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ABSTRACT 
This paper proposes a new approach for biologically inspired 
computing on the basis of Gene Regulatory Networks. These 
networks are models of genes and dynamic interactions that take 
place between them. The differential equation representations of 
such networks resemble neural networks as well as idiotypic 
networks in immune system. Although several potential 
applications have been outlined, an example, the problem of 
placing sensors optimally in a distributed environment is 
considered in detail. A comparison with NSGA-II suggest that the 
new method is able to accomplish near-optimal coverage of 
sensors in a network. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem solving, control methods 
and search – heuristic methods.  

General Terms 
Algorithms, design, theory. 

Keywords 
Gene regulatory networks, sensors, heuristics. 

1. GENE REGULATORY NETWORKS 
Gene Regulatory Networks (GRNs) are models of genes and 

gene interactions at the expression level. As an emergent property 
of the network, simple interactions between the genes in the gene 
networks can give rise to surprisingly complex behavior of the 

network as a whole. Even small networks consisting of only one 
to four genes are able to function as Boolean logic gates, linear 
arithmetic units, circuit delay elements, differentiators, 
integrators, oscillators, coincidence detectors, and bi-stable 
devices [1, 2]. Consequently, one can see that GRNs are endowed 
with some processing capability.  

GRNs have been traditionally modeled in a variety of ways. At 
the simplest level, Boolean networks have been used for this 
purpose. But more thorough models make use of differential 
equations. A popular nonlinear differential equation model is the 
S-formalism [c.f. 3]. The most general way to represent them is of 
the form, 

( )MNii eexxxfx ...,,...,..., 11=&                            (1) 

where ( )⋅f  is a nonlinear function and ix and ix&  are the gene 
expression level and the rate of change of this level for the ith 
gene in the network (i = 1, 2, ... N). The quantities 1e  through 

Me  are M environmental inputs. 

The dynamic interactions within GRNs, ignoring 
environmental inputs, which suits our purpose well, may be 
formulated as in [1, 2], 
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Here the quantity 0>iλ  is called the degradation rate. The 
quantities α, β, γ, and δ, indexed appropriately, are the additional 
network parameters. The function ( ).σ  is a monotonically 
increasing nonlinearity bounded in [0, R], where R is a constant. 
Through these interactions, genes can either suppress or stimulate 
each other’s expression levels, or even regulate them in more 
complex ways. Further biological details can be obtained from the 
literature on genomics [1, 2].  
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For example, in the molecular genetic model plant, 
Arabidopsis thaliana, three genes: TERMINAL FLOWERING1 
(TFL1), APETALA1 (AP1), and LEAFY (LFY) play a special role 
in flowering. Two of them (AP1 and LFY) expressing themselves 
provokes plant commitment to flowering. The gene regulatory 
network formed from these three genes is shown in Figure. 1 (left) 
[4]. Figure. 1 (right) demonstrates a sample gene network topology 
that was algorithmically obtained [5] with three selected genes. It 
determines heading time in Oryza sativa, from two inputs, 
temperature (T) and photoperiod (P) [5]. 

 

 
 

 

2. GRN AS A DISTRIBUTED 
COMPUTATION 
Although arguments within the nonlinearity in Equation 2 can be 
extended to indefinitely high order terms, the present paper restricts 
the highest to be quadratic, and ignores a few other terms, resulting 
in the simplified form, 
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Using the Equation 3, a GRN can be simulated numerically in a 
computer using Runge-Kutta methods [6]. The nonlinearity is 
modeled here as, 
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The above choice limits the range to [0, 1], which is suitable for 
most applications. The degradation rate iλ serves as an inverse time 
constant. The values of the other network parameters can be 
appropriately assigned depending on application. Removing the 
higher order terms from Equation 2 restricts the possibility in which 
one gene can influence another to stimulation and suppression only. 
Noting that the gene expressions xi > 0, when 0>ijγ , the expression 

level of gene j promotes that of gene i. Conversely, when 0<ijγ , 
the influence upon the latter is suppressive in nature instead. 

The GRN is not necessarily fully connected; a 
nonzero ijγ implying the existence of a pathway from the jth gene to 
the ith gene. Therefore, each gene receives inputs only from its 
immediate predecessors. Consequently, the communications 
between the genes in the GRN are limited, allowing the processing 
at each gene to proceed independently. In other words, the 
computations taking place in GRNs are distributed. This paper 
deviates from actual GRNs in one important aspect. Although 
feedback loops are present in actual GRNs, they do not occur 
between all possible genes. Ignoring this observation here extends 
the utility of the GRN paradigm for various applications – a useful 
tradeoff for biological fidelity. 

2.1 Comparison with Other Networks 
The differential Equation 2 has strong parallels to recurrent 

neural networks [7]. Both GRNs and neural networks involve 
nonlinearities; the key difference is the way these nonlinearities are 
applied. In recurrent neural networks, these nonlinearities (which 
are sigmoidal saturation ones), are used to restrict the outputs of the 
neurons to [0, 1], whereas the activations of the neurons are 
unbounded. The summations are applied following the nonlinearity. 
In contrast, in GRNs, the nonlinearity is applied to each gene 
following the summation terms. Because of this feature, the gene 
expression levels when the GRN stabilizes, is easy to foresee, by 
simply equating the left hand side of Equation. (3) to zero, yielding, 
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This can be used effectively in an application, as in the sensor 
network problem considered here. 

 The GRN model also resembles idiotypic networks in immune 
systems [8, 13]. These networks portray antibody interactions, in 
terms of differential equations similar to Equation 3, where the left 
hand term is an antibody concentration. Again, there are key 
differences between idiotypic networks and GRNs. Models of 
idiotypic interactions do not include any higher order term, which 
makes GRNs more versatile than the latter for many applications. 
The interaction between the antibodies in idiotypic network is 
entirely suppressive, stimulation being based on external inputs 
only. Lastly, GRNs have a topological structure that these networks 
do not possess. 

The topological differences between the three biological 
networks are summarized in Table 1. 

Table 1. Comparison of the three biological networks 

 Neural 
network 

Idiotypic 
network 

GRN 

Nodal 
element 

neuron 
activation 

antibody 
concentration 

gene 
expression 

Edge element synaptic 
weights 

affinities transcription 

Interaction excitation(+)/ 
inhibition(-) 

suppression(-) promotion(+)/ 
suppression(-) 

Connectivity sparsely/fully 
connected 

fully 
connected 

sparsely 
connected 

Nonlinearities present present present 

Highest term usually 
restricted 

restricted unrestricted 

 

3. COVERAGE IN SENSOR NETWORKS 
Our application is a simple version of the sensor network coverage 
problem [9, 10], which is introduced here. Given a set of N sensors, 
where each sensor si has a 2-dimensional coordinate Li ∈z , where 
L is a 2-dimensional region on which sensors can be placed, called 
its location. For simplicity, we assume that this region is a unit 
square, i.e. 2]1,0[≡L .  Each sensor also has a radius, ri. A sensor 
can be in two possible states, ON or OFF. Any point p inside L is 

LFY
AP1

TFL1

A

B

C

T

P

Figure 1. Example gene regulatory networks 
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said to be covered by a sensor si iff si = ON and the Euclidean 
distance between the sensor location and p is less than the sensor’s 
radius. We write this as, 

ONsricov iii =<−⇔∈ and||||)( pzp                 (6) 

The number of active sensors is given by,  

{ }ONsNiN iactive =∈= |],0(                         (7) 

The operator ⋅  denotes set cardinality. In a real world situation, it is 
desired to keep the number of active sensors as low as possible in 
order to minimize the battery consumption. At the same time, it is 
also desirable to maximize the total region in L that is covered by a 
sensor. We define the coverage as (see Figure 2), 
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or alternately as,  
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From a practical standpoint, the purpose of maximizing the 
coverage C is to allow the largest possible region inside L that can 
be reached by any sensor. 

Thus, the goal of the sensor network coverage problem is to 
assign values ON or OFF to each si to attain maximum possible 
coverage while simultaneously keeping the number of active 
sensors, Nactive, as low as possible to reduce power consumption. 
This problem can be formulated as a bi-objective optimization 
problem, with Equation 6 and Equation 7 providing the two 
objectives to optimize [9, 10]. Any well-known multi-objective 
optimization algorithm, such as NSGA-II [12] or FSGA [4] can 
directly be applied. Unfortunately, such an algorithm needs a 
centralized processor to run, rendering it infeasible in a practical 
situation. The GRN provides an attractive alternative to multi-
objective optimization. This approach is described below. 

 

 

 

 

 

 

 

 

4. APPROACH 
In the GRN approach, each gene in the regulatory network 

corresponds to a sensor. The gene expression levels xi of the genes 
are decision variables. The network parameters are chosen such that 
sensors that should be turned ON eventually acquire high values of 
their corresponding gene expression levels. A threshold θ can be 
selected a priori, and any sensor with a higher value in its 

corresponding gene expression level can be turned ON.  In other 
words, 

⎩
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i
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θ
                               (9) 

A lower θ causes a larger number of sensors to turn ON, which also 
has the effect of increasing coverage. 

In this application, we have made an assumption that the power 
consumption of each active (ON) sensor is constant, independent of 
its radius. Although impractical in the real world, this assumption 
enables us to keep things simple enough to demonstrate the efficacy 
of the GRN approach. Other formulations of this problem can be 
dealt with by modifications of the GRN approach. Under the 
circumstances, it is desirable to bias the GRN such that sensors 
which cover larger regions are biased by the GRN algorithm 
towards higher expression levels. This is done by setting the values 
of the parameter iβ in Equation 3, corresponding to sensor i to be, 

)(1 icovki ×=β                                  (10) 

while setting jβ  to zero for other sensors. If two active sensors are 
close together, there may be a common region that is simultaneously 
covered by both. For two sensors si and sj (Figure 2), we define this 
overlapping region as, 

{ })(&)(|)()(),( jcovicovjcovicovjiol ∈∈=∩= ppp      (11) 

The covered region of each sensor as well as overlapping region 
between them can be computed directly from the locations 

iz and jz as well as their radii ir and jr as, 

2)( iricov ×= π ,                                 (12a) 
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where di is obtained as shown (indexes can be changed for dj ),  
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Active sensors that are closely spaced together may have too 
much overlap. This introduces redundancy. In such a case, some of 
those sensors that do not provide additional coverage to the region 
that is not otherwise covered by another may be turned OFF to 
reduce their power consumption. The GRN biases these sensors 
towards lower gene expression levels through the parameter ijγ  in 
Equation 3. For any given sensor si, each neighboring sensor sj, 
which has nonzero overlap with it, is allowed to exert a suppressive 
influence on it. Accordingly,  

),(2 jiolkij ×−=γ                              (13) 

Putting aside other considerations (such as sensor power 
consumption being proportional to the coverage radius), in order to 
elicit similar time characteristics in the gene expression levels, 
their degradation rates are set to a uniform constant value as 
shown,  

   0ki =λ                                        (14) 

ri
rj

zi
zj

ol(i,j)

cov(i)
cov(j)

Figure 2. Two overlapping sensors 
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Figure 3. Placement of sensors for N = 25 Figure 6. Time dependent gene expression for N=25 

Figure 4. Placement of sensors for N = 50 Figure 7. Time dependent gene expression for N=50 

Figure 5. Placement of sensors for N = 100 Figure 8. Time dependent gene expression for N=100 
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5. IMPLEMENTATION 
The GRN constants associated with the sensor coverage problem 
are set to the following values, k0 = 0.01, k1 = 1.8, and k2 = 2.0. 
The region L in the simulations is simply a unit square, [0, 1]2. 
Although Equations 12a-c provides a direct method to compute 
the coverages and overlaps, a Monte Carlo simulation was used to 
estimate them since there are overlapping and covered regions 
that lie outside the unit square, L. It should be mentioned that 
early simulations producing nearly identical results suggest the 
benefit of Equations 12a-c, ignoring the above boundary 
conditions. The locations and radii of the sensors are generated 
randomly; the locations are uniformly distributed in the unit 
square while the radii follow a uniform distribution in the interval 
[0.05, 0.25]. All simulations are carried out for 2000 iterations 
with unit time increments although it is observed that the gene 
expressions tend to settle down at their final values at a much 
earlier stage (which, in a real world setting would translate to less 
computation, ergo diminished power consumption). All programs 
are implemented using Matlab on a Pentium-4 dual core 
processor. 

5.1 Simulation Results 
In order to test the effectiveness of the GRN approach for sensor 
networks of various sizes, the number of sensors was set to N = 
25, 50, and 100. While the first problem serves as a demonstration 
of the capabilities of GRNs, the next two are reasonable for many 
sensor applications. Figures 3, 4, and 5 depict the locations and 
radii of the sensors for each value of N. The circles, centered 
around the locations, and with radii equal to that of the sensors, 
are color coded using the final expression levels of their 
corresponding genes. Sensors with higher expression levels are 
colored red, and those with least levels are colored blue. 
Intermediate ones are green. It has been seen that sensors with 
larger radii tended to acquire higher expression levels. Moreover, 
it is also observed that those sensors that are subsumed by other 
sensors in their vicinity eventually tend to acquire lower values, 
and tend to turn OFF.  

Figures 6, 7 and 8 illustrate how the gene expressions, which 
are all initialized to the same expression level of 0.5, fluctuate 
with time. They are color coded in the same manner as before. 
For the smaller sensor networks (N=25, N=50), it is clear that the 
gene expressions asymptotically reach their stable values well 
ahead of time. Although this is the case with most sensors in the 
largest network (N=100), a few of them (such as sensors 66 and 
67), do not stabilize readily. This highlights the decision making 
process involved within the GRN in deciding the appropriate 
values of the expressions.  

This observation that complex decision making takes place is 
further reflected during the initial stages of the GRN approach, 
when several sensors whose gene expressions initially are 
observed to go down towards zero, which then move back up as 
their neighboring sensors are driven towards lower expression 
levels, leaving a larger gap to covered. Conversely, there are 
some sensors whose expressions, initially are driven upward, but 
eventually decrease when the GRN decides to impart higher 
expression levels to their neighbors. These observations indicate 
that the network coverage problem cannot be solved through 
simple heuristics. 
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Figure 9. Comparison with NSGA-II for N=25 
(GRN – Blue line, NSGA-II – Red points) 

Figure 10. Comparison with NSGA-II for N=50 
(GRN – Blue line, NSGA-II – Red points) 

Figure 11. Comparison with NSGA-II for N=100 
(GRN – Blue line, NSGA-II – Red points)
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5.2 Comparison with NSGA-II 
In order to evaluate the GRN approach, the sensor network 

problem is formulated explicitly as a bi-objective optimization 
problem and NSGA-II is applied. Although any other multi-
objective methods would have suited this application, such as 
FSGA, which consistently outperforms NSGA-II [12] for standard 
benchmarks, the latter has been studied only for continuous 
optimization problems. Further, NSGA-II is a very popular multi-
objective evolutionary algorithm. 

The solutions in NSGA-II are encoded as binary strings of 
length N, which implements uniform crossover and mutation with 
rates of 50% and 3%. The population size in NSGA-II is 100. The 
choice of all these is standard for almost all applications, and also, 
as preliminary studies show, judicious for this application. The 
number of generations is equal to 100 if N=25 and N=50, and 
slightly higher at 120 if N=100. 

The non-dominated front obtained by NSGA-II is compared 
with the outcome of the GRN approach. The equivalent of this 
front using the GRN method can be obtained by gradually 
increasing the threshold, θ, starting from zero, to get lower and 
lower active sensors Nactive, i.e. reduced coverage C. 

It is reasonable to expect that NSGA-II would produce a front 
that would be very close to the true Pareto front, if not equal to it. 
Therefore, the output of NSGA-II serves as a basis for gauging 
the performance of the proposed GRN scheme – the closer the 
result of the GRN approach to that of NSGA-II, the better is its 
performance. The results of this comparison are shown in Figures 
9, 10, and 11 for each value of N. The solid blue lines correspond 
to the result produced by the GRN, with different thresholds. The 
red points show the Pareto front obtained by NSGA-II. It can be 
concluded from the comparisons that the two outputs of the GRN 
approach and NSGA-II are quite similar to one another. This 
illustrates that the GRN approach is able to perform as well as 
NSGA-II for this task. Noting that NSGA-II cannot be 
implemented in a distributed environment, hence the GRN 
approach could be a very good alternative to other methods of 
sensor network coverage.  

5.3 Future Research in Sensor Coverage 
Future research will apply this approach to other versions of 

sensor coverage. In particular, when it is necessary to ensure that 
each point is covered by at least two sensors, so that sensor failure 
will not leave any region uncovered. This fault-tolerant version of 
sensor coverage can be accomplished with GRNs by including the 
third order term in Equation 2, where the value of the network 
parameter δijk is equal to the region that is overlapped by three 
sensors. This is a more modern approach for sensor network 
coverage, which also would show the utility of the more general 
GRN model in Equation 2. It should be noted that this term is 
absent in idiotypic and most neural networks. The introduction of 
this term also provokes the questions related to a network’s 
stability, for GRNs can also exhibit limit cycles, as in the 24-hour 
circadian clock [1]. The authors also intend to explore the 
performance of GRNs with external targets. In such cases, the 
genes would be allowed to receive external inputs, and can be 
accomplished by using the constant term, αi. Its analogy in real 
organisms is environmental factors, such as temperature and 
photoperiod that influences plant flowering time [4]. This 

approach can be extended for optimal dynamic coverage in 
sensors for moving target recognition by time varying values of 
αi, which also finds a biological analogy as environmental inputs 
are constantly changing in nature.  

6. DISCUSSION 
This paper introduces the GRN as a computing paradigm and 

demonstrates its effectiveness for sensor coverage. Comparing it 
with NSGA-II has made it clear that the method works quite well, 
and unlike the latter, can be used to an adaptive self-configured 
sensor network.  

The approach taken for the sensor network coverage problem is 
just an example GRN application. As the sensor coverage 
problem illustrates, GRNs can be used as a biologically inspired 
metaphor for discrete optimization. They can be applied for 
problems where the solutions can be represented as a sequence of 
ones and zeros, which can correspond to genes that are ON and 
OFF respectively. The parameters of the GRN can be determined 
through problem-specific heuristics in a manner similar to how 
they are done in Equation 10 and 13 for sensor network coverage. 
Although in this paper, each GRN produces in a single optimal 
solution, multiple solutions can also be generated from a single 
GRN by imparting small initial perturbations to the gene 
expressions. Such a scheme can pass well to an evolutionary 
algorithm. Instead of the conventional approach of evolving the 
solutions directly, the evolutionary operators can be applied to 
evolve the GRN parameters instead. Each GRN can in turn 
generate multiple solutions. This scheme would bear a 
resemblance to nature, where the organisms’ genotype, rather 
than the phenotype is subject to Darwinian evolution. 

GRNs can also be used as classifiers. A simple gradient 
descent algorithm can be applied to obtain the GRN parameters, 
which can also accept inputs. The classification decision would be 
based on assuming the combination of genes that express 
themselves in response to inputs. One advantage over 
conventional classifiers (such as neural networks, decision trees 
or support vector machines) is the fact that GRNs accept time-
varying inputs. This can be used for more complex pattern 
classification. Further investigation is necessary in order to 
explore the possibility of using GRNs as such classifiers. 

Lastly, GRNs can be used as decision support systems. GRNs 
offer the same advantage over knowledge-based systems as 
mentioned above, because they can also accept time-varying 
inputs. Further, GRN allow much flexibility in terms of topology, 
allowing feedforward as well as feedback connections, which are 
not possible with traditional IF-THEN-ELSE rules. 

7. CONCLUSION 
Biology has inspired several metaphors for computation. 

Darwinian evolution provided the background for evolutionary 
algorithms, while neuroscience gave rise to neural computation. 
More recently, distributed intelligence has yielded the Ant Colony 
Optimization (ACO) [14] and Particle Swarm Optimization (PSO) 
algorithms [15], while the vertebrate immune systems have 
produced a new class of algorithms in Artificial Immune Systems 
(AIS) [16]. Despite the large body of literature on genomics, 
GRNs have hitherto not been looked at for potential use in 
problem solving. Hence, further research is needed to explore the 
applicability of the GRN paradigm for real world problems. 
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