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ABSTRACT
This paper analyzes theoretically the exact sampling distribution
of the particle swarm optimization (PSO) without any assumption
imposed by all current analyses. The distribution of particles in
the PSO in one-step transition is analyzed in details. Especially,
local and global search capabilities of particles in the PSO are de-
fined implicitly, and are allocated adaptively to show how the PSO
works by several experiments. In essence, the PSO works by just
allocating each particle in the swarm to finish two jobs in proba-
bility, locally searching the range around the current best positions
and globally searching whole solution space. According to our def-
initions and analyses, the exact probabilities of the two jobs can be
measured by theoretic derivations and experiments whilst how the
PSO allocate the particles’ search capabilities can be recognized
clearly. So we can look into the PSO in depth.
Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search
General Terms: Theory, Performance.
Keywords: Particle Swarm Optimization (PSO), Sampling Distri-
bution, Global Search, Local Search, Allocation, Guide.

1. INTRODUCTION
The particle swarm optimization (PSO) is a stochastic global op-

timization technique inspired by social behavior of bird flocking or
fish schooling [1, 2]. The sampling distribution of the PSO is an-
alyzed under the assumption of stagnation in [3, 4]. Even though
all current analyses rely on simplifications or assumptions that the
particles are deterministic or stagnated, this paper analyzes theo-
retically the exact sampling distribution of the PSO without any
simplification, which can help us understand how the PSO works
very much clearly.

In conventional PSO, the update formula for each particle’s ve-
locity and position in conventional standard PSO is written as

Vid(t + 1) = wVid(t) + c1r1(PiBd(t) − Xid(t))

+c2r2(PgBd(t) − Xid(t)), (1)
Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

2. SAMPLING OF PSO
As we know, in each iteration, PSO gives every particle two

guides to evolve, which are PiBd(t) and PgBd(t). So, attention
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should be paid on these two guides to find how exactly they change
the distribution of one particle in the search space to find the ac-
tual solution with higher probability. We denote ϕ1 = c1r1, ϕ2 =
c2r2, d1 = PpB(t)−X(t), d2 = PgB(t)−X(t), a = min{c1d1,
c2d2}, b = max{c1d1, c2d2}, m = argmini{cidi}, i = 1, 2,
n = argmaxi{cidi}, i = 1, 2, A(t = ϕmdm, B(t) = ϕndn,
Z(t) = A(t) + B(t).

The distribution function of Z is

fZ(z) =

Z +∞

−∞
fZ,A(z, x)dx =

Z +∞

−∞
fA(x) ∗ fB(z − x)dx. (3)

2.1 Case a ≥ 0

fZ(z) =

8>><
>>:

0 if z > (a + b) or z ≤ 0,
z
ab

if 0 < z ≤ a,
1
b

if a < z ≤ b,
a+b−z

ab
if b < z ≤ (a + b).

(4)

2.2 Case a < 0 and b > 0

fZ(z) =

8>>>><
>>>>:

0 if z > b or z < a,
z−a
|a|b if a ≤ z ≤ min{0, a + b},
1
|a| if (a + b) < z ≤ 0 and (a + b) < 0,
1
b

if 0 < z ≤ (a + b) and (a + b) ≥ 0,
b−z
|a|b if max{a + b, 0} < z ≤ b.

(5)
When (a + b) ≥ 0, Eq. (5) can be written as

fZ(z) =

8>><
>>:

0 if z > b or z < a,
z−a
|a|b if a ≤ z ≤ 0,
1
b

if 0 < z ≤ (a + b),
b−z
|a|b if (a + b) < z ≤ b.

(6)

When (a + b) < 0, Eq. (5) can be written as

fZ(z) =

8>><
>>:

0 if z > b or z < a,
z−a
|a|b if a ≤ z ≤ (a + b),
1
|a| if (a + b) < z ≤ 0,
b−z
|a|b if 0 < z ≤ b.

(7)

2.3 Case b ≤ 0

fZ(z) =

8>><
>>:

0 if z < (a + b) or z ≥ 0,
z−a−b
|ab| if (a + b) < z ≤ a,

1
|a| if a < z ≤ b,
|z|
ab

if b < z ≤ 0.

(8)

165



−15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X(t+1)

f X
(t+

1)
(x

)

Probability Density of X(t+1)

When
a:=4*(PpB(t)−X(t))=−12
b:=4*(PpB(t)−X(t))=20

X(t)
PpB PgB

(a+b)/2

Figure 1: The allocation of P (local) (The deep color area) and
P (global) (The rest area of the trapezia) when there is no iner-
tia velocity part.

2.4 How does PSO work

X(t + 1) = X(1) +
tX

i=1

wiV (1) +

t−1X
j=1

jX
i=0

wiZ(t − i), (9)

3. ALLOCATION OF GLOBAL EXPLORATION
AND LOCAL EXPLOITATION

Definition 1(Local Search Range): The sampling range of a
particle X for local search is defined as:

R(local) = [(PpB − |d1|), (PpB + |d1|)][
[(PgB − |d2|), (PgB + |d2|)]. (10)

Definition 2(Global Search Range): The sampling range of a
particle X for global search is defined as:

R(global) = R − R(local). (11)

where R denotes a set of all real numbers.
Definition 3(Local Search Probability): The probability of a

particle X landing in R(local) is defined as:

P (local) =

Z
R(local)

fX(x)dx. (12)

Definition 4(Global Search Probability): The probability of a
particle X landing in R(global) is defined as:

P (global) =

Z
R(global)

fX(x)dx. (13)

As can be seen by Eqs. (12) and (13), there exists

P (global) + P (local) = 1. (14)

For the sake of precision, the P (local) and P (global) of every
generation in every dimension of each particle can be integrated
precisely according to Eqs.(10), (11) and (13) and shown in Fig. 1.

In the similar manner, we compute the global allocation proba-
bility of the PSO without and with the inertial velocity part during
the evolution shown in Fig 2. The range of the sampling distribu-
tion for Z will be shifted according to the value of w ∗V (t) and the
global search is increased.

In order to look into the behavior of the canonical PSO in the
stagnation, we set the best fitness value of the swarm as a fixed
and same constant in every generation. P (global) is illustrated
in Fig. 3. As can be seen, P (global) decreases with the evolving
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(a) without inertia velocity part
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(b) with inertia velocity part

Figure 2: The P (global) of PSO without and with inertia veloc-
ity part using three particles with three dimensions on Ackley
Function, where c1 = c2 = 2. The Best value of the fitness
found is 16.7 and 0.0001 respectively, and stagnation begins af-
ter the 46th and 161st generation respectively.
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Figure 3: The P (global) of PSO with the inertia velocity part
on Ackley function, where c1 = c2 = 2. w=1, total number of
generations is 5000.

process. Therefore, as the stagnation happened, the canonical PSO
trends to pay more attentions on local search.
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