The Gene Regulatory Network:
An Application to Optimal Coverage in Sensor Networks
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ABSTRACT

This paper proposes a new approach for biologically inspired
computing on the basis of Gene Regulatory Networks. These
networks are models of genes and dynamic interactions that take
place between them. The differential equation representations of
such networks resemble neural networks as well as idiotypic
networks in immune system. Although several potential
applications have been outlined, an example, the problem of
placing sensors optimally in a distributed environment is
considered in detail. A comparison with NSGA-II suggest that the
new method is able to accomplish near-optimal coverage of
sensors in a network.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Problem solving, control methods
and search — heuristic methods.

General Terms
Algorithms, design, theory.

Keywords

Gene regulatory networks, sensors, heuristics.

1. GENE REGULATORY NETWORKS

Gene Regulatory Networks (GRNs) are models of genes and
gene interactions at the expression level. As an emergent property
of the network, simple interactions between the genes in the gene
networks can give rise to surprisingly complex behavior of the
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network as a whole. Even small networks consisting of only one
to four genes are able to function as Boolean logic gates, linear
arithmetic units, circuit delay elements, differentiators,
integrators, oscillators, coincidence detectors, and Dbi-stable
devices [1, 2]. Consequently, one can see that GRNs are endowed
with some processing capability.

GRNs have been traditionally modeled in a variety of ways. At
the simplest level, Boolean networks have been used for this
purpose. But more thorough models make use of differential
equations. A popular nonlinear differential equation model is the
S-formalism [c.f 3]. The most general way to represent them is of
the form,

X; :f(xl,...xi,...xN,el,u-eM) )

where f () is a nonlinear function and x; and x; are the gene

expression level and the rate of change of this level for the i™
gene in the network (i = 1, 2, ... N). The quantities e; through

ey, are M environmental inputs.

The dynamic interactions within GRNs, ignoring
environmental inputs, which suits our purpose well, may be
formulated as in [1, 2],

X; = —/’{ixi +O'(ai +Zﬂl]xj +Z}/1~jxixj + Z&ijkxixj')Ck +j
J iJ i,jk
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Here the quantity A, >0 is called the degradation rate. The

quantities a, f, y, and J, indexed appropriately, are the additional
network parameters. The function o() is a monotonically
increasing nonlinearity bounded in [0, R], where R is a constant.
Through these interactions, genes can either suppress or stimulate
cach other’s expression levels, or even regulate them in more
complex ways. Further biological details can be obtained from the
literature on genomics [1, 2].



For example, in the molecular genetic model plant,
Arabidopsis thaliana, three genes: TERMINAL FLOWERINGI1
(TFL1), APETALA1 (AP1), and LEAFY (LFY) play a special role
in flowering. Two of them (AP1 and LFY) expressing themselves
provokes plant commitment to flowering. The gene regulatory
network formed from these three genes is shown in Figure. 1 (left)
[4]. Figure. 1 (right) demonstrates a sample gene network topology
that was algorithmically obtained [5] with three selected genes. It
determines heading time in Oryza sativa, from two inputs,
temperature (T) and photoperiod (P) [5

A

Figure 1. Example gene regulatory networks

2. GRN AS A DISTRIBUTED
COMPUTATION

Although arguments within the nonlinearity in Equation 2 can be
extended to indefinitely high order terms, the present paper restricts
the highest to be quadratic, and ignores a few other terms, resulting
in the simplified form,

X =—Aix; +0'[ﬂixi +Z7/g‘jxiij 3)
i,

Using the Equation 3, a GRN can be simulated numerically in a
computer using Runge-Kutta methods [6]. The nonlinearity is
modeled here as,

0}

The above choice limits the range to [0, 1], which is suitable for
most applications. The degradation rate 4, serves as an inverse time

1-exp(-z)

1+exp(-z)’ @

a(z):max{

constant. The values of the other network parameters can be
appropriately assigned depending on application. Removing the
higher order terms from Equation 2 restricts the possibility in which
one gene can influence another to stimulation and suppression only.
Noting that the gene expressions x; > 0, when y;; > 0 , the expression

level of gene j promotes that of gene i. Conversely, wheny; <0,

the influence upon the latter is suppressive in nature instead.

The GRN is not necessarily fully connected; a
nonzero y; implying the existence of a pathway from the ™M gene to

the i™ gene. Therefore, each gene receives inputs only from its
immediate predecessors. Consequently, the communications
between the genes in the GRN are limited, allowing the processing
at each gene to proceed independently. In other words, the
computations taking place in GRNs are distributed. This paper
deviates from actual GRNs in one important aspect. Although
feedback loops are present in actual GRNs, they do not occur
between all possible genes. Ignoring this observation here extends
the utility of the GRN paradigm for various applications — a useful
tradeoff for biological fidelity.
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2.1 Comparison with Other Networks

The differential Equation 2 has strong parallels to recurrent
neural networks [7]. Both GRNs and neural networks involve
nonlinearities; the key difference is the way these nonlinearities are
applied. In recurrent neural networks, these nonlinearities (which
are sigmoidal saturation ones), are used to restrict the outputs of the
neurons to [0, 1], whereas the activations of the neurons are
unbounded. The summations are applied following the nonlinearity.
In contrast, in GRNs, the nonlinearity is applied to each gene
following the summation terms. Because of this feature, the gene
expression levels when the GRN stabilizes, is easy to foresee, by
simply equating the left hand side of Equation. (3) to zero, yielding,

1
Zo{a[ + B;x; +izj:7,.jxixj}

This can be used effectively in an application, as in the sensor
network problem considered here.

®)

The GRN model also resembles idiotypic networks in immune
systems [8, 13]. These networks portray antibody interactions, in
terms of differential equations similar to Equation 3, where the left
hand term is an antibody concentration. Again, there are key
differences between idiotypic networks and GRNs. Models of
idiotypic interactions do not include any higher order term, which
makes GRNs more versatile than the latter for many applications.
The interaction between the antibodies in idiotypic network is
entirely suppressive, stimulation being based on external inputs
only. Lastly, GRNs have a topological structure that these networks
do not possess.

The topological differences between the three biological
networks are summarized in Table 1.

Table 1. Comparison of the three biological networks

Neural Idiotypic GRN
network network
Nodal neuron antibody gene
element activation concentration expression
Edge element synaptic affinities transcription
weights
Interaction excitation(+)/ suppression(-) | promotion(+)/
inhibition(-) suppression(-)
Connectivity sparsely/fully fully sparsely
connected connected connected
Nonlinearities present present present
Highest term usually restricted unrestricted
restricted

3. COVERAGE IN SENSOR NETWORKS

Our application is a simple version of the sensor network coverage
problem [9, 10], which is introduced here. Given a set of NV sensors,
where each sensor s; has a 2-dimensional coordinate z, € L , where
L is a 2-dimensional region on which sensors can be placed, called
its location. For simplicity, we assume that this region is a unit
square, i.e. L=[0, 11*. Each sensor also has a radius, r,. A sensor

can be in two possible states, ON or OFF. Any point p inside L is



said to be covered by a sensor s; iff s5; = ON and the Euclidean
distance between the sensor location and p is less than the sensor’s
radius. We write this as,

p ecov(i) &z, —pll<r; and s5; =ON ©6)
The number of active sensors is given by,
Na(ftive = |{l € (0’ N] | S = ON}| (7)

The operator || denotes set cardinality. In a real world situation, it is

desired to keep the number of active sensors as low as possible in
order to minimize the battery consumption. At the same time, it is
also desirable to maximize the total region in L that is covered by a
sensor. We define the coverage as (see Figure 2),

[tp € L|3ie(0,N]1&p e cov(i)]
1

, (8)

or alternately as,

‘Uil ow(i)

Ci
2

C= (8b)

From a practical standpoint, the purpose of maximizing the
coverage C is to allow the largest possible region inside L that can
be reached by any sensor.

Thus, the goal of the sensor network coverage problem is to
assign values ON or OFF to each s; to attain maximum possible
coverage while simultaneously keeping the number of active
sensors, N, as low as possible to reduce power consumption.
This problem can be formulated as a bi-objective optimization
problem, with Equation 6 and Equation 7 providing the two
objectives to optimize [9, 10]. Any well-known multi-objective
optimization algorithm, such as NSGA-II [12] or FSGA [4] can
directly be applied. Unfortunately, such an algorithm needs a
centralized processor to run, rendering it infeasible in a practical
situation. The GRN provides an attractive alternative to multi-
objective optimization. This approach is described below.

Z; ol(i,j)

cov(i)

Figure 2. Two overlapping sensors

4. APPROACH

In the GRN approach, each gene in the regulatory network
corresponds to a sensor. The gene expression levels x; of the genes
are decision variables. The network parameters are chosen such that
sensors that should be turned ON eventually acquire high values of
their corresponding gene expression levels. A threshold 6 can be
selected a priori, and any sensor with a higher value in its
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corresponding gene expression level can be turned ON. In other
words,

20=s5; =0ON
X )

<0=s; =OFF

A lower 6 causes a larger number of sensors to turn ON, which also
has the effect of increasing coverage.

In this application, we have made an assumption that the power
consumption of each active (ON) sensor is constant, independent of
its radius. Although impractical in the real world, this assumption
enables us to keep things simple enough to demonstrate the efficacy
of the GRN approach. Other formulations of this problem can be
dealt with by modifications of the GRN approach. Under the
circumstances, it is desirable to bias the GRN such that sensors
which cover larger regions are biased by the GRN algorithm
towards higher expression levels. This is done by setting the values
of the parameter f; in Equation 3, corresponding to sensor i to be,

B; =k, xcov(i) (10)

while setting f; to zero for other sensors. If two active sensors are

close together, there may be a common region that is simultaneously
covered by both. For two sensors s; and s; (Figure 2), we define this
overlapping region as,

())
The covered region of each sensor as well as overlapping region

between them can be computed directly from the locations
z; and z ; as well as their radii 7; and 7, as,

ol(i, j) = cov(i) ncov(j) = {p |[pecov(i)&pe cov(j)}

cov(i) =7 x ”52 R (12a)

ol(i, j) = riz(cos_l d;td1-d} j+ rjz(cos_l d;xd1-d; j

(12b)
where d; is obtained as shown (indexes can be changed for d; ),
2 2 2
|z, -z |7 -r;
i ) 120
2r;l|z; -z |

J

Active sensors that are closely spaced together may have too
much overlap. This introduces redundancy. In such a case, some of
those sensors that do not provide additional coverage to the region
that is not otherwise covered by another may be turned OFF to
reduce their power consumption. The GRN biases these sensors
towards lower gene expression levels through the parameter y; in

Equation 3. For any given sensor s;, each neighboring sensor s;,
which has nonzero overlap with it, is allowed to exert a suppressive
influence on it. Accordingly,

(13)

Putting aside other considerations (such as sensor power
consumption being proportional to the coverage radius), in order to
elicit similar time characteristics in the gene expression levels,
their degradation rates are set to a uniform constant value as
shown,

}/ij = _k2 XOl(i9j)

2 =ky

1

(14



Figure 5. Placement of sensors for N =100
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Figure 6. Time dependent gene expression for N=25
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Figure 7. Time dependent gene expression for N=50
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Figure 8. Time dependent gene expression for N=100



5. IMPLEMENTATION

The GRN constants associated with the sensor coverage problem
are set to the following values, ky = 0.01, k; = 1.8, and &, = 2.0.
The region L in the simulations is simply a unit square, [0, 1]*
Although Equations 12a-c provides a direct method to compute
the coverages and overlaps, a Monte Carlo simulation was used to
estimate them since there are overlapping and covered regions
that lie outside the unit square, L. It should be mentioned that
early simulations producing nearly identical results suggest the
benefit of Equations 12a-c, ignoring the above boundary
conditions. The locations and radii of the sensors are generated
randomly; the locations are uniformly distributed in the unit
square while the radii follow a uniform distribution in the interval
[0.05, 0.25]. All simulations are carried out for 2000 iterations
with unit time increments although it is observed that the gene
expressions tend to settle down at their final values at a much
earlier stage (which, in a real world setting would translate to less
computation, ergo diminished power consumption). All programs
are implemented using Matlab on a Pentium-4 dual core
processor.

5.1 Simulation Results

In order to test the effectiveness of the GRN approach for sensor
networks of various sizes, the number of sensors was set to N =
25, 50, and 100. While the first problem serves as a demonstration
of the capabilities of GRNs, the next two are reasonable for many
sensor applications. Figures 3, 4, and 5 depict the locations and
radii of the sensors for each value of N. The circles, centered
around the locations, and with radii equal to that of the sensors,
are color coded using the final expression levels of their
corresponding genes. Sensors with higher expression levels are
colored red, and those with least levels are colored blue.
Intermediate ones are green. It has been seen that sensors with
larger radii tended to acquire higher expression levels. Moreover,
it is also observed that those sensors that are subsumed by other
sensors in their vicinity eventually tend to acquire lower values,
and tend to turn OFF.

Figures 6, 7 and 8 illustrate how the gene expressions, which
are all initialized to the same expression level of 0.5, fluctuate
with time. They are color coded in the same manner as before.
For the smaller sensor networks (N=25, N=50), it is clear that the
gene expressions asymptotically reach their stable values well
ahead of time. Although this is the case with most sensors in the
largest network (N=100), a few of them (such as sensors 66 and
67), do not stabilize readily. This highlights the decision making
process involved within the GRN in deciding the appropriate
values of the expressions.

This observation that complex decision making takes place is
further reflected during the initial stages of the GRN approach,
when several sensors whose gene expressions initially are
observed to go down towards zero, which then move back up as
their neighboring sensors are driven towards lower expression
levels, leaving a larger gap to covered. Conversely, there are
some sensors whose expressions, initially are driven upward, but
eventually decrease when the GRN decides to impart higher
expression levels to their neighbors. These observations indicate
that the network coverage problem cannot be solved through
simple heuristics.
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5.2 Comparison with NSGA-II

In order to evaluate the GRN approach, the sensor network
problem is formulated explicitly as a bi-objective optimization
problem and NSGA-II is applied. Although any other multi-
objective methods would have suited this application, such as
FSGA, which consistently outperforms NSGA-II [12] for standard
benchmarks, the latter has been studied only for continuous
optimization problems. Further, NSGA-II is a very popular multi-
objective evolutionary algorithm.

The solutions in NSGA-II are encoded as binary strings of
length N, which implements uniform crossover and mutation with
rates of 50% and 3%. The population size in NSGA-II is 100. The
choice of all these is standard for almost all applications, and also,
as preliminary studies show, judicious for this application. The
number of generations is equal to 100 if N=25 and N=50, and
slightly higher at 120 if N=100.

The non-dominated front obtained by NSGA-II is compared
with the outcome of the GRN approach. The equivalent of this
front using the GRN method can be obtained by gradually
increasing the threshold, 6, starting from zero, to get lower and
lower active sensors N, i.e. reduced coverage C.

It is reasonable to expect that NSGA-II would produce a front
that would be very close to the true Pareto front, if not equal to it.
Therefore, the output of NSGA-II serves as a basis for gauging
the performance of the proposed GRN scheme — the closer the
result of the GRN approach to that of NSGA-II, the better is its
performance. The results of this comparison are shown in Figures
9, 10, and 11 for each value of N. The solid blue lines correspond
to the result produced by the GRN, with different thresholds. The
red points show the Pareto front obtained by NSGA-II. It can be
concluded from the comparisons that the two outputs of the GRN
approach and NSGA-II are quite similar to one another. This
illustrates that the GRN approach is able to perform as well as
NSGA-II for this task. Noting that NSGA-II cannot be
implemented in a distributed environment, hence the GRN
approach could be a very good alternative to other methods of
sensor network coverage.

5.3 Future Research in Sensor Coverage

Future research will apply this approach to other versions of
sensor coverage. In particular, when it is necessary to ensure that
each point is covered by at least two sensors, so that sensor failure
will not leave any region uncovered. This fault-tolerant version of
sensor coverage can be accomplished with GRNs by including the
third order term in Equation 2, where the value of the network
parameter J; is equal to the region that is overlapped by three
sensors. This is a more modern approach for sensor network
coverage, which also would show the utility of the more general
GRN model in Equation 2. It should be noted that this term is
absent in idiotypic and most neural networks. The introduction of
this term also provokes the questions related to a network’s
stability, for GRNs can also exhibit limit cycles, as in the 24-hour
circadian clock [1]. The authors also intend to explore the
performance of GRNs with external targets. In such cases, the
genes would be allowed to receive external inputs, and can be
accomplished by using the constant term, o;. Its analogy in real
organisms is environmental factors, such as temperature and
photoperiod that influences plant flowering time [4]. This
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approach can be extended for optimal dynamic coverage in
sensors for moving target recognition by time varying values of
a;, which also finds a biological analogy as environmental inputs
are constantly changing in nature.

6. DISCUSSION

This paper introduces the GRN as a computing paradigm and
demonstrates its effectiveness for sensor coverage. Comparing it
with NSGA-II has made it clear that the method works quite well,
and unlike the latter, can be used to an adaptive self-configured
sensor network.

The approach taken for the sensor network coverage problem is
just an example GRN application. As the sensor coverage
problem illustrates, GRNs can be used as a biologically inspired
metaphor for discrete optimization. They can be applied for
problems where the solutions can be represented as a sequence of
ones and zeros, which can correspond to genes that are ON and
OFF respectively. The parameters of the GRN can be determined
through problem-specific heuristics in a manner similar to how
they are done in Equation 10 and 13 for sensor network coverage.
Although in this paper, each GRN produces in a single optimal
solution, multiple solutions can also be generated from a single
GRN by imparting small initial perturbations to the gene
expressions. Such a scheme can pass well to an evolutionary
algorithm. Instead of the conventional approach of evolving the
solutions directly, the evolutionary operators can be applied to
evolve the GRN parameters instead. Each GRN can in turn
generate multiple solutions. This scheme would bear a
resemblance to nature, where the organisms’ genotype, rather
than the phenotype is subject to Darwinian evolution.

GRNs can also be used as classifiers. A simple gradient
descent algorithm can be applied to obtain the GRN parameters,
which can also accept inputs. The classification decision would be
based on assuming the combination of genes that express
themselves in response to inputs. One advantage over
conventional classifiers (such as neural networks, decision trees
or support vector machines) is the fact that GRNs accept time-
varying inputs. This can be used for more complex pattern
classification. Further investigation is necessary in order to
explore the possibility of using GRNs as such classifiers.

Lastly, GRNs can be used as decision support systems. GRNs
offer the same advantage over knowledge-based systems as
mentioned above, because they can also accept time-varying
inputs. Further, GRN allow much flexibility in terms of topology,
allowing feedforward as well as feedback connections, which are
not possible with traditional IF-THEN-ELSE rules.

7. CONCLUSION

Biology has inspired several metaphors for computation.
Darwinian evolution provided the background for evolutionary
algorithms, while neuroscience gave rise to neural computation.
More recently, distributed intelligence has yielded the Ant Colony
Optimization (ACO) [14] and Particle Swarm Optimization (PSO)
algorithms [15], while the vertebrate immune systems have
produced a new class of algorithms in Artificial Immune Systems
(AIS) [16]. Despite the large body of literature on genomics,
GRNs have hitherto not been looked at for potential use in
problem solving. Hence, further research is needed to explore the
applicability of the GRN paradigm for real world problems.
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