
Fitness Calculation Approach for the Switch-Case
Construct in Evolutionary Testing

Yan Wang, Zhiwen Bai, Miao Zhang, Wen Du, Ying Qin, Xiyang Liu
∗

Software Engineering Institute, Xidian University
Xi’an, Shaanxi 710071, China

{ywangxd, baizhiwen, emilia.zhang, WenDuXD, qinyingxd, xiyangliu}@gmail.com

ABSTRACT
A well-designed fitness function is essential to the effectiveness and
efficiency of evolutionary testing. Fitness function design has been
researched extensively. For fitness calculation, so far the switch-
case construct has been regarded as a nested if-else structure with
respect to the control flow. Given a target embraced in a case
branch, test data taking different case branches receive different ap-
proximation levels. Since the approximation levels received by test
data do not evaluate their suitability accurately, the guidance pro-
vided by the existing approach to evolutionary search is misleading
or lost. Despite the switch-case construct’s wide use in industrial
applications, no previous work has addressed this problem.

In this paper, a Flattened Control Flow Graph and a Flattened
Control Dependence Graph for the switch-case construct are first
presented, and a unified fitness calculation approach based on Al-
ternative Critical Branches is proposed for the switch-case and other
constructs. The concept of Alternative Critical Branches is ex-
tended from the single critical branch. Experiments on several
large-scale open source programs demonstrate that this approach
contributes a much better guidance to evolutionary search.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Measurement

Keywords
Switch-Case Construct, Fitness Function, Evolutionary Testing

1. INTRODUCTION
Generating test data manually is extremely tedious, costly and

error-prone, but this activity is mandated by many standards such as
U.S. RTCA’s DO-178B. Evolutionary Testing (ET) is a technique
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

with which test data can be generated automatically according to a
test adequacy criterion. ET reformulates test data generation as an
evolutionary search guided by the fitness of test data. The search
space is the input domain of the software under test. ET has proved
to be valuable for many test data generation problems, including
specification testing [9], stress testing [5], finite state machine test-
ing [3] and so on. To date, structural testing [1, 2, 4, 7, 10, 12, 16,
17, 19] is the most common form of evolutionary testing consid-
ered in the literature, and it remains a hot topic. A well-designed
fitness function is crucial to the effectiveness and efficiency of evo-
lutionary search. The more discriminating the fitness function, the
more efficient the search. Literature reviews demonstrate the large
volume of work concentrating on the design and implementation
of fitness function [7, 8, 10, 14, 16, 17]. This paper focuses on
structural testing, in particular branch coverage.

Similar to the if-else construct, the switch-case construct is widely
used to express multi-way decision. To generate branch adequate
test sets, the target may be embraced in a case branch. When the
target branch is deeply nested in a structure involving the switch-
case construct, random testing performs poorly or fails to find the
desired test data. In this case, a directed search is required. ET
is a promising directed search approach. In the field of ET, the
switch-case construct is currently regarded as a nested if-else struc-
ture for fitness calculation. However, based on the control depen-
dence graph and control flow graph of the nested if-else structure,
test data cannot be evaluated appropriately, which causes the fitness
to provide misleading guidance to evolutionary search.

In a switch-case construct, each constant after the case keyword
is distinct. All case branches are mutually exclusive, and only one
case branching node can be evaluated as true at one time. There-
fore, if the condition of a particular case branch is satisfied, the
conditions of other case branches will definitely not be satisfied.
So there exists no control dependence among case branching nodes,
and thus the control dependence of the target on other case branch-
ing nodes is meaningless and produces inappropriate fitness.

The inaccurate control dependence stems from the fact that the
control flow graph of the nested if-else structure does not reflect
the essential multi-way decision semantics of the switch-case con-
struct. As a result, given a target embraced in a case branch, test
data taking different case branches will receive different approx-
imation levels which cannot accurately assess their suitability for
the coverage of the target. The guidance for evolutionary search
will be hampered or lost in severe cases on the basis of the existing
fitness calculation approach. Despite the large volume of work on
the design and implementation of fitness function, there has been
no work focusing on the fitness calculation problem for the switch-
case construct although it is widely used in industrial programs.

This paper proposes a unified fitness calculation approach for the

1767

switch-case and other constructs. The basic idea of this approach is
to propose a new control flow graph for the switch-case construct,
which reflects the multi-way decision semantics of the switch-case
construct. All case branches are on the same level in the control
dependence graph which is constructed from the new control flow
graph, and there is no control dependence among case branching
nodes. This approach produces appropriate fitness which evaluates
the suitability of the test data accurately. This unified fitness cal-
culation approach provides a much better guidance to evolutionary
search. Encouraging results were obtained with the experiments on
several large-scale open source programs.

The rest of this paper is organized as follows. Section 2 overviews
evolutionary testing. Section 3 introduces the fitness calculation
problem for the switch-case construct. Section 4 proposes a uni-
fied fitness calculation approach for the switch-case and other con-
structs. Section 5 describes the tool implementation and experi-
ments on some representative open source programs. Section 6
discusses related work and Section 7 concludes.

2. EVOLUTIONARY TESTING
Evolutionary Testing is a meta-heuristic search technique for the

automatic test data generation. ET reformulates the test data gen-
eration problem as an evolutionary search problem [6] guided by a
fitness function. The given test object inputs are encoded as indi-
viduals in the evolutionary algorithm, and the search space is the
inputs domain of the test object. The fitness function is tailored to
search test data for the type of test that is being undertaken. The
purpose of fitness function is to guide the evolutionary search into
promising and unevaluated areas of the search space. The goal of
the search is to find the global minimum of the fitness function, i.e.
zero.

fitness = approximation level + normalize(dis) (1)

normalize(dis) = 1 − 1.001−dis (2)

In structural testing, previous work [7] has argued that the fitness
function is as illustrated in formula (1), where approximation level
(also referred to as approach level) measures how close in structural
terms an individual is to reaching the target, and branch distance
dis indicates how close an individual is to reaching the alternative
branch that should have been taken. Formula (2) [14] is applied to
map dis into the range [0, 1).

Approximation level is defined as the number of the target branch’s
control dependent nodes that were not encountered in the path ex-
ecuted by the individual [7, 10]. Control dependent nodes refer to
the branching nodes on which the target is control dependent. The
control dependence information is derived from the control flow
graph of the program. For branches leaving a control dependent
node, a critical branch is the edge which leads the execution path
away from the target [13]. Once a critical branch is taken, it is im-
possible to execute the target. There is only one critical branch per
control dependent node in the existing control dependence graph,
so the relationship between critical branches and control dependent
nodes is deemed to be one-for-one. Thus the approximation level
is in fact, calculated by subtracting one from the number of crit-
ical branches lying between the node from which the individual
diverged away from the target and the target itself [12]. Figure 1 is
a slice of a control flow graph, where the search goal is the execu-
tion of node 6. The classification of branches is illustrated in Figure
1. The true branch from node 1, the false branches from node 4 and
node 5 are all critical branches. Individuals driving the control flow
down the false branch at node 5 receive an approximation level of
zero, while individuals taking the false branch at node 4 receive an

1
6

754

3

2

Target

F
F

F
T

T
T

T F

Figure 1: A control flow graph slice with node 6 as the target.
Critical branches are shown with dashed lines.

approximation level of one, and individuals taking the true branch
at node 1 receive an approximation level of two.

At the point where the execution diverges away from the target
down a critical branch, branch distance is calculated. Branch dis-
tance measures how close the predicate of the alternative branch
is to be true. For example, if a branching condition (x == y)
needs to be evaluated as true, branch distance may be defined as
dis = |x − y| + K (K refers to a positive failure constant, K
is designated as 1 in this work) [9]; if the branching condition
(x == y) needs to be evaluated as false, branch distance is defined
as dis = K, namely 1 in this work.

3. FITNESS CALCULATION PROBLEM FOR
THE SWITCH-CASE CONSTRUCT

The switch-case construct is a multi-way decision construct, and
it is often used as a substitute for the nested if-else structure when
testing a value against a set of constants. The constants follow-
ing the case keywords must be distinct. Each case branch may or
may not have a break (or return) statement. First we will consider
the simplest switch-case construct with all case branches having a
break (or return) statement except the default branch. A simple
switch-case construct can be seen in Example 1.

Example 1. A simple switch-case construct
/* pre-code */

switch(x){
1: case 0:
2: value = 1.0; break;
3: case 2:
4: value = 2.5; break;
5: case 5:
6: value = 1.5; break;
7: case 1:
8: value = 2.0; break;/* Target */
9: default: value = 0.5; }

3.1 Nested If-Else Structure Based Fitness Cal-
culation Approach

The target may be embraced in a case branch while generating
branch adequate test sets. When the control flow diverges away
from the desired case branch down other case branches, the target
remains unexecuted, and it is then necessary to calculate the fitness.
The switch-case construct is considered equivalent to a nested if-
else structure with respect to the control flow. Example 2 is the
nested if-else structure with the same control flow graph as Exam-
ple 1. Figure 2 shows the control dependence graph of Example 1,
which is constructed from the control flow graph of Example 1 [11].
As indicated in Figure 2, each case branch is control dependent on
the case branching node it leaves and all case branching nodes sit-
uated before it. For example, branch 6 is control dependent on
branching nodes 1, 3 and 5, while branch 8 is control dependent on
branching nodes 1, 3, 5 and 7.

Considering a target case branch, the target will be missed when
the execution diverges away down any other case branch. Indi-
viduals driving the control flow down different case branches will

1768

1 53

Target

FF
S 7

F
T T T

2 4 6

9

8

T
F

Figure 2: The control dependence graph of Example 1

receive different approximation levels, according to the definition
of approximation level. In Example 1, the search goal is the ex-
ecution of case branch 8. Given x1 = 0, the control flow takes
the true branch at node 1. The calculated approximation level is 3
and branch distance is 1. For x2 = 5, the calculated approxima-
tion level is 1 and branch distance is also 1. The fitness values of
x1 and x2 only differ in approximation level. Under the principle
that better test data always attains smaller fitness, x2 is assessed
better than x1 because of the produced fitness values. In Example
1, it is easy to find that, compared with x2, x1 is actually closer to
the target with the branching condition x == 1. This is contrary
to the result derived using the traditional approach. When the tar-
get is embraced in the switch-case construct, individuals cannot be
assessed accurately with the existing fitness calculation approach.

Example 2. The nested if-else structure of Example 1
/* pre-code */
1: if(x == 0)
2: { value = 1.0; }
3: else if(x == 2)
4: { value = 2.5; }
5: else if(x == 5)
6: { value = 1.5; }
7: else if(x == 1)
8: { value = 2.0;/* Target */ }
9: else { value = 0.5; }

Approximation level is calculated on the basis of the control de-
pendence information of the target. Thus inappropriate fitness may
result from the control dependence graph of the switch-case con-
struct. In the existing control dependence graph, each case branch
is control dependent on the case branching node it leaves and all
case branching nodes situated before it. In a switch-case construct,
no two case branches have the same branching condition. The con-
ditions for the case branches cannot be simultaneously true. In the
control dependency graph, once a certain case branching node is
evaluated as true, all the other case branching nodes will be def-
initely evaluated as false. In Figure 2, if the true branch from
branching node 1 is taken, other case branching nodes (e.g. branch-
ing nodes 3, 5 and 7) are certainly evaluated as false. So all case
branches are mutually exclusive and there exists no control depen-
dence among case branching nodes. The control dependence of the
target on other case branching nodes is meaningless and creates
inappropriate approximation levels as demonstrated.

However, the control dependence graph is constructed from the
control flow graph. The existing control flow graph of the switch-
case construct merely indicates the order of the comparison of be-
tween the value of the expression after the switch keyword and the
constant after each case keyword. It does not reflect the fact that all
case branches are mutually exclusive in semantics just as the true
branch and the false branch from the if branching node are. It is
the control flow graph that results in inaccurate control dependence
information and inappropriate assessment of individuals.

Consequently, based on this inaccurate control flow graph, the
existing fitness calculation approach misleads the evolutionary search.
However, to date there has been no work addressing the fitness cal-
culation problem for the switch-case construct.

3.2 A Testability Transformation Approach
As the previous discussion indicates, the control dependence of

the target on other case branching nodes results in inappropriate ap-
proximation level. Meanwhile, if it is possible to place other case
branches causing a miss of the target on the same level of the con-
trol dependence graph, individuals taking different case branches
will receive the same approximation level. By adopting a testability
transformation, a source-to-source program transformation seeking
to improve the performance of test data generation techniques, this
goal can be achieved [19]. The transformation process needs only
to preserve the set of test adequate inputs, but not the meaning of a
program. In other words, the transformed program must be guaran-
teed to execute the desired branch under the same initial conditions
[19]. Testability transformations have been applied to many pro-
grams for branch coverage [16, 17]. Example 1 can be transformed
into an if-else structure illustrated in Example 3 using a testability
transformation.

Example 3. A transformed version of Example 1
/* pre-code */

1: if(x == 1)
2: { value = 2.0; /* Target*/}

else{
3: if(x == 0)
4: { value = 1.0; }
5: if(x == 2)
6: { value = 2.5; }
7: if(x == 5)
8: { value = 1.5; }
9: if(x != 0 && x!= 2 && x!= 5)
10: { value = 0.5; /* corresponding to default branch */ } }

In Example 3, the target branch (branch 2) is only control depen-
dent on branching node 1. When the test data x drives the control
flow away from the target down the false branch at branching node
1, regardless of which branch is taken among branches 4, 6, 8 and
10, the approximation level will be zero and branch distance will
be |x − 1| + 1. Since the fitness is to be minimized, the closer the
individual is to 1, the better the individual will be evaluated. The
fitness values of individuals assess their distance to the desired test
data accurately based on the transformed version of the switch-case
construct.

The testability transformation approach solves the fitness cal-
culation problem for the switch-case construct. Nonetheless, the
drawbacks described below demonstrate that it is costly and com-
plicated to transform a switch-case construct into the if-else struc-
ture to preserve the set of test adequate inputs. First, testability
transformation for the switch-case construct is goal-oriented, which
means the transformation is specific to a testing target. Whereas, in
structural testing, especially branch coverage testing, each branch
should be covered by the test criteria. Hence a further testability
transformation of a program is required for each new target branch,
resulting in additional cost, e.g. repeated compilation and linking.
The cost will grow with the scale of the program under test. Sec-
ond, a more troublesome problem occurs when break statements
are omitted in the body of some case branches. The program is
poorly structured and the control flow of the program becomes
much more complicated in this situation. In Example 4 given in
Section 4.1, the break statement is omitted in branch 3, and when
the execution proceeds to branch 3, the target branch (branch 4)
can still be reached. The transformation algorithm becomes intri-
cate and difficult to construct in order to preserve the set of test
adequate inputs. Finally, it is more difficult to construct the trans-
formation algorithm in order to preserve branch adequate test sets,
when there exists a definition of a variable after the switch keyword
in a case branch, e.g., a definition of variable x in branch 3 in Exam-

1769

Switch

Target

9842 6

Figure 3: Flattened control flow graph of Example 1

ple 4. From the above discussion, it can be seen that it is necessary
to seek a new approach to calculate fitness for the switch-case con-
struct.

4. ACB BASED FITNESS CALCULATION
APPROACH

As discussed in Section 3.1, all case branching conditions in the
switch-case construct are mutually exclusive in semantics, just as
the true branch and the false branch from the if branching node
are. From this perspective, a new control flow graph for the switch-
case construct is presented, namely Flattened Control Flow Graph
(FCFG). In the traditional control flow graph, each branching node
has at most two successors [11], while in FCFG, the switch branch-
ing node is allowed to have more than two successors. Figure 3
illustrates the FCFG of Example 1. As is shown, all case branches
are successors of the switch node. Moreover, from the FCFG, a
Flattened Control Dependence Graph (FCDG) can be constructed
naturally. The FCDG of Example 1 appears the same as the FCFG
shown in Figure 3. In FCDG, each case branch is control dependent
on the switch branching node, and there exists no control depen-
dence among case branches. As for the target case branch, when
the control flow is driven down other case branches by different
individuals, resulting in the target being missed, those individuals
will receive the same approximation level.

4.1 Alternative Critical Branches
As shown in Figure 3, all case branches leave the switch branch-

ing node. For a target case branch, more than one case branch can
lead to the target being missed. All case branches causing the tar-
get to be missed should be treated as critical branches according
to the definition of critical branch [13]. That is to say, the num-
ber of critical branches leaving the switch branching node is often
greater than one with respect to a target. In Example 1, if branch
2, 4, 6 or 9 is taken, the execution will diverge away from the tar-
get (branch 8), so all four branches should be considered critical
to branch 8. The switch branching node has more than one critical
branch, while other branching nodes (i.e. if, while) have only sin-
gle critical branch per branching node for the target. The existing
fitness calculation approach is based on single critical branch per
branching node so it is not effective for programs with the switch-
case construct. It is necessary to develop a new concept to extend
the traditional critical branch.

The essence of the testability transformation approach is to clas-
sify all case branches into two categories. Any case branch causing
the target to be missed falls into the first category and others form
the second category. In Example 3, branch 4, 6, 8 and 10 (corre-
sponding to branch 2, 4, 6 and 9 in Example 1) belong to the first
category, while branch 2 (corresponding to branch 8 in Example 1)
falls into the second category.

Inspired by the testability transformation approach, we classify
case branches into two categories in the same way, without making
any transformation. Once a branch in the first category is taken, the

target will clearly be missed. In other words, all case branches in
the first category are critical branches with respect to the target and
they constitute a set of critical branches. We propose that Alterna-
tive Critical Branches (ACB) represents this set of critical branches.
Considering a branch n, ACB(n) denotes all the branches which are
from the same branching node that branch n leaves and can lead the
execution path away from branch n. When branch n leaves a switch
branching node, ACB(n) consists of all case branches that can lead
to a miss of branch n. For a two-way branching node, ACB(n) has
only one element that is the alternative branch of branch n, namely
a critical branch in the literature [13]. The formal definition of ACB
is given in Definition 1.

Definition 1. Alternative Critical Branches (ACB)

ACB(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{all case branches leading to a miss of branch n } n
leaving a switch branching node

{the alternative branch of branch n } n leaving
a two-way branching node

There is only one ACB per branching node, relative to the tra-
ditional single critical branch per branching node. The concept of
ACB is a natural extension to the traditional single critical branch.
Individuals driving the control flow down any branch in ACB(n)
obtain the same approximation level value.

For the switch-case construct with a break (or return) statement
in each case branch, any branch except branch n, if taken, will lead
to a miss of branch n, so all case branches except branch n compose
ACB(n). In Example 1, branches 2, 4, 6 and 9 compose ACB(8).
The break statement may be purposely omitted by programmers. In
Example 4, the execution of branch 3 does not cause the target to
be missed. Therefore, branch 3 should not be included in ACB(4).

Example 4. A switch-case construct with break statements
omitted in a case branch
/* pre-code */

switch(x){
1: case 0: z+=2;break;
2: case 3: value = 1.5;break;
3: case 2: y++; x+=2;
4: case 1: value = 2.0;break; /* Target */
5: case 4: value = 2.5;break;
6: default: value = 0.5; }

Given a branch n, ACB(n) can be constructed using Algorithm 1.
If branch n leaves a two-way branching node, ACB(n) consists of
only one element, namely the alternative branch of branch n (lines
16-17). If branch n leaves a switch branching node, ACB(n) is con-
structed on the basis of the case branches information. The case
branches information (e.g. branch ID, the existence of a break/return
statement) is obtained by static analysis and stored in the data struc-
ture caseArray. In Algorithm 1, all case branches situated between
the first case branch and the closest preceding case branch with
a break statement of branch n are treated as elements of ACB(n)
(lines 2-11). Then all case branches succeeding branch n are also
included in ACB(n) (lines 12-15). Consider Example 4 with the
target being the execution of branch 4. Using Algorithm 1, ACB(4)
= {branch 1, branch 2, branch 5, branch 6}. When the control flow
takes any branch in ACB(4), the target is missed.
Algorithm 1: Alternative Critical Branches (ACB) Construc-
tion Algorithm
Input: n : a branch

caseArray: array of all case branches with the same
sequence as that in the switch-case construct

1770

cdg: the Control Dependency Graph of the program
Output: ACB(n)
Initial: S= φ , ACB= φ

S is a temporary set
1: if n leaves a switch branching node in cdg then
2: for each case branch b in the caseArray
3: begin
4: S=S

⋃ {b}
5: if n==b then
6: break
7: endif
8: if b contains a break or return statement then
9: ACB=ACB

⋃
S, S= φ

10: endif
11: end
12: for each case branch b behind n in the caseArray
13: begin
14: ACB=ACB

⋃ {b}
15: end
16: else
17: ACB= { the alternative branch of n in cdg }
18: endif
19: return ACB

4.2 A Unified Fitness Calculation Approach
As far as the nested structure is concerned, there is generally

more than one control dependent node for the target. Each control
dependent node has a corresponding ACB, so there often exist sev-
eral ACBs for the target. The target is definitely missed when the
execution diverges away down any branch in those ACBs, so they
should be recognized in the calculation of approximation level. All
ACBs with respect to the target also form a set. To distinguish
this from the concept of ACB, we propose the notion of Critical
Branches Set (CBS) in Definition 2.

Definition 2. Critical Branches Set (CBS): For branch n, CBS(n)
is the set of all the corresponding ACBs of branch n’s control de-
pendent nodes. When any branch in any ACB contained in CBS(n)
is taken, there is no chance to cover branch n.

Example 5 has three levels of nesting, with two levels of nested
switch-case structures, and the corresponding FCDG is shown in
Figure 4. When any branch in ACB(9) is taken, the target (branch
9) will be missed. Furthermore, branch 9 is control dependent on
branch 6 and branch 2. If the control flow diverges away down
any branch in ACB(6) or ACB(2), the target will also be missed.
So ACB(6) and ACB(2) should also be included, and thus CBS(9)
= {ACB(2), ACB(6), ACB(9)}, where ACB(2) = {branch 12},
ACB(6) = {branch 3, branch 4, branch 11}, and ACB(9)={branch
7, branch 10}. When control flow is driven down any branch in any
ACB contained in CBS(9), the target will be missed.

Example 5. Example with nested structure
/* pre-code */
1: if(x > 0){
2: switch(y){
3: case 1:
4: case 8: value = 1.0;break;
5: case 6: x+=2;
6: case 2: switch(c){
7: case ’a’: value = 2.0;break;
8: case ’k’: x++;
9: case ’c’: value = 3.0; break; /* Target */
10: default: value = 1.5

}
11: default: value = 0.5;

} }
12: else { /*some code*/ }

With the proposed concepts of ACB and CBS, the approxima-
tion level in formula (1) is calculated by subtracting one from the
number of ACBs lying between the node from which the individual
diverged away from the target, and the target itself.

Meanwhile, branch distance in formula (1) is calculated when
the execution diverges away down any branch in any ACB con-
tained in the target’s CBS. When the execution diverges away at a
switch branching node, the branch distance is |expr−C|+1, where
expr is the value of the expression after the switch keyword, and C
is the constant for the desired case branch, which can be obtained
by the static analysis of the program. When the execution diverges
away at other branching nodes, branch distance is calculated using
the traditional method [9].

Targe t

6

10987

1

2 12

1143

T F

5

Figure 4: Flattened control dependence graph of Example 5

Consider Example 5. Given test data (x = 2, y = 2, c = ’a’), the
execution will diverge away down branch 7 which is included in
ACB(9). Using our unified fitness calculation approach, approxi-
mation level is 0 and branch distance is |′a′ −′ c′| + 1 = 3. For
test data (x = 2, y = 1, c = ’a’), approximation level is 1 and branch
distance is |1 − 2| + 1 = 2.

5. EMPIRICAL STUDIES

5.1 Tool implementation
The high level architecture of our tool is shown in Figure 5. As

introduced in Section 4.2, approximation level relies on the CBS of
the target, and branch distance is related to variable values. There-
fore, approximation level can be calculated by comparison of the
execution trace with the CBS of the target. Once the execution en-
counters any branch in any ACB which is in the target branch’s
CBS, approximation level is calculated by subtracting one from the
number of ACBs in CBS lying between the node from which the
test data diverged away from the target and the target itself. To
calculate approximation level in this way, execution tracing code is
instrumented into the program under test. Branch distance can be
calculated by instrumented code using the equation given in Sec-
tion 4.2. The tool consists of two parts, Static Analysis module and
Evolutionary Search module.

1. Static Analysis. We employ ANTLR (an open source compiler
generator) [18] to generate a C Parser to extract the Abstract Syn-
tax Tree (AST) of the source code. Then fitness calculation code
is instrumented by the Fitness Instrumentor while traversing the
AST. Control dependency information and case branches informa-
tion such as the constant for each case branch are obtained through
the Program Analyzer for the calculation of fitness.

1771

C Source
Code AST

Fitness
Inst rumentor

Static
Analysis

Inst rumented
Code

Execut ion
Trace

Test Data
Generator

Fitness
Calculator

Fitness
Value

Required
Test Data

Evolutionary
Search

C Parser

Test Driver

Candidate
Test Data

Program
Analyzer

Cont rol
Dependency Info

CBS
Calculator

Case Info

Target 's
CBSTarget

Figure 5: The high level architecture of our tool

2. Evolutionary Search. The target’s CBS is calculated by CBS
Calculator, which repeatedly invokes the ACB construction algo-
rithm given in Algorithm 1 based on the control dependence nodes
of the target. Evolutionary algorithm is applied to the Test Data
Generator, which generates candidate test data for the Test Driver.
The Test Driver repeatedly invokes the instrumented program un-
der test . The execution trace is obtained after each run, with which
the fitness value is calculated by the Fitness Calculator. The search
terminates only when the required test data has been found or the
maximum number of fitness evaluations has been reached.

5.2 Experiments
The switch-case construct is widely used in industrial programs,

and the fitness calculation problem studied here forms a significant
proportion of evolutionary testing. To validate our fitness calcula-
tion approach for the switch-case construct, experiments were con-
ducted on 6 representative functions, coming from 4 open source
projects in current use. Further details can be found in Table 1.

qemu-0.8.2 is an open source machine emulator, which can run
an unmodified target operating system in a virtual machine. gdb-
6.6-2 is a widely used debugger, and xen-3.1.0 is an x86 virtual
machine monitor which allows multiple operating systems to share
hardware. a2ps-4.13 is a text to postscript converter. The selec-
tion of a test object was decided using the following three criteria:
the number of branches embraced in the switch-case constructs, the
maximum levels of nesting and the number of code lines. In all ex-
amples, the target branch is embraced in a switch-case construct,
and the break statement may be deliberately omitted by program-
mers. Nested switch-case structures are also included in our ex-
periments. As shown in Table 1, there are 290 branches embraced
in the switch-case constructs in the four test objects. Experiments
were conducted on the 290 branches.

For simplicity, ET using the fitness calculation approach based
on the nested if-else structure is referred to as ET with nested, while
ET using the fitness calculation approach based on ACB is referred
to as ET with ACB. In experiments, we also adopted random test-
ing. The random testing algorithm simply constructs 100,000 ran-
dom inputs for each branch. Experiments were run on an Intel Dual

Table 1: Test Objects Details
Test Object/Function Lines of

Code
No. of
Branches

Maximum
levels of
nesting

qemu-0.8.2
console putchar 225 87 7
gdb-6.6-2
Slot inst16b decode 50 22 4
sh3 supply register 85 32 4
xen-3.1.0
OPLWriteReg 256 100 5
init centaur 143 22 3
a2ps-4.13
ps escape char 100 27 3
Total 859 290

2.0GHz PC with 2Gb of RAM. 200 individuals were used per gen-
eration. The crossover probability is set to 0.3, and the mutation
probability is set to 0.02. Both ET with nested and ET with ACB
terminate after 100,000 fitness evaluations if test data has not been
found. All the search algorithms were repeated 100 times for each
branch. Success rate, average number of fitness evaluations, and
standard deviation were used as metrics to examine the effective-
ness of the three approaches.

Experimental results are shown in Table 2. Of the 290 branches
given in Table 1, 205 branches (71%) were covered by all search
methods, (e.g. init centaur branch 2, ps escape char branch 21
shown in Table 2), leaving 85 hard-to-cover branches for which ET
is required. Those branches are nested within more than one con-
ditional statement. This experimental result is basically consistent
with the result of a theoretical and empirical analysis done by Har-
man et al. [2]. Table 2 lists 25 branches of the 85 branches as
examples.

As presented in Table 2, it is obvious that the success rate of
ET with ACB approach is much higher than that of the other two
approaches. Our fitness calculation approach demonstrates a sig-
nificant success rate for the switch-case construct. Table 2 fur-
ther demonstrates that the success rate was improved for several
branches (e.g. branches 12, 13, 14, and 34 in console putchar,
branch 16 in Slot inst16b decode) by more than 15% over ET with
nested. Moreover, there are three branches (branches 64, 69, and
73) in function console putchar that ET with ACB covered, while
ET with nested failed on each occasion in the 100,000 fitness eval-
uation limit. ET with nested encountered severe difficulties for the
three branches due to the existence of three levels of nested switch-
case construct. Those branches are indirectly control dependent on
the seven case branching nodes in the first switch-case structure
using ET with nested. The control dependence is meaningless and
brings about inappropriate approximation level as discussed in Sec-
tion 3.1, so the fitness values received by test data are inaccurate
in determining their suitability for the coverage of the target and
provide misleading guidance to the evolutionary search. With the
increase in the levels of nested switch-case construct, the impact
is aggravated, resulting in ET with nested’s failure in generating
test data for those branches. In our approach, for those branches
with no control dependence on the seven case branching nodes in
the FCDG, the fitness can evaluate test data accurately and provide
much better guidance, so ET with ACB achieves a much higher
success rate.

Additionally, the average number of fitness evaluations required
by ET with ACB approach is much smaller than that of ET with
nested. Our approach also effectively contributes to the number

1772

Table 2: Experimental Results. AE is the average number of fitness evaluations, SD is the standard deviation
Test Object/Function
(Branch ID)

Random Testing
Success Rate (AE/SD)

ET with nested
Success Rate (AE/SD)

ET with ACB
Success Rate (AE/SD)

qemu-0.8.2
console putchar(11) 33% (32,679/16,036) 90% (10,605/9,476) 100% (4,890/2,568)
console putchar(12) 37% (28,679/15,842) 70% (3,014/2,658) 100% (2,236/1,493)
console putchar(13) 40% (12,679/6,569) 56% (1,797/1,243) 100% (2,030/1,601)
console putchar(14) 41% (22,132/10,489) 64% (2,546/2,552) 99% (1,686/898)
console putchar(34) 0% 68% (19,710/8,027) 95% (12,658/6,574)
console putchar(64) 0% 0% 70% (20,407/11,086)
console putchar(69) 0% 0% 71% (22,981/12,996)
console putchar(73) 0% 0% 69% (21,453/12,894)
console putchar(81) 0% 10% (8,638/8,056) 83% (13,367/7,236)
console putchar(83) 10% (20,688/10,357) 80% (2,764/2,951) 99% (1,326/924)
gdb-6.6-2
Slot inst16b decode(16) 43% (39,106/23,354) 71% (11,298/3,883) 93% (5,643/3,074)
Slot inst16b decode(19) 50% (45,512/28,105) 83% (12,781/6,744) 100% (5,967/3,184)
sh3 supply register(16) 0% 100% (688/662) 100%(493/281)
sh3 supply register(29) 0% 100% (943/912) 100% (678/497)
sh3 supply register(36) 0% 100% (1,075/985) 100% (801/467)
sh3 supply register(41) 0% 100% (1,100/1,136) 100% (818/541)
xen-3.1.0
OPLWriteReg(63) 32% (49,204/21,802) 89% (6,172/5,916) 100% (3,506/1,728)
OPLWriteReg(64) 20% (53,871/26,386) 85% (7,764/6,852) 100% (4,327/2,128)
OPLWriteReg(67) 29% (48,772/25,296) 88% (5,762/5,551) 100% (3,239/1,827)
OPLWriteReg(68) 21% (52,924/23,867) 84% (6,806/6,336) 100% (3,801/1,879)
OPLWriteReg(71) 30% (47,978/22,348) 90% (5,802/5,484) 100% (3,106/1,581)
OPLWriteReg(72) 20% (56,034/28,485) 83% (6,512/5,733) 100% (3,685/1,667)
OPLWriteReg(75) 31% (48,867/23,973) 89% (6,201/5,979) 100% (3,461/1,716)
OPLWriteReg(76) 22% (55,046/24,614) 83% (6,891/6,201) 100% (4,077/2,007)
init centaur(2) 100% (296/187) 100% (1,228/1,170) 100% (1,119/839)
init centaur(5) 45% (56,691/32,143) 85% (25,112/10,298) 100% (10,838/3,490)
a2ps-4.13
ps escape char(21) 90% (27,860/18,344) 95% (10,282/9,711) 100% (8,018/6,417)

of fitness evaluations required. In many instances, such as with nu-
merous branches in OPLWriteReg, ET with nested performs almost
1.5 times as many fitness evaluations as ET with ACB. Further-
more, branches in functions console putchar and Slot inst16b decode
presented in Table 2 are embraced in a switch-case structure which
is nested within two outer switch-case constructs, the advantage of
our approach becomes more noticeable due to the increase of the
levels of nested switch-case construct. ET with ACB generally per-
forms almost half the number of fitness evaluations, compared to
ET with nested. There are only two branches (branches 13 and 81
in function console putchar) for which ET with nested performs
fewer fitness evaluations. This is because the first generation of ET
is randomly generated. When the required test data or data close to
the required data is generated in the first generation, then the target
will be covered with fewer fitness evaluations, otherwise ET with
nested will find difficulty in generating test data due to the mislead-
ing guidance provided by the fitness calculation approach based on
the nested if-else structure. So ET with nested has much lower
success rates and fewer fitness evaluations for the two branches,
compared to our approach.

Furthermore, as shown in Table 2, ET with ACB has much smaller
standard deviations than ET with nested. ET with nested has more
than twice the standard deviation of our approach for most branches,
which indicates that our approach performs more stably than ET
with nested due to the much better guidance provided by our fit-
ness calculation approach.

In conclusion, the empirical study results provide evidence to
support that our approach outperforms the fitness calculation ap-
proach based on the nested if-else structure with respect to the
branches embraced in the switch-case structure. As a well-designed

fitness function is crucial to the effectiveness and efficiency of evo-
lutionary search, there is no misleading control dependence among
case branching nodes in our approach, then fitness values calcu-
lated can evaluate test data accurately, providing more effective
guidance to evolutionary search. Our approach has a higher suc-
cess rate, performs fewer fitness evaluations and is more stable than
ET with nested. Additionally, with the increase of the levels of the
nested switch-case structure, advantages of our approach are more
noticeable.

6. RELATED WORK
Miller and Spooner [20] were the first to dynamically generate

floating point test data for paths, applying the numerical maximiza-
tion technique. Xanthakis et al. [21] were the first authors to apply
evolutionary computation to test data generation for the execution
of paths. This work has been extended by various authors for struc-
tural test data generation[4, 7, 9, 2, 1, 19]. McMinn [15] gave a
detailed survey of search based test data generation in 2004. Multi-
object branch coverage was first proposed to search based test data
generation by Harman et.al. in 2007 [1].

The fitness function is crucial to the performance of the search
based test data generation technique. Intensive research into the
design and implementation of the fitness function has been under-
taken [7, 10, 9, 14, 19]. In 2001 and 2002, Wegener et al. [7] and
Baresel et al. [10] introduced approximation level into the fitness
function. Fitness function for structural testing has been designed
and optimized for specific program constructs [8, 14, 16, 17, 16].

Nevertheless, despite the large body of work, the present pa-
per is the first to investigate the fitness calculation problem for the
switch-case construct. It seems that this problem can be handled

1773

by testability transformation, a promising approach to improve the
performance of the test data generation technique [19]. Testability
transformation has been applied to many program constructs [16,
17] in the evolutionary testing. However, the cost of this applica-
tion for the switch-case construct may be prohibitive. Our approach
is inspired by testability transformation, without making any trans-
formation.

7. CONCLUSIONS AND FUTURE WORK
This paper introduces a unified fitness calculation approach for

the switch-case construct on the basis of Alternative Critical Branches.
The concept of Alternative Critical Branches is extended from the
single critical branch per branching node, enabling multiple critical
branches per branching node to be taken into consideration when
calculating fitness. An experimental assessment of the performance
of our approach, compared with the fitness calculation approach
based on the nested if-else structure and random testing, demon-
strates the efficiency and effectiveness of our approach.

A programmer may choose to implement a conceptual switch-
case construct using a nested if-else structure, similar to that pre-
sented in Example 2, which would exhibit the same problem. This
type of nested if-else structure can be identified by examining the
predicates in the nested conditionals and transformed into the switch-
case constructs, then solved by this proposed approach.

Future work will also deal with unstructured programs using the
ACB based fitness calculation approach. Branches containing re-
turn or break statements that lead to the target being missed are
considered critical and compose some critical branch sets with re-
spect to the target. Therefore, we expect that this approach could
also be applied to unstructured programs.

8. ACKNOWLEDGEMENTS
This work is sponsored by National Advanced Research Project

of China, and National Advanced Research Funding Project of China.

9. REFERENCES
[1] M. Harman, K. Lakhotia, and P. McMinn. A multi-objective

approach to search-based test data generation. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’07), pp.1098-1105, London, England,
2007

[2] M. Harman and P. McMinn. A Theoretical & Empirical
Analysis of Evolutionary Testing and Hill Climbing for
Structural Test Data Generation. In International Symposium
on Software Testing and Analysis (ISSTA’07), to appear,
2007.

[3] K. Derderian, R. Hierons, M. Harman, and Q. Guo.
Automated Unique Input Output sequence generation for
conformance testing of FSMs. In The Computer Journal,
49(3):331-344, 2006.

[4] C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution. IEEE Transactions on
Software Engineering, 27(12):1085-1110, 2001.

[5] L. Briand, Y. Labiche, and M. Shousha. Stress testing
real-time systems with genetic algorithms. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO’05), pp.1021-1028 , Washington, USA, 2005.

[6] J. Clarke, J. J.Dolado, M. Harman, R. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem. In IEE Proceedings - Software,
5(1):161-175, June 2003.

[7] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. In Information
and Software Technology, 43(14):841–854, December 2001.

[8] X. Liu, H. Liu, B. Wang, P. Chen, and X. Cai. A unified
fitness function calculation rule for flag conditions to
improve evolutionary testing. In Proceedings of the
International Conference on Automated Software
Engineering (ASE’05), pp.337-341, California, USA,
November 2005.

[9] N. Tracey, J. Clark, and K. Mander. Automated program flaw
finding using simulated annealing. In International
Symposium on Software Testing and Analysis (ISSTA’98),
pp.73-81, Florida, USA, 1998.

[10] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function
design to improve evolutionary structural testing. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’02), pp.1329-1336. New York, USA,
July 2002.

[11] J. Ferrante, K. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. In ACM
Transactions on Programming Languages and Systems,
9(3):319-349, 1987.

[12] P. McMinn and M. Holcombe. Hybridizing evolutionary
testing with the chaining approach. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO’04), pp.1363-1374. Seattle, USA, June 2004.

[13] R. Ferguson and B. Korel. The chaining approach for
software test data generation. In ACM Transactions on
Software Engineering and Methodology, 150(3):63-86,
January 1996.

[14] P. McMinn and M. Holcombe. Evolutionary testing of
state-based programs. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’05),
pp.1013-1020. Washington DC, USA, June 2005.

[15] P. McMinn. Search-based software test data generation: A
survey. In Software Testing, Verification and Reliability,
pp.105-156, 2004.

[16] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer.
Improving evolutionary testing by flag removal. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’02), pp.1351-1358. New York, USA,
2002.

[17] P. McMinn, D. Binkley, and M. Harman. Testability
Transformation for Efficient Automated Test Data Search in
the Presence of Nesting. In Proceedings of the Third UK
Software Testing Workshop, pp.165-182, UK, 2005.

[18] T. Parr. ANTLR - ANother Tool for Language Recognition.
http://antlr.org/.

[19] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener,
Harmen Sthamer, Andre Baresel, and Marc Roper.
Testability Transformation. In IEEE Transactions on
Software Engineering. 30(1): 3-16, 2004.

[20] W. Miller and D. Spooner. Automatic generation of
floating-point test data. In IEEE Transactions on Software
Engineering. 2(3):223-226, 1976.

[21] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas,
and K. Karapoulios. Application of genetic algorithms to
software testing. In In International Conference on Software
Engineering and its Applications. pp.625-636, Toulouse,
France, 1992.

1774

