Evolutionary Path Planner for UAVs
in Realistic Environments

J.M. de la Cruz
jmcruz@dacya.ucm.es

B. Andres-Toro
deandres@dacya.ucm.es

E. Besada-Portas
evabes@dacya.ucm.es

L. Torre-Cubillo
Idelatorre@gmail.com

J.A. Lopez-Orozco
jalo@dacya.ucm.es

Departamento de Arquitectura de Computadores y Automatica. Universidad Complutense de Madrid
Av. Complutense s/n.
Madrid, 28040, Spain
(+34) 913944477

ABSTRACT

This paper presents a path planner for Unmanned Air Vehicles
(UAVs) based on Evolutionary Algorithms (EA) that can be used
in realistic risky scenarios. The path returned by the algorithm
fulfills and optimizes multiple criteria which (1) are calculated
based on properties of real UAVs, terrains, radars and missiles,
and (2) are used to rank the solutions according to the priority
levels and goals selected for each mission. Developed originally
to work with only one UAV, the planner currently allows us to
obtain the optimal path of several UAVs that are flying
simultaneously. It works globally offline and locally online to
recalculate a part of the path when an unexpected threat appears.
Finally, the effectiveness of the solutions given by this planner
has been successfully tested against a simulator that implements a
complex model of the UAV and its environment.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem solving, control methods
and search — heuristic mehods, plan execution, formation and
generation

General Terms
Algorithms

Keywords
Multiobjective Evolutionary Algorithms, path planning, UAVs.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAV) are aircrafts without onboard
pilots that can be remotely controlled or fly autonomously based
on pre-programmed flight plans [13]. They can be used in a wide
variety of fields, both civil and military, such as surveillance,
reconnaissance, geophysical survey, environmental and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee .

GECCO’08, July 12—-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

1477

meteorological monitoring, aerial photography, and search-and-
rescue tasks.

In military missions they work in dangerous environments, where
it is vital to fly along routes which keep the UAVs away from any
type of threat and prohibited zones. The best routes are those
which minimize the risk of destruction of the UAV and optimize
some planning criteria (such as flying time and path length) while
fulfilling all the physical constraints of the UAVs and its
environment, plus the restrictions imposed by the selected
mission. The original path obtained offline by the planner is not
always valid in dynamic environments where the position of all
the threats is not known before hand. Therefore, the planner must
be able to also work online in order to propose a new path during
the mission of the UAV when a pop-up (unknown threat) appears.

Finding the optimal solution to the route planning problem is NP-
complete ([14]) and so the problem has been approached with
different heuristics such as A* [17], [15], MILP [10], [6], [11],
nonlinear programming [9] and others. The planners based on
those techniques deal with a simplified version of the original
problem (point-mass dynamics, discretising the solution space,
and, in some of them, linearizing the objective function and the
constraints) where the addition of new constraints or objective
indexes is a difficult task.

EA has been proven to be an efficient and robust technique to
deal with complex multicriteria constrained problems [1] and so,
it has already been used to solve different aspects of the UAV
problem, such as in [7], [8] and [19]. The first two papers focus
on finding the optimal path of a single UAV that flies over
simulated terrain, while [19] optimizes the path of several
cooperating UAVs in military environments. Multi-UAV route
optimization is also done in [9] and [10].

In those three papers the problem is formulated as finding a set of
3D points (x,y,z), that define the trajectory followed by the UAV
which should minimize several criteria and fulfill a set of
restrictions. Although the 3D points in [7] and [8] determine the
spline curve [4] followed by the UAV and in [19] their linear
segments, the codification proposed in these papers creates a big
search space in real scenarios. Besides, the evaluation method
used in those algorithms does not provide an easy support to
modify the priorities of the objectives and their goals for different

missions, and only in [7] is the concept of pareto optimality [18]
used. To minimize the time response of the planner, all of them
use an extremely simple model of the UAV, terrain and threats,
and the performance of the planner is tested against the same
model instead of a realistic complex simulator.

Our work combines the work presented in those papers, and
extends it by introducing some new ideas, optimization and
constraints criteria. The goodness of each possible path is
evaluated according to the model of a real aircraft (F-16 model,
[13]) for the UAV, a real map of the world for the terrain and the
characteristics of the radars used in the simulator. In our research,
not only is the position of the UAV considered, but also its
velocities, which are needed for calculating the fuel consumption
and risk of the trajectory. The terrain, which is a map of any part
of the world as in [19], is used for checking that the UAV does
not collide against it (as in the previous papers) but also to inhibit
the possibility of the radar to detect the UAV when it is hiding
behind mountains. The properties of the three types of radars and
the missiles have been obtained analysing the data from the
simulator and are used to measure the threat risk (as the
probability of detection and the probability of being destroyed).
The user can force the UAV to pass through several specific
points (and not only one as in [7]) and some of them can be
defined as refuelling points. Our planner also supports the
definition of prohibited zones (No Flying Zones, NFZ), which the
UAYV has to avoid due to a mission restriction. Additionally, we
use a relative polar coordinate codification for the waypoints of
the spline curve that defines the path, which accelerates the
convergence of the algorithm. Our algorithm can also obtain the
path of a single UAV (as [7] and [8]) or the paths of several
UAVs (as [19]) that have to be flying simultaneously without
running into each other.

Table 1 summarizes these properties and compares our planner
(last column) with the previous work ([7], [8] and [19]). The
compared properties are named in the first two columns, and
when there are several options in the same row the selected one
can be identified by the capital letters that are shown in the
second column.

Table 1. Comparisons of the properties of the planners

(71 | (8] | [19] | Us

. SPline/SEGment SP SP | SEG | SP

£2 | AbsoluteRelative | A [A | A [R

Ej E % Intermediate Points o N N S
g 5’ = | (None/One/Several)

© Refuelling points N

Point/Velocity P P P v

I\I/[J()Ad\;l Simple/Complex S C

1 UAV/Several UAVs 1 1 S S

m‘gl None/Simple/Complex | N | N | s | C

= Simulated/Map S S M M

.§ Masking radars N

= Prohibited zones v

1478

We also introduce several features in the EA to speed up the
computation such as a local search operator used periodically over
the best solutions, the possibility of flying at constant altitude, the
use of hypercubes [3] in the substitution method in order to
maintain a good diversification of solutions, and the initialization
of the algorithm with previous solutions for a specific scenario.

It is also important to highlight that we use a generic
multiobjective pareto evaluation function with goals and priorities
[5] that permits the change of the priorities levels of the different
objectives for different missions. Besides a realistic and complete
simulator, where pop-ups can appear anywhere and make the
algorithm obtain a new local plan, is used to evaluate the
performance of the planner.

The rest of the paper is organized as follows. In section 2 the
codification of the problem solution is presented. Section 3
presents the function used to evaluate the multicriteria solutions
as well as the constraints and optimization indexes used in our
experiments when using a single UAV. In section 4 the genetic
operators and function used by the single UAV planner are
introduced, while section 5 shows how the single planner has
been modified to deal with multiple UAVs. Experimental results
are given in section 6, followed by our discussion and conclusions
in section 7.

2. INDIVIDUAL STRUCTURE

The first step when applying a EA to solve an optimization
problem is to determine how the solutions (the individuals of the
EA) are going to be codified. Our individual is a list of 3D points
(waypoints) which are used to calculate a spline curve [4] that
constitutes the solution of the problem: the 3D path of the UAV.
So, our algorithm searches for the best list of waypoints which
define a feasible and optimal spline trajectory for the UAV.

Each waypoint in the 3D space is defined by three coordinates,
whose values can have different meaning depending on the
selected codification. For example, in [7], [8] and [19] they are
the ‘x’, ‘y’ and ‘z’ of the absolute Cartesian coordinates. This
selection generates a very big search space in realistic scenarios
because with that codification each point of the space can be
reached from the previous waypoint.

To limit the search space our algorithm uses a relative polar
coordinate system, with absolute ‘z’ (the altitude) and polar
coordinates ‘r’ (radius) and ‘0’ (angle) relative to the previous
waypoint. The first 0 angle is the angle formed between the initial
vector direction and the vector direction defined by the start point
and the first waypoint. For any other waypoint, this angle is
measured according with the schema in figure 1. The values of 0
are measured clockwise with respect to the (i-1,i) vector direction.
This way, Omax = 2z - Omin. The solid line represents the spline
curve (which is the path of the UAV) obtained from the
waypoints.

The three parameters are codified as real numbers limited
between two values. For ‘z’ the limits constitute the minimal and
maximal altitude that the UAV can reach. The ‘r’ limits represent
the maximal separation between two consecutive points. And the
limits of the ‘0’ are related by the UAV manoeuvrability.

Figure 1. Relative polar coordinates for ‘x’ and ‘y’.

The selected coordinate system forces the algorithm to have a
predefined order of waypoints. This is positive because that order
already exists and if it were not imposed by the codification the
algorithm would have to find it. So, the selected codification lets
us dramatically reduce the search space and computation time.

The main drawback of our codification (a list of ‘r’, ‘6” and ‘z’
tuples) is that the algorithm has to include a constraint that
prevents the path to get outside the map limits, but the EA usually
satisfies this condition in only a few generations.

3. EVOLUTIONARY EVALUATION
FUNCTION OF THE SINGLE UAV
PLANNER

There are: (1) constraints that the path of a single UAV must
satisfy completely due to the physical restrictions of the UAV and
terrain; and (2) objectives that have to be minimized according to
the selected mission. Their values are calculated using the spline
curve obtained from the waypoints, the terrain and the model of
the UAV (constrained by the properties of the vehicle), radars and
missiles (characterized after multiple simulations).

So far, we have defined for the offline planner 6 constraints and 4
objectives or optimization indexes to be minimized. Their number
can be modified to include other constraints of the model or to
define other types of missions. Moreover, an even more complete
model, such as a realistic simulator could be used to obtain the
objective values, although that would require a lot of computation
time in the evaluation step of the EA.

The time needed for evaluating the solutions is especially
problematic when the planner starts running online due to the
presence of a sudden pop-up. In order to speed up the algorithm
the online planner uses a simpler model of the problem and a
different set of constraints and optimization indexes. This
difference is justified because the objective of the online planner
is to avoid the threat and so, minimizing some of the offline
planner indexes is no longer important.

In both cases, the constraints and objective values are combined
in the evaluation step of the evolutionary algorithm to obtain the
fitness of each solution. In our case, we use the generic evaluation
multiobjective method based on goals, priorities and Pareto sets
proposed by Fonseca and Fleming [5], where the objectives are
placed in priority levels and where it is possible to impose limits
(goals) on each of them. In the following sections we describe the
objective values and the evaluation method with more detail.

1479

3.1 Constraints

A feasible path for the UAV must fulfill 6 constraints. The first
five constraint indexes measure the number of times each of them
is violated and so their value must be zero for a feasible solution,
while the last one checks if an upper limit has been exceeded.

The implemented constraints are the following:

e Terrain. A path must not get under the terrain. This also
includes avoiding collisions with mountains. The algorithm
increments this value each time one of the spline trajectory

points is below the altitude of the map.

Turning radius. An UAV cannot follow a path where 3
consecutives points form a turning radius smaller than a
minimum one, whose value depends on the physical
characteristics of the UAV. Each time this constraint is not
satisfied its value is incremented by one unit.

Map limits. The UAV must stay inside the limits of our
known map. Every point of the spline curve must stay inside
the limits and as the selected codification does not ensure
that this constraint is always fulfilled, this value measures
how many points of the trajectory does not satisfy this
restriction.

Maximum climbing and diving slope. UAVs cannot reach a
greater slope than the one imposed by their dynamic
characteristics, which is usually different when the UAV is
climbing than when it is diving. Each time this constraint is
not fulfilled this value is incremented by one unit.

Flight prohibited zones (also called No Flying Zones, NFZs).
There can be certain zones where the UAV must not enter
such as high risk zones, unknown areas, etc. The algorithm
checks if any point of the spline curve is inside any of the
NFZs, and if that is the case, this value is incremented by
one unit.

Fuel. UAVs have a limited quantity of fuel and they have to
reach their final goal or a refuelling point before consuming
it. We use a model that estimates the fuel consumption in
three different cases: a) when the UAV is flying horizontally,
b) when it is flying with maximum slope and c) when it is
flying with maximum turning angle. For intermediate cases
the fuel consumption is calculated as a weighted mean of the
3 previous cases. The constraint is satisfied and given a value
of 0, when the fuel consumption is lower than the total fuel
transported by the UAV; in other case, the value given is the
extra fuel that would be needed.

In the online planner some of the constraints, such as the Flight
Prohibited Zones and Fuel limit, don’t need to be considered
since the priority is to avoid the pop-up.

3.2 Optimal Path for the Mission

The optimality of the path is determined by the following 4
optimization indexes in the case of the offline planner:

Minimum length path. Shorter paths are better than longer
ones because they require less time of flight. With the
purpose of defining generic limits for this cost function its
value is calculated as the ratio between the real path length
of the solution and the minimum possible length.

Minimum probability of kill (Pk). This function depends on
the model used for the Air Defence Units (ADUs), which
consist of a radar and a set of missiles. Based on many
simulations we have obtained a function of the probability of
destruction of an UAV dependent on the type of ADU,
presence of mountains, the distance, relative altitude and
orientation existing between the ADU and the UAV. This
objective index stores the accumulated probability of kill for
the whole path.

Minimum flight altitude. UAVs flying at low altitude
consume less fuel and can benefit from the mask effect of the
terrain (what helps them to avoid radars). This objective is
the maximum difference between the ‘z’ coordinates of the
trajectory and the altitude of the terrain.

Minimum radar detection probability. UAVs that are not
detected by any radar are never destroyed and so minimizing
this value creates safer paths. Our model uses again a
probability function obtained after many simulations that
dependent on the type of radar and presence of mountains,
Radar Cross Section of the UAV and the distance between
the radar and the UAV at every particular point of the
trajectory.

The map of the terrain is used for calculating the flight altitude
and the probabilities of radar detection and kill. Selecting the
appropriate map resolution is important, because high resolution
increases the confidence in the values of these objective indexes
at the expense of reducing dramatically the calculus speed of the
algorithm.

In the case of the online planner, where the real objective is to
avoid the new threat, the flight altitude and length of the path are
no longer important. So, these objectives are not longer used,
which minimizes the time used by the algorithm to evaluate the
different solutions.

3.3 Evaluation Function

The evaluation method used to decide which solutions or
individuals are better than the others is the Fonseca and Fleming
multiobjective method based on goals, priorities and Pareto sets
[5], where the objectives are ordered by priority level and limits
for each of them can be imposed.

This method has been used successfully in real world constrained
problems [1]. The values used to measure when the constraints
are satisfied are placed as high priority objectives and their values
must satisfy the correct goals (be 0 in our problem). The objective
indexes to be minimized are located at lower priority levels. With
this division individuals that fulfill the constraints are better than
the ones that do not, and the latter are organized according to the
number of constraints that they satisfy.

Furthermore, as we are using a general method for evaluating the
fitness of the function given the constraints and objective indexes,
we can easily add or remove constraints or optimization indexes
as needed. For instance, in the online planner some constraints are
removed in order to reduce the computation burden.

As an offline planning example, the following table shows the
priority and limits of each of the values for a particular mission.
The highest priority is the 1 level, the intermediate the 2™ one

and the lower the 3 one. All the constraints are optimized to their
limit to search for optimal solutions that fulfil them. The objective
values are placed in the following two levels according to their
importance for the mission. In this example, we want to minimize
simultaneously the length of the path (whose relative value is
limited) and ensure that the probability of kill of the mission is
zero. When two solutions are equally good, in a Pareto sense,
inside the intermediate priority level (2"), the best solution will
be the one that minimizes simultaneously the flight altitude (to
use the terrain as a mask for known and unknown threats) and the
probability of being detected by a radar.

Table 2. Evaluation function priority levels and limits for a
given mission for the offline planner

Constraint conditions

. . N
Name: | Terrain T“”?mg Map Maximum F | Fuel
radius limits slope 7
Level: I I 1 I 1 I
Min 0 0 0
Max 0 0 0 0 0 0
Optimization objectives
Path Probability of | Flight Radar
Name: | gth ill (PK) altitude | dctection
£ probability
Level: | 2™ 2 31 31
Min 1 50
Max 1.2 0 1000 0

1480

4. EVOLUTIONARY OPERATORS AND
FUNCTIONS OF THE SINGLE PLANNER

Our single UAV evolutionary router planner uses, among others,
the following operators and functions.

4.1 Crossover

This operator is used to obtain two new individual from their
parents, which are selected in our algorithm with the roulette
method. We use two random cross points that divide each
individual into three sections, each of them formed by a complete
group of waypoints. That is, we treat the 3 parameters of each
waypoint as a whole and do not mix the information of one
waypoint of an individual with the information of another. The
new individuals will have the first part of the route of the first
parent (until the first cross point), the second part of the second
parent (from the first cross point until the second one) and the
third part of the first parent again (from the second cross point
until the end of the individual). The other new individual or child
will have the remaining information.

4.2 Mutation

The mutation operator can change (if the mutation probability is
satisfied) the value of any parameter of a solution to another value
obtained randomly from the interval of values for that parameter
(altitude, radio or angle).

4.3 Immigration

Every new generation a number of new individuals (immigrants)
are generated randomly and added to the whole population to
assure the gene’s diversity.

4.4 Local Search Procedure

Every 25 generations the algorithm picks up the best solutions
and it applies a non evolutionary optimization method to improve
them. The implemented method modifies each parameter of the
individual by adding and substracting a predefined value (which
varies with the generation number) and selects the best of the
three different solutions (the original, the one that has a parameter
incremented and the one that has it decremented). The final
individual is the one improved sequentially by this procedure.

4.5 Substitution

The substitution method uses an elitist method that preserves the
pareto front of solutions. Every time a set of individuals is created
(by the crossover and mutation steps), we form a new population
with the new individuals and the old individuals that form part of
the best two pareto groups (discarding the others).

This way of proceeding can increment the number of individuals
in the population with the number of generations when the
number of individuals of the Pareto front grows. As more
solutions need more processing time, it is convenient to limit the
maximum number of individuals in the population. Although, the
easiest and quicker solution is to pick the survivors randomly
from the Pareto front, the selected individuals will not necessarily
be representative of it. So, we have decided to use a hypercube
approach, in the line of the methods proposed by Coello and
Salazar [3], that divides the Pareto front into several regions and
select the survivors randomly from inside the different
hypercubes.

4.6 Selection of the Final Optimal Path

The evolutionary algorithm returns the last population, where the
best individuals are placed along a Pareto front. So, we must
make use of a final selection criterion. There are several
possibilities, such as taking the one with the shorter length path or
the lower probability of kill. Our choice for the offline planner
when the priority levels are the ones presented in Table 2 is to
divide the decision in two possible cases:

o When there is a feasible solution with ‘probability of kill’
equal to zero. This is the trivial case, because in this situation
there is only one element in the Pareto front since one of the
two objectives with intermediate priority (2™) is already a
minimum and the comparison of the other objective (‘path

length’) determines which individual is the best.

When all the ‘probability of kill” objectives are greater than
zero. First of all, we find inside the first pareto front the
solution with the lowest probability of kill (Pk;,) and then
we modify the ‘probability of kill’ of each individual i,
dividing it by the minimum value (Pk;,). All the solutions
with modified probability of kill greater than a predefined
value (for example 1.05) are discarded. The others don’t
have a significant probability of kill, and so we pick among
them the one with shorter path length. This can make the

final solution have a probability of kill just a bit higher than
the minimum as well as a reasonable path length.

The selected solution is returned by the planner and the pareto
front stored to be able to reuse it in the future. For instance, it can
be used to find a trajectory over a slightly modified solution
which will drastically reduce the computation time. The online
planner can also benefit from a local use of this information.

5. MULTIPLE UAVs PLANNER

Calculating the paths of several UAVs that are flying
simultaneously adds new complexity to the planner due to the
space constraints that one path imposes on the others and the
cooperative objectives that the set of UAVs have to minimize.

This task can be carried out using several single UAV planners in
parallel, as long as they exchange some information during their
evaluation step. This information is needed in order to measure
the coordinating objective functions over each population, taking
into account the possible paths of the remaining UAVs.
Therefore, each single planner has to receive information related
to the population of the remaining single planners before
evaluating the cooperative constraints and objectives of each
individual of its own population. As each UAV only follows the
final optimal path proposed by its planner, the paths of the UAVs
which are being evaluated inside each planner only need to be
compared with the currently best path of each one of the
remaining planners. However, the original single planners
maintain a pareto front of best individuals and only selects the
final optimal path when the last population is obtained. To be able
to determine the final optimal path in each generation, this step
has to be included in the new cooperating planners. Table 3 shows
the evaluation steps in the cooperating planners.

Right now we only make use of a single cooperative objective
value that checks if the path that is being evaluated can make the
UAV collide against the remaining UAVs when they are flying
according to the best path proposed by their own planner. As the
feasibility of the plan also depends on the value of this objective,
it is considered a constraint that will be placed in the 7™ step of
the evaluation step with the individual constraints (section 3.1) in
the highest priority level.

The possibility of defining different intermediate points for each
UAV lets us force cooperation in a predefined manner. However,
more objectives, such as the order in which they should arrive to
each objective could also be considered.

Table 3. Evaluation step in the cooperating planners

1. Evaluating the objectives of section 3.1 and 3.2.

2. Calculating the path ranking with the values of step 1
and the evaluation function of section 3.3.

3. Sorting the individuals according to the ranking
calculated in step 2.

4. Finding the best individual according to the final
criteria of section 4.6 and sending it to the other
planners.

5. Waiting for the best individuals of the other planners.

6. Calculating the coordination objectives with the received
information from other planners.

7. Recalculating the new path ranking with the values of

step 1, step 6, and evaluation function of section 3.3.

1481

6. EXPERIMENTAL RESULTS

The UAV planner presented in this paper is part of a complex
system that we have developed to test the performance of
different UAV planners for hostile environments. This system lets
the user (1) define the position of the known and pop-up ADUs
and intermediate points of the UAVs; and (2) plan their routes and
test them against a simulator that uses a real map of the world and
a more complex model for the UAVs and ADUs.

Although our planner can work globally offline to determine the
original best path for each UAV and locally online to react when
it observes a pop-up, the current version of the simulator needs to
have the original plan and the optional routes before launching the
simulation, because it is not able to launch any planner. To
calculate the optional routes before hand, we check if the globally
optimal path enters the detection area of any pop-up ADU, and if
that is the case the online planner finds a path from the position
inside the detection area to where it should leave it. During the
simulation, if the pop-up ADU is detected by the UAV, the
simulator gets the optional path and makes the UAV follow it.

The model used by the planner for obtaining the probability of
kill is conservative enough to ensure that when this probability is
null the UAV will be able to reach the final destination if pop-up
ADUs do not appear. When the value is non-zero, the UAV
already knows that it is assuming some risk, and depending on the
simulation it will succeed or fail.

The planner has been tested with success in multiple scenarios
and in this paper we present some examples that reflect important
characteristics of the algorithm.

UAV Trajectory

Goal
Start

Y [Km]

260 280 30

Figure 2. Eagle eye view of experiment A

UAV Trajectory

x [Km]

Figure 3. Isometric view of experiment A

1482

6.1 Example A

This example, presented in figures 2 and 3, shows the ability of
the single UAV planner to find no risky paths between the Start
and Goal points in a static environment with 3 ADUs and 2 NFZs.

The big dotted blue circles mark the maximum distance of
detection of each ADU while the small red ones enclose the zones
where Pk>0. NFZs are represented as rectangular green zones.
There is a little corridor (of 5 kms) where Pk=0 and the algorithm
has been able to find it even though the Pk and the path length
objectives are in the same priority level. Figure 3 shows that the
altitude is also being minimized and that the trajectory is always
below the Goal altitude, which is higher than the Start point. The
proposed path is obtained with only 200 generations and 14 pairs
of parents to cross in each generation. As the path selected by the
algorithm is feasible and safely optimal, all the tests carried out in
the simulator have succeeded to reach the Goal.

6.2 Example B

This example, presented in figure 4, shows the ability of the
algorithm to find low-risk paths in areas with a high number of
ADUs, where the Pk=0 area has a complex shape: The ADUs are
placed building a spiral around a non risky zone and the UAV is
asked to go from the Start point outside the spiral to the Goal
which is placed in the centre of the spiral.

Our planner is able to find the safe zone and also minimize its
path inside it by finding a solution which is tangent to the Pk>0
red areas of the exterior and interior ADUs of the spiral. The
proposed solution is found with 800 generations and 14 pairs of
parents to cross in each generation. As the selected path is
feasible and has a null Pk, the UAV is able to find its Goal in all
the simulations.

UAV Trajectory

450

Start

B

180 a8

250 300 450 500

Figure 4. Eagle eye view of experiment B

6.3 Example C

This example, presented in figures 5 and 6, illustrates how the
algorithm works with pop-ups, obligatory intermediate points and
roundtrip paths (that are a special case of a path with at least an
intermediate point and the Goal in the same position as the Start
point). There is 1 UAV in a scenario with 3 intermediate points
(WP, WP,, WP3), 1 known radar (ADU,), 1 NFZ and 1 pop-up
radar (POP;,) near the Start point.

The black solid line is the original generated path, while the dots
define the path calculated by the algorithm when the pop-up
appears (note there are not dots before the route passes near the
pop-up). In figure 6 we can see how the replanning permits the
evasion of the pop-up. Without it, the UAV could have been
killed as it was originally going to pass inside the PKill area of
the ADU.

UAV Trajectory

550
500

8 8 8 8

B

Figure 5. Eagle eye view of experiment C

UAV Trajectory
- Simesre il

Figure 6. Eagle view of experiment C near the pop-up

6.4 Example D

Finally, this example, presented in figure 7, shows the advantages
of considering the terrain inhibition and the results of the multiple
UAVs planner for two UAVs flying at different velocities.

UAV Traj

80
x [Km]

Figure 7. Eagle eye view of example D

1483

The planner finds a path for the UAV, inside the original PKill
area of ADU,; because behind its southern mountains there is a
valley that the UAV, can use to hide from the ADUj, inhibiting
its detection effects. The UAV, needs to evade the Pkill area of
the ADU, because the topography in its northern area doesn’t let
the UAV, benefit from the inhabitation possibilities of the
southern region. The two trajectories don’t collide because they
have been calculated by the multiple UAVs planner and have
been tested with success against our simulator.

7. CONCLUSIONS

The paper shows an EA planner that calculates with success the
trajectory of one or several UAVs flying simultaneously in hostile
complex dynamic environments. The mission is defined by the
intermediate points that the UAV has to visit, as well as the
priorities and goals of the selected optimization criteria.

The evaluation of the different individuals of the population uses
a real model of the UAV, a real map of the world and models of
the ADUs related to the properties of those presented in the
simulator.

Our model of the UAV calculates its position and velocities to be
able to calculate the fuel consumption and risk of the trajectory.
The continuity of the trajectories proposed by the planner is
supported by its spline origin and its smoothness is due to the
constraint related to the turning angle. The UAV model lets us
also measure properly the climbing and diving slopes. When the
planner returns a feasible path, it can actually be followed by the
simulated UAV. As a matter of fact, the model of the UAV used
by the planner to evaluate the trajectories proposed by the EA
works so well (as we checked with the simulator) that in the
absence of threats, we know before hand that the UAV will be
able to follow the path quite closely.

The terrain, which is a real map of the selected region of the
world is used for calculating the altitude of the UAV and the
probability of detection and kill, so the planner can use it to mask
the UAVs that are flying behind a mountain. Taking advantage of
the masking possibility has let the planner find some solutions we
didn’t expect, at the expense of increasing the computational time
of the planner. As this extra time is significant for online
planning, the calculations to test if the ADU and UAV are masked
should not be used.

The models of the three types of ADUs (radar plus sets of
missiles) have been obtained analysing the data from the
simulator, and are used to measure the threat risk (as the
probability of detection and the probability of being destroyed).
These models are conservative enough to ensure that when the
probability of kill is null during the whole trajectory the UAV
will be able to reach the final destination if there is not any pop-
up. When the value is non-zero, the UAV already knows that it is
assuming some risk, and depending on the simulation it will
succeed or fail. The planner also supports the definition of
prohibited zones (NFZ), which the UAV have to avoid due to a
mission restriction. Defining unexplored areas of the terrain as
NFZs can increase the survival probability of the UAV.

The spline path returned by the algorithm is codified by its list of
waypoints in a relative polar coordinate system, which accelerates
the convergence of the algorithm without loss of generality. The
speed of the algorithm is also improved with the periodic use of a

local search procedure, the possibility of flying at constant
altitude, the use of hypercubes in the substitution method to
maintain a good diversification of solutions, and the initialization
of the algorithm with previous solutions for a specific scenario.

To evaluate the individuals of the population, the generic Fonseca
and Fleming multicriteria method is used, putting the constraints
in high priority levels and the optimitation indexes in lower ones.
With the choice of this method, adding new objectives and
constraints is straightforward, and so the planner can be easily
extended to face more complex scenarios and flight missions.

Finally, it is important to point out that other UAVs planning
tasks such as target recognition and tracking ([12], [16]) are also
being solved with EA. Although our research is currently focused
in the problem of finding the best path that evades the risk, we are
analysing the possibilities of widening the types of tasks that our
EA planner can optimize.

8. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their constructive comments and suggestions.

This research was funded by the Community of Madrid, project
“COSICOLOGI” S-0505/DPI-0391, by the Spanish Ministry of
Education and Science, project “Planning, simulation and control
for cooperation of multiple UAVs and MAVs” DP12006-15661-
C02-01, and by EADS (CASA), project 353/2005.

The evolutionary algorithm used for solving the problem is
implemented with the Matlab Toolbox EVOCOM [2].

9. REFERENCES

[1] Andres-Toro, B., Besada-Portas, E., Fernandez-Blanco, P.,
Lopez Orozco, J.A., and de la Cruz, J.M. 2002.
Multiobjective optimization of dynamic processes by
evolutionary algorithms. In Proceeding of the 15™ Triennial
World Congress of the IFAC. (Barcelona, Spain, July 2002)

Besada-Portas, E., Lopez-Orozco, J.A., Andres-Toro, B.
2002. A versatile toolbox for solving industrial problems
with several evolutionary techniques. Evolutionary methods
for Design, Optimization and Control. International Center
for Numerical Methods in Engineering. March 2002.

Coello Coello, C.A., and Salazar Lechuga, M. 2002.
MOPSO: A proposal for multiple objective particle swarm
optimization. In Proceeding of Congress on Evolutionary
Computation (CEC’2002). (Piscataway, New Jersey, May
2002).

Farin, G. 1988. Curves and Surfaces for Computer Aided
Geometric Design. A practical Guide. New York:Academic.

Fonseca, C.M., Fleming, P.J. 1998. Multiobjective
Optimization and Multiple Constraint Handling with
Evolutionary Algorithms- Part I: Unificied Formulation.
Transactions on Systems, Man and Cybernetics. Part A:
Systems and Humans. Vol 28, no. 1, (January 1998). 26-37.

Kuwata,Y. and How J. 2004. Three Dimensional Receding
Horizon Control for UAVs. In Proceedings of AIAA

1484

Guidance, Navigation, and Control Conference and Exhibit,
(August 2004). ATAA 2004-5144.

Mittal, S., and Deb, K. 2004. Three-Dimensional Offline
Path Planning for UAVs Using Multiobjective Evolutionary
Algorithms. Kangal Report no. 2004-008

Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C. and
Kostaras, A.N. 2003. Evolutionary Algorithm Based
Offline/Online Path Planner for UAV Navigation, IEEE
Transactions on Systems, Man, and Cybernetics — Part B:
Cybernetics, Vol 33, no. 6 (December 2003).

Raghunathan, A., Gopal, V., Subramanian, D., Biegler, L.
and Samad, T. 2004. Dynamic Optimization Strategies for
3D Conflict Resolution of Multiple Aircraft. AIAA Journal
of Guidance, Control and Dynamics, 27 (4). (2004), 586-
594.

[10] Richards, A.G., How, J.P. 2002. Aircraft Trajectory Planning
with Collision Avoidance Using Mixed-Integer Linear
Programming. In Proceeding of the American Control
Conference (May 2002).

[11] Ruz, J.J., Arévalo, O., de la Cruz, J.M, and Pajares, G. 2006.
Using MILP for UAVs Trajectory Optimization under Radar
Detection Risk. In Proceedings of the 11™ IEEE International
Conference on Emerging Technologies and Factory
Automation (Prague, September 2006).

[12] Shima, T., Schumachery, C. 2005. Assignment of
Cooperating UAVs to Simultaneous Tasks using Genetic
Algorithms. In Proceeding of the AIAA Guidance,
Navigation, and Control Conference and Exhibit. 15-18 (San
Francisco, California, August 2005).

[13] Stevens, B., Lewis F. 2004. Aircraft Control and Simulation.
2" Edition. Wiley. 2004.

[14] Szczerba, R.J. 1999. Thread netting for real-time, intelligent
route planners. In Proceeding of the IEEE Symp. Inf.,
Decision and Control. (Adelaida, Autralia, 1999)

[15] Szczerba, R.J., Galkowski, P., Glicktein, 1.S., Ternullo, N.
2000. Robust algorithm for real-time route planning. IEEE
Transactions on Aerospace and Electronic Systems, vol. 36,
3, (July 2000), 869-878.

[16] Tian, J., Shen, L., Zheng, Y. 2006. Genetic Algorithm Based
Approach for Multi-UAV Cooperative Reconnaissance
Mission Planning Problem. Lectures notes in Computer
Science. Springer Berlin. Volume 4203/2006.

[17] Trovato, K.I. 1996. A* Planning in Discrete Configuration
Spaces of Autonomous Systems. PhD thesis, Amsterdam
University, 1996.

[18] Veldhuizen, D. A. V. and G. B. Lamont.1998. Evolutionary
computation and convergence to a pareto front. In
Proceeding of the Genetic Programming 1998 Conference.

[19] Zheng, C., Li, L., Xu, F., Sun F., and Ding, M., Evolutionary
Route Planner for Unmanned Air Vehicles, IEEE
Transaction on Robotics, Vol. 21, no. 4, (August 2005), 609-
620.

