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ABSTRACT 
This paper presents a path planner for Unmanned Air Vehicles 
(UAVs) based on Evolutionary Algorithms (EA) that can be used 
in realistic risky scenarios. The path returned by the algorithm 
fulfills and optimizes multiple criteria which (1) are calculated 
based on properties of real UAVs, terrains, radars and missiles, 
and (2) are used to rank the solutions according to the priority 
levels and goals selected for each mission. Developed originally 
to work with only one UAV, the planner currently allows us to 
obtain the optimal path of several UAVs that are flying 
simultaneously. It works globally offline and locally online to 
recalculate a part of the path when an unexpected threat appears. 
Finally, the effectiveness of the solutions given by this planner 
has been successfully tested against a simulator that implements a 
complex model of the UAV and its environment. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem solving, control methods 
and search – heuristic mehods, plan execution, formation and 
generation 

General Terms 
Algorithms 

Keywords 
Multiobjective Evolutionary Algorithms, path planning, UAVs. 

1. INTRODUCTION 
Unmanned Aerial Vehicles (UAV) are aircrafts without onboard 
pilots that can be remotely controlled or fly autonomously based 
on pre-programmed flight plans [13]. They can be used in a wide 
variety of fields, both civil and military, such as surveillance, 
reconnaissance, geophysical survey, environmental and 

meteorological monitoring, aerial photography, and search-and-
rescue tasks. 

In military missions they work in dangerous environments, where 
it is vital to fly along routes which keep the UAVs away from any 
type of threat and prohibited zones. The best routes are those 
which minimize the risk of destruction of the UAV and optimize 
some planning criteria (such as flying time and path length) while 
fulfilling all the physical constraints of the UAVs and its 
environment, plus the restrictions imposed by the selected 
mission. The original path obtained offline by the planner is not 
always valid in dynamic environments where the position of all 
the threats is not known before hand. Therefore, the planner must 
be able to also work online in order to propose a new path during 
the mission of the UAV when a pop-up (unknown threat) appears. 

Finding the optimal solution to the route planning problem is NP-
complete ([14]) and so the problem has been approached with 
different heuristics such as A* [17], [15], MILP [10], [6], [11], 
nonlinear programming [9] and others. The planners based on 
those techniques deal with a simplified version of the original 
problem (point-mass dynamics, discretising the solution space, 
and, in some of them, linearizing the objective function and the 
constraints) where the addition of new constraints or objective 
indexes is a difficult task.  
EA has been proven to be an efficient and robust technique to 
deal with complex multicriteria constrained problems [1] and so, 
it has already been used to solve different aspects of the UAV 
problem, such as in [7], [8] and [19]. The first two papers focus 
on finding the optimal path of a single UAV that flies over 
simulated terrain, while [19] optimizes the path of several 
cooperating UAVs in military environments. Multi-UAV route 
optimization is also done in [9] and [10].  

In those three papers the problem is formulated as finding a set of 
3D points (x,y,z), that define the trajectory followed by the UAV 
which should minimize several criteria and fulfill a set of 
restrictions. Although the 3D points in [7] and [8] determine the 
spline curve [4] followed by the UAV and in [19] their linear 
segments, the codification proposed in these papers creates a big 
search space in real scenarios. Besides, the evaluation method 
used in those algorithms does not provide an easy support to 
modify the priorities of the objectives and their goals for different 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-130-9/08/07…$5.00. 

1477



missions, and only in [7] is the concept of pareto optimality [18] 
used. To minimize the time response of the planner, all of them 
use an extremely simple model of the UAV, terrain and threats, 
and the performance of the planner is tested against the same 
model instead of a realistic complex simulator. 
Our work combines the work presented in those papers, and 
extends it by introducing some new ideas, optimization and 
constraints criteria. The goodness of each possible path is 
evaluated according to the model of a real aircraft (F-16 model, 
[13]) for the UAV, a real map of the world for the terrain and the 
characteristics of the radars used in the simulator. In our research, 
not only is the position of the UAV considered, but also its 
velocities, which are needed for calculating the fuel consumption 
and risk of the trajectory. The terrain, which is a map of any part 
of the world as in [19], is used for checking that the UAV does 
not collide against it (as in the previous papers) but also to inhibit 
the possibility of the radar to detect the UAV when it is hiding 
behind mountains. The properties of the three types of radars and 
the missiles have been obtained analysing the data from the 
simulator and are used to measure the threat risk (as the 
probability of detection and the probability of being destroyed). 
The user can force the UAV to pass through several specific 
points (and not only one as in [7]) and some of them can be 
defined as refuelling points. Our planner also supports the 
definition of prohibited zones (No Flying Zones, NFZ), which the 
UAV has to avoid due to a mission restriction. Additionally, we 
use a relative polar coordinate codification for the waypoints of 
the spline curve that defines the path, which accelerates the 
convergence of the algorithm. Our algorithm can also obtain the 
path of a single UAV (as [7] and [8]) or the paths of several 
UAVs (as [19]) that have to be flying simultaneously without 
running into each other. 
Table 1 summarizes these properties and compares our planner 
(last column) with the previous work ([7], [8] and [19]). The 
compared properties are named in the first two columns, and 
when there are several options in the same row the selected one 
can be identified by the capital letters that are shown in the 
second column. 

Table 1. Comparisons of the properties of the planners 
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We also introduce several features in the EA to speed up the 
computation such as a local search operator used periodically over 
the best solutions, the possibility of flying at constant altitude, the 
use of hypercubes [3] in the substitution method in order to 
maintain a good diversification of solutions, and the initialization 
of the algorithm with previous solutions for a specific scenario. 
It is also important to highlight that we use a generic 
multiobjective pareto evaluation function with goals and priorities 
[5] that permits the change of the priorities levels of the different 
objectives for different missions. Besides a realistic and complete 
simulator, where pop-ups can appear anywhere and make the 
algorithm obtain a new local plan, is used to evaluate the 
performance of the planner.  
The rest of the paper is organized as follows. In section 2 the 
codification of the problem solution is presented. Section 3 
presents the function used to evaluate the multicriteria solutions 
as well as the constraints and optimization indexes used in our 
experiments when using a single UAV. In section 4 the genetic 
operators and function used by the single UAV planner are 
introduced, while section 5 shows how the single planner has 
been modified to deal with multiple UAVs. Experimental results 
are given in section 6, followed by our discussion and conclusions 
in section 7. 

2. INDIVIDUAL STRUCTURE 
The first step when applying a EA to solve an optimization 
problem is to determine how the solutions (the individuals of the 
EA) are going to be codified. Our individual is a list of 3D points 
(waypoints) which are used to calculate a spline curve [4] that 
constitutes the solution of the problem: the 3D path of the UAV. 
So, our algorithm searches for the best list of waypoints which 
define a feasible and optimal spline trajectory for the UAV. 

Each waypoint in the 3D space is defined by three coordinates, 
whose values can have different meaning depending on the 
selected codification. For example, in [7], [8] and [19] they are 
the ‘x’, ‘y’ and ‘z’ of the absolute Cartesian coordinates. This 
selection generates a very big search space in realistic scenarios 
because with that codification each point of the space can be 
reached from the previous waypoint. 

To limit the search space our algorithm uses a relative polar 
coordinate system, with absolute ‘z’ (the altitude) and polar 
coordinates ‘r’ (radius) and ‘θ’ (angle) relative to the previous 
waypoint. The first θ angle is the angle formed between the initial 
vector direction and the vector direction defined by the start point 
and the first waypoint. For any other waypoint, this angle is 
measured according with the schema in figure 1. The values of θ 
are measured clockwise with respect to the (i-1,i) vector direction. 
This way, θmax = 2π - θmin. The solid line represents the spline 
curve (which is the path of the UAV) obtained from the 
waypoints. 

The three parameters are codified as real numbers limited 
between two values. For ‘z’ the limits constitute the minimal and 
maximal altitude that the UAV can reach. The ‘r’ limits represent 
the maximal separation between two consecutive points. And the 
limits of the ‘θ’ are related by the UAV manoeuvrability.  
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Figure 1. Relative polar coordinates for ‘x’ and ‘y’. 

The selected coordinate system forces the algorithm to have a 
predefined order of waypoints. This is positive because that order 
already exists and if it were not imposed by the codification the 
algorithm would have to find it. So, the selected codification lets 
us dramatically reduce the search space and computation time. 

The main drawback of our codification (a list of ‘r’, ‘θ’ and ‘z’ 
tuples) is that the algorithm has to include a constraint that 
prevents the path to get outside the map limits, but the EA usually 
satisfies this condition in only a few generations. 

3. EVOLUTIONARY EVALUATION 
FUNCTION OF THE SINGLE UAV 
PLANNER 
There are: (1) constraints that the path of a single UAV must 
satisfy completely due to the physical restrictions of the UAV and 
terrain; and (2) objectives that have to be minimized according to 
the selected mission. Their values are calculated using the spline 
curve obtained from the waypoints, the terrain and the model of 
the UAV (constrained by the properties of the vehicle), radars and 
missiles (characterized after multiple simulations). 

So far, we have defined for the offline planner 6 constraints and 4 
objectives or optimization indexes to be minimized. Their number 
can be modified to include other constraints of the model or to 
define other types of missions. Moreover, an even more complete 
model, such as a realistic simulator could be used to obtain the 
objective values, although that would require a lot of computation 
time in the evaluation step of the EA. 

The time needed for evaluating the solutions is especially 
problematic when the planner starts running online due to the 
presence of a sudden pop-up. In order to speed up the algorithm 
the online planner uses a simpler model of the problem and a 
different set of constraints and optimization indexes. This 
difference is justified because the objective of the online planner 
is to avoid the threat and so, minimizing some of the offline 
planner indexes is no longer important.  

In both cases, the constraints and objective values are combined 
in the evaluation step of the evolutionary algorithm to obtain the 
fitness of each solution. In our case, we use the generic evaluation 
multiobjective method based on goals, priorities and Pareto sets 
proposed by Fonseca and Fleming [5], where the objectives are 
placed in priority levels and where it is possible to impose limits 
(goals) on each of them. In the following sections we describe the 
objective values and the evaluation method with more detail. 

3.1 Constraints 
A feasible path for the UAV must fulfill 6 constraints. The first 
five constraint indexes measure the number of times each of them 
is violated and so their value must be zero for a feasible solution, 
while the last one checks if an upper limit has been exceeded. 

The implemented constraints are the following: 

• Terrain. A path must not get under the terrain. This also 
includes avoiding collisions with mountains. The algorithm 
increments this value each time one of the spline trajectory 
points is below the altitude of the map. 

• Turning radius. An UAV cannot follow a path where 3 
consecutives points form a turning radius smaller than a 
minimum one, whose value depends on the physical 
characteristics of the UAV. Each time this constraint is not 
satisfied its value is incremented by one unit. 

• Map limits. The UAV must stay inside the limits of our 
known map. Every point of the spline curve must stay inside 
the limits and as the selected codification does not ensure 
that this constraint is always fulfilled, this value measures 
how many points of the trajectory does not satisfy this 
restriction. 

• Maximum climbing and diving slope. UAVs cannot reach a 
greater slope than the one imposed by their dynamic 
characteristics, which is usually different when the UAV is 
climbing than when it is diving. Each time this constraint is 
not fulfilled this value is incremented by one unit. 

• Flight prohibited zones (also called No Flying Zones, NFZs). 
There can be certain zones where the UAV must not enter 
such as high risk zones, unknown areas, etc. The algorithm 
checks if any point of the spline curve is inside any of the 
NFZs, and if that is the case, this value is incremented by 
one unit. 

• Fuel. UAVs have a limited quantity of fuel and they have to 
reach their final goal or a refuelling point before consuming 
it. We use a model that estimates the fuel consumption in 
three different cases: a) when the UAV is flying horizontally, 
b) when it is flying with maximum slope and c) when it is 
flying with maximum turning angle. For intermediate cases 
the fuel consumption is calculated as a weighted mean of the 
3 previous cases. The constraint is satisfied and given a value 
of 0, when the fuel consumption is lower than the total fuel 
transported by the UAV; in other case, the value given is the 
extra fuel that would be needed. 

In the online planner some of the constraints, such as the Flight 
Prohibited Zones and Fuel limit, don’t need to be considered 
since the priority is to avoid the pop-up.  

3.2 Optimal Path for the Mission 
The optimality of the path is determined by the following 4 
optimization indexes in the case of the offline planner: 
• Minimum length path. Shorter paths are better than longer 

ones because they require less time of flight. With the 
purpose of defining generic limits for this cost function its 
value is calculated as the ratio between the real path length 
of the solution and the minimum possible length. 
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• Minimum probability of kill (Pk). This function depends on 
the model used for the Air Defence Units (ADUs), which 
consist of a radar and a set of missiles. Based on many 
simulations we have obtained a function of the probability of 
destruction of an UAV dependent on the type of ADU, 
presence of mountains, the distance, relative altitude and 
orientation existing between the ADU and the UAV. This 
objective index stores the accumulated probability of kill for 
the whole path. 

• Minimum flight altitude. UAVs flying at low altitude 
consume less fuel and can benefit from the mask effect of the 
terrain (what helps them to avoid radars). This objective is 
the maximum difference between the ‘z’ coordinates of the 
trajectory and the altitude of the terrain. 

• Minimum radar detection probability. UAVs that are not 
detected by any radar are never destroyed and so minimizing 
this value creates safer paths. Our model uses again a 
probability function obtained after many simulations that 
dependent on the type of radar and presence of mountains, 
Radar Cross Section of the UAV and the distance between 
the radar and the UAV at every particular point of the 
trajectory. 

The map of the terrain is used for calculating the flight altitude 
and the probabilities of radar detection and kill. Selecting the 
appropriate map resolution is important, because high resolution 
increases the confidence in the values of these objective indexes 
at the expense of reducing dramatically the calculus speed of the 
algorithm.  

In the case of the online planner, where the real objective is to 
avoid the new threat, the flight altitude and length of the path are 
no longer important. So, these objectives are not longer used, 
which minimizes the time used by the algorithm to evaluate the 
different solutions. 

3.3 Evaluation Function 
The evaluation method used to decide which solutions or 
individuals are better than the others is the Fonseca and Fleming 
multiobjective method based on goals, priorities and Pareto sets 
[5], where the objectives are ordered by priority level and limits 
for each of them can be imposed.  

This method has been used successfully in real world constrained 
problems [1]. The values used to measure when the constraints 
are satisfied are placed as high priority objectives and their values 
must satisfy the correct goals (be 0 in our problem). The objective 
indexes to be minimized are located at lower priority levels. With 
this division individuals that fulfill the constraints are better than 
the ones that do not, and the latter are organized according to the 
number of constraints that they satisfy. 

Furthermore, as we are using a general method for evaluating the 
fitness of the function given the constraints and objective indexes, 
we can easily add or remove constraints or optimization indexes 
as needed. For instance, in the online planner some constraints are 
removed in order to reduce the computation burden.  

As an offline planning example, the following table shows the 
priority and limits of each of the values for a particular mission. 
The highest priority is the 1st level, the intermediate the 2nd one 

and the lower the 3rd one. All the constraints are optimized to their 
limit to search for optimal solutions that fulfil them. The objective 
values are placed in the following two levels according to their 
importance for the mission. In this example, we want to minimize 
simultaneously the length of the path (whose relative value is 
limited) and ensure that the probability of kill of the mission is 
zero. When two solutions are equally good, in a Pareto sense, 
inside the intermediate priority level (2nd), the best solution will 
be the one that minimizes simultaneously the flight altitude (to 
use the terrain as a mask for known and unknown threats) and the 
probability of being detected by a radar.  

Table 2. Evaluation function priority levels and limits for a 
given mission for the offline planner 

Constraint conditions 

Name: Terrain Turning 
radius 

Map 
limits 

Maximum 
slope 

N
F
Z

Fuel 

Level: 1st 1st 1st 1st 1 1st 

Min 0 0 0 0 0 0 

Max 0 0 0 0 0 0 

Optimization objectives 

Name: Path 
length 

Probability of 
kill (Pk) 

Flight 
altitude 

Radar 
detection 

probability 

Level: 2nd 2nd 3rd 3rd 

Min 1 0 50 0 

Max 1.2 0 1000 0 

4. EVOLUTIONARY OPERATORS AND 
FUNCTIONS OF THE SINGLE PLANNER 
Our single UAV evolutionary router planner uses, among others, 
the following operators and functions. 

4.1 Crossover 
This operator is used to obtain two new individual from their 
parents, which are selected in our algorithm with the roulette 
method. We use two random cross points that divide each 
individual into three sections, each of them formed by a complete 
group of waypoints. That is, we treat the 3 parameters of each 
waypoint as a whole and do not mix the information of one 
waypoint of an individual with the information of another. The 
new individuals will have the first part of the route of the first 
parent (until the first cross point), the second part of the second 
parent (from the first cross point until the second one) and the 
third part of the first parent again (from the second cross point 
until the end of the individual). The other new individual or child 
will have the remaining information.  

4.2 Mutation 
The mutation operator can change (if the mutation probability is 
satisfied) the value of any parameter of a solution to another value 
obtained randomly from the interval of values for that parameter 
(altitude, radio or angle). 
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4.3 Immigration 
Every new generation a number of new individuals (immigrants) 
are generated randomly and added to the whole population to 
assure the gene’s diversity. 

4.4 Local Search Procedure 
Every 25 generations the algorithm picks up the best solutions 
and it applies a non evolutionary optimization method to improve 
them. The implemented method modifies each parameter of the 
individual by adding and substracting a predefined value (which 
varies with the generation number) and selects the best of the 
three different solutions (the original, the one that has a parameter 
incremented and the one that has it decremented). The final 
individual is the one improved sequentially by this procedure. 

4.5 Substitution 
The substitution method uses an elitist method that preserves the 
pareto front of solutions. Every time a set of individuals is created 
(by the crossover and mutation steps), we form a new population 
with the new individuals and the old individuals that form part of 
the best two pareto groups (discarding the others). 
This way of proceeding can increment the number of individuals 
in the population with the number of generations when the 
number of individuals of the Pareto front grows. As more 
solutions need more processing time, it is convenient to limit the 
maximum number of individuals in the population. Although, the 
easiest and quicker solution is to pick the survivors randomly 
from the Pareto front, the selected individuals will not necessarily 
be representative of it. So, we have decided to use a hypercube 
approach, in the line of the methods proposed by Coello and 
Salazar [3], that divides the Pareto front into several regions and 
select the survivors randomly from inside the different 
hypercubes.  

4.6 Selection of the Final Optimal Path 
The evolutionary algorithm returns the last population, where the 
best individuals are placed along a Pareto front. So, we must 
make use of a final selection criterion. There are several 
possibilities, such as taking the one with the shorter length path or 
the lower probability of kill. Our choice for the offline planner 
when the priority levels are the ones presented in Table 2 is to 
divide the decision in two possible cases: 

• When there is a feasible solution with ‘probability of kill’ 
equal to zero. This is the trivial case, because in this situation 
there is only one element in the Pareto front since one of the 
two objectives with intermediate priority (2nd) is already a 
minimum and the comparison of the other objective (‘path 
length’) determines which individual is the best. 

• When all the ‘probability of kill’ objectives are greater than 
zero. First of all, we find inside the first pareto front the 
solution with the lowest probability of kill (Pkmin) and then 
we modify the ‘probability of kill’ of each individual i, 
dividing it by the minimum value (Pkmin). All the solutions 
with modified probability of kill greater than a predefined 
value (for example 1.05) are discarded. The others don’t 
have a significant probability of kill, and so we pick among 
them the one with shorter path length. This can make the 

final solution have a probability of kill just a bit higher than 
the minimum as well as a reasonable path length. 

The selected solution is returned by the planner and the pareto 
front stored to be able to reuse it in the future. For instance, it can 
be used to find a trajectory over a slightly modified solution 
which will drastically reduce the computation time. The online 
planner can also benefit from a local use of this information.  

5. MULTIPLE UAVs PLANNER 
Calculating the paths of several UAVs that are flying 
simultaneously adds new complexity to the planner due to the 
space constraints that one path imposes on the others and the 
cooperative objectives that the set of UAVs have to minimize. 
This task can be carried out using several single UAV planners in 
parallel, as long as they exchange some information during their 
evaluation step. This information is needed in order to measure 
the coordinating objective functions over each population, taking 
into account the possible paths of the remaining UAVs. 
Therefore, each single planner has to receive information related 
to the population of the remaining single planners before 
evaluating the cooperative constraints and objectives of each 
individual of its own population. As each UAV only follows the 
final optimal path proposed by its planner, the paths of the UAVs 
which are being evaluated inside each planner only need to be 
compared with the currently best path of each one of the 
remaining planners. However, the original single planners 
maintain a pareto front of best individuals and only selects the 
final optimal path when the last population is obtained. To be able 
to determine the final optimal path in each generation, this step 
has to be included in the new cooperating planners. Table 3 shows 
the evaluation steps in the cooperating planners. 
Right now we only make use of a single cooperative objective 
value that checks if the path that is being evaluated can make the 
UAV collide against the remaining UAVs when they are flying 
according to the best path proposed by their own planner. As the 
feasibility of the plan also depends on the value of this objective, 
it is considered a constraint that will be placed in the 7th step of 
the evaluation step with the individual constraints (section 3.1) in 
the highest priority level. 
The possibility of defining different intermediate points for each 
UAV lets us force cooperation in a predefined manner. However, 
more objectives, such as the order in which they should arrive to 
each objective could also be considered.  

Table 3. Evaluation step in the cooperating planners 

1.  Evaluating the objectives of section 3.1 and 3.2. 
2.  Calculating the path ranking with the values of step 1 

and the evaluation function of section 3.3. 
3. Sorting the individuals according to the ranking 

calculated in step 2. 
4.  Finding the best individual according to the final 

criteria of section 4.6 and sending it to the other 
planners. 

5.  Waiting for the best individuals of the other planners.  
6.  Calculating the coordination objectives with the received 

information from other planners. 
7.  Recalculating the new path ranking with the values of 

step 1, step 6, and evaluation function of section 3.3. 
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6. EXPERIMENTAL RESULTS 
The UAV planner presented in this paper is part of a complex 
system that we have developed to test the performance of 
different UAV planners for hostile environments. This system lets 
the user (1) define the position of the known and pop-up ADUs 
and intermediate points of the UAVs; and (2) plan their routes and 
test them against a simulator that uses a real map of the world and 
a more complex model for the UAVs and ADUs.  

Although our planner can work globally offline to determine the 
original best path for each UAV and locally online to react when 
it observes a pop-up, the current version of the simulator needs to 
have the original plan and the optional routes before launching the 
simulation, because it is not able to launch any planner. To 
calculate the optional routes before hand, we check if the globally 
optimal path enters the detection area of any pop-up ADU, and if 
that is the case the online planner finds a path from the position 
inside the detection area to where it should leave it. During the 
simulation, if the pop-up ADU is detected by the UAV, the 
simulator gets the optional path and makes the UAV follow it.  

The model used by the planner for obtaining the probability of 
kill is conservative enough to ensure that when this probability is 
null the UAV will be able to reach the final destination if pop-up 
ADUs do not appear. When the value is non-zero, the UAV 
already knows that it is assuming some risk, and depending on the 
simulation it will succeed or fail.  

The planner has been tested with success in multiple scenarios 
and in this paper we present some examples that reflect important 
characteristics of the algorithm. 

 
Figure 2. Eagle eye view of experiment A 

 
Figure 3. Isometric view of experiment A 

6.1 Example A 
This example, presented in figures 2 and 3, shows the ability of 
the single UAV planner to find no risky paths between the Start 
and Goal points in a static environment with 3 ADUs and 2 NFZs. 

The big dotted blue circles mark the maximum distance of 
detection of each ADU while the small red ones enclose the zones 
where Pk>0. NFZs are represented as rectangular green zones. 
There is a little corridor (of 5 kms) where Pk=0 and the algorithm 
has been able to find it even though the Pk and the path length 
objectives are in the same priority level. Figure 3 shows that the 
altitude is also being minimized and that the trajectory is always 
below the Goal altitude, which is higher than the Start point. The 
proposed path is obtained with only 200 generations and 14 pairs 
of parents to cross in each generation. As the path selected by the 
algorithm is feasible and safely optimal, all the tests carried out in 
the simulator have succeeded to reach the Goal. 

6.2 Example B 
This example, presented in figure 4, shows the ability of the 
algorithm to find low-risk paths in areas with a high number of 
ADUs, where the Pk=0 area has a complex shape: The ADUs are 
placed building a spiral around a non risky zone and the UAV is 
asked to go from the Start point outside the spiral to the Goal 
which is placed in the centre of the spiral. 

Our planner is able to find the safe zone and also minimize its 
path inside it by finding a solution which is tangent to the Pk>0 
red areas of the exterior and interior ADUs of the spiral. The 
proposed solution is found with 800 generations and 14 pairs of 
parents to cross in each generation. As the selected path is 
feasible and has a null Pk, the UAV is able to find its Goal in all 
the simulations. 

 
Figure 4. Eagle eye view of experiment B 

6.3 Example C 
This example, presented in figures 5 and 6, illustrates how the 
algorithm works with pop-ups, obligatory intermediate points and 
roundtrip paths (that are a special case of a path with at least an 
intermediate point and the Goal in the same position as the Start 
point). There is 1 UAV in a scenario with 3 intermediate points 
(WP1, WP2, WP3), 1 known radar (ADU1), 1 NFZ and 1 pop-up 
radar (POP2) near the Start point. 
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The black solid line is the original generated path, while the dots 
define the path calculated by the algorithm when the pop-up 
appears (note there are not dots before the route passes near the 
pop-up). In figure 6 we can see how the replanning permits the 
evasion of the pop-up. Without it, the UAV could have been 
killed as it was originally going to pass inside the PKill area of 
the ADU. 

 
Figure 5. Eagle eye view of experiment C 

 
Figure 6. Eagle view of experiment C near the pop-up 

6.4 Example D 
Finally, this example, presented in figure 7, shows the advantages 
of considering the terrain inhibition and the results of the multiple 
UAVs planner for two UAVs flying at different velocities. 

    
Figure 7. Eagle eye view of example D 

The planner finds a path for the UAV1 inside the original PKill 
area of ADU1 because behind its southern mountains there is a 
valley that the UAV1 can use to hide from the ADU1, inhibiting 
its detection effects. The UAV2 needs to evade the Pkill area of 
the ADU1 because the topography in its northern area doesn’t let 
the UAV2 benefit from the inhabitation possibilities of the 
southern region. The two trajectories don’t collide because they 
have been calculated by the multiple UAVs planner and have 
been tested with success against our simulator. 

7. CONCLUSIONS 
The paper shows an EA planner that calculates with success the 
trajectory of one or several UAVs flying simultaneously in hostile 
complex dynamic environments. The mission is defined by the 
intermediate points that the UAV has to visit, as well as the 
priorities and goals of the selected optimization criteria. 

The evaluation of the different individuals of the population uses 
a real model of the UAV, a real map of the world and models of 
the ADUs related to the properties of those presented in the 
simulator.  

Our model of the UAV calculates its position and velocities to be 
able to calculate the fuel consumption and risk of the trajectory. 
The continuity of the trajectories proposed by the planner is 
supported by its spline origin and its smoothness is due to the 
constraint related to the turning angle. The UAV model lets us 
also measure properly the climbing and diving slopes. When the 
planner returns a feasible path, it can actually be followed by the 
simulated UAV. As a matter of fact, the model of the UAV used 
by the planner to evaluate the trajectories proposed by the EA 
works so well (as we checked with the simulator) that in the 
absence of threats, we know before hand that the UAV will be 
able to follow the path quite closely.  

The terrain, which is a real map of the selected region of the 
world is used for calculating the altitude of the UAV and the 
probability of detection and kill, so the planner can use it to mask 
the UAVs that are flying behind a mountain. Taking advantage of 
the masking possibility has let the planner find some solutions we 
didn’t expect, at the expense of increasing the computational time 
of the planner. As this extra time is significant for online 
planning, the calculations to test if the ADU and UAV are masked 
should not be used.  

The models of the three types of ADUs (radar plus sets of 
missiles) have been obtained analysing the data from the 
simulator, and are used to measure the threat risk (as the 
probability of detection and the probability of being destroyed). 
These models are conservative enough to ensure that when the 
probability of kill is null during the whole trajectory the UAV 
will be able to reach the final destination if there is not any pop-
up. When the value is non-zero, the UAV already knows that it is 
assuming some risk, and depending on the simulation it will 
succeed or fail. The planner also supports the definition of 
prohibited zones (NFZ), which the UAV have to avoid due to a 
mission restriction. Defining unexplored areas of the terrain as 
NFZs can increase the survival probability of the UAV. 

The spline path returned by the algorithm is codified by its list of 
waypoints in a relative polar coordinate system, which accelerates 
the convergence of the algorithm without loss of generality. The 
speed of the algorithm is also improved with the periodic use of a 
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local search procedure, the possibility of flying at constant 
altitude, the use of hypercubes in the substitution method to 
maintain a good diversification of solutions, and the initialization 
of the algorithm with previous solutions for a specific scenario.  

To evaluate the individuals of the population, the generic Fonseca 
and Fleming multicriteria method is used, putting the constraints 
in high priority levels and the optimitation indexes in lower ones. 
With the choice of this method, adding new objectives and 
constraints is straightforward, and so the planner can be easily 
extended to face more complex scenarios and flight missions.  

Finally, it is important to point out that other UAVs planning 
tasks such as target recognition and tracking ([12], [16]) are also 
being solved with EA. Although our research is currently focused 
in the problem of finding the best path that evades the risk, we are 
analysing the possibilities of widening the types of tasks that our 
EA planner can optimize.  

8. ACKNOWLEDGMENTS 
The authors would like to thank the anonymous reviewers for 
their constructive comments and suggestions. 
This research was funded by the Community of Madrid, project 
“COSICOLOGI” S-0505/DPI-0391, by the Spanish Ministry of 
Education and Science, project “Planning, simulation and control 
for cooperation of multiple UAVs and MAVs” DPI2006-15661-
C02-01, and by EADS (CASA), project 353/2005. 
The evolutionary algorithm used for solving the problem is 
implemented with the Matlab Toolbox EVOCOM [2]. 

9. REFERENCES 
[1] Andres-Toro, B., Besada-Portas, E., Fernandez-Blanco, P., 

Lopez Orozco, J.A., and de la Cruz, J.M. 2002. 
Multiobjective optimization of dynamic processes by 
evolutionary algorithms. In Proceeding of the 15th Triennial 
World Congress of the IFAC. (Barcelona, Spain, July 2002) 

[2] Besada-Portas, E., Lopez-Orozco, J.A., Andres-Toro, B. 
2002. A versatile toolbox for solving industrial problems 
with several evolutionary techniques. Evolutionary methods 
for Design, Optimization and Control. International Center 
for Numerical Methods in Engineering. March 2002.  

[3] Coello Coello, C.A., and Salazar Lechuga, M. 2002. 
MOPSO: A proposal for multiple objective particle swarm 
optimization. In Proceeding of Congress on Evolutionary 
Computation (CEC’2002). (Piscataway, New Jersey, May 
2002).  

[4] Farin, G. 1988. Curves and Surfaces for Computer Aided 
Geometric Design. A practical Guide. New York:Academic. 

[5] Fonseca, C.M., Fleming, P.J. 1998.  Multiobjective 
Optimization and Multiple Constraint Handling with 
Evolutionary Algorithms- Part I: Unificied Formulation. 
Transactions on Systems, Man and Cybernetics. Part A: 
Systems and Humans. Vol 28, no. 1, (January 1998). 26-37. 

[6] Kuwata,Y. and How J. 2004. Three Dimensional Receding 
Horizon Control for UAVs. In Proceedings of AIAA 

Guidance, Navigation, and Control Conference and Exhibit, 
(August 2004). AIAA 2004-5144. 

[7] Mittal, S., and Deb, K. 2004. Three-Dimensional Offline 
Path Planning for UAVs Using Multiobjective Evolutionary 
Algorithms. Kangal Report no. 2004-008 

[8] Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C. and 
Kostaras, A.N. 2003. Evolutionary Algorithm Based 
Offline/Online Path Planner for UAV Navigation, IEEE 
Transactions on Systems, Man, and Cybernetics – Part B: 
Cybernetics, Vol 33, no. 6 (December 2003). 

[9] Raghunathan, A., Gopal, V., Subramanian, D., Biegler, L. 
and Samad, T. 2004. Dynamic Optimization Strategies for 
3D Conflict Resolution of Multiple Aircraft. AIAA Journal 
of Guidance, Control and Dynamics, 27 (4). (2004), 586-
594. 

[10] Richards, A.G., How, J.P. 2002. Aircraft Trajectory Planning 
with Collision Avoidance Using Mixed-Integer Linear 
Programming. In Proceeding of the American Control 
Conference (May 2002). 

[11] Ruz, J.J., Arévalo, O., de la Cruz, J.M, and Pajares, G. 2006. 
Using MILP for UAVs Trajectory Optimization under Radar 
Detection Risk. In Proceedings of the 11th IEEE International 
Conference on Emerging Technologies and Factory 
Automation (Prague, September 2006). 

[12] Shima, T., Schumachery, C. 2005. Assignment of 
Cooperating UAVs to Simultaneous Tasks using Genetic 
Algorithms. In Proceeding of the AIAA Guidance, 
Navigation, and Control Conference and Exhibit. 15-18 (San 
Francisco, California, August 2005). 

[13] Stevens, B., Lewis F. 2004. Aircraft Control and Simulation. 
2nd Edition. Wiley. 2004. 

[14] Szczerba, R.J. 1999. Thread netting for real-time, intelligent 
route planners. In Proceeding of the IEEE Symp. Inf., 
Decision and Control. (Adelaida, Autralia, 1999) 

[15] Szczerba, R.J., Galkowski, P., Glicktein, I.S., Ternullo, N. 
2000. Robust algorithm for real-time route planning. IEEE 
Transactions on Aerospace and Electronic Systems, vol. 36, 
3, (July 2000), 869-878. 

[16] Tian, J., Shen, L., Zheng, Y. 2006. Genetic Algorithm Based 
Approach for Multi-UAV Cooperative Reconnaissance 
Mission Planning Problem. Lectures notes in Computer 
Science. Springer Berlin. Volume 4203/2006. 

[17] Trovato, K.I. 1996. A* Planning in Discrete Configuration 
Spaces of Autonomous Systems. PhD thesis, Amsterdam 
University, 1996. 

[18] Veldhuizen, D. A. V. and G. B. Lamont.1998. Evolutionary 
computation and convergence to a pareto front. In 
Proceeding of the Genetic Programming 1998 Conference. 

[19] Zheng, C., Li, L., Xu, F., Sun F., and Ding, M., Evolutionary 
Route Planner for Unmanned Air Vehicles, IEEE 
Transaction on Robotics, Vol. 21, no. 4, (August 2005), 609-
620. 

 

1484


