guarantee optimal performance.
A more significant problem is that because there is no
redundancy in this method, it will completely break down
if an agent dies off and can no longer complete its tasks. A
more robust solution is required.

An adaptive, biologically inspired task allocation proce-
dure is examined to determine when agents can act in a
non-greedy manner to improve the overall efficiency of the
team. An agent’s tolerance to easy tasks is a function of the
difficulty of the tasks it has seen in the past. If an agent
sees a large number of very simple tasks, it can adjust its
tolerance so that it can make it self more useful by taking
easy tasks. Agents use their environment (i.e., the tasks they
see) as a way to determine how it should spend its time. The
adaptive method performs better than the greedy and static-
tolerance methods when the ratio of task length to team
size is large and when the task difficulties are not uniformly
distributed. Unlike the greedy method, the adaptive one



requires no explicit communication between the agents, and
S0, it scales well to teams of any size. Another advantage
of this method is that it is robust to changes in team
composition, i.e., when agents break down or when their
maximum capabilities change, the team members can adjust
their tolerances accordingly.

7. FUTURE WORK

The main factor determining whether or not a non-greedy
method should be used is the ratio of task length to team
size, and with the current system there is no way for agents
to know this ratio. Future work will look to design task
allocation methods where agents learn this ratio and adapt
their task allocation strategy for the problem at hand.

How will the performance of the task allocation procedures
be affected when only a subset of the agents can see each
task? So far, it has been assumed that each task is seen
by every available agent; however, in spatially distributed
problems physical limitations prevent agents from viewing
each task.

Finally, it may be possible to use the methods presented
here in combination with current multi-robot task allocation
architectures in order to produce more efficient solutions
than were possible with the greedy methods alone. It is
not yet known how the adaptive method could benefit from
interagent communication.
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