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ABSTRACT 
The difficulty of designing cellular automatons’ transition rules to 
perform a particular problem has severely limited their 
applications. Using a genetic algorithm to evolve cellular 
automata for fining these rules, is a good solution. Conventional 
evolutionary methods use random test configurations for 
calculating fitness values of each transition rule. In this paper, we 
use Principal Component Analysis to build better test 
configurations. By emphasizing on diversity between test 
instances in a test plan, we can evaluate rules better and faster as 
well as increase their accuracy. In this paper, we propose two 
models based on this idea. Experimental results on density 
classification and synchronization tasks prove that our methods 
are more efficient than the conventional one.   
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1. INTRODUCTION 
Recently, parallel computers based on cellular automata (CAs 
[1]), have gained attention as a method of designing complex 
systems. However, the difficulty of designing CAs’ transition 
rules to perform a particular task has severely limited their 
applications. The evolutionary design of CA rules has been 
studied by the EVCA group [2] in detail. A genetic algorithm 
(GA) is used to evolve CAs for calculating transition rules. 
For testing a transition rule, the number of possible test cases is 
too large, so we can not define fitness as the fraction of correct 
classifications over all possible initial configurations (ICs). 
Instead, fitness was defined as the fraction of correct 
classifications over a sample consisting of small number of ICs. 
Almost in the all proposed methods, these finite ICs have been 
determined randomly. 

In this paper, we interest in evaluating transition rules more 
accurately. For this purpose, test configurations must prepare 
different scenarios for each transition rule. So we use Principal 
Component Analysis (PCA) to select test fields with the 
maximum diversity. We propose two models based on this idea.   

2. Cellular Automata and Evolutionary 
Cellular Automata  
A Cellular Automata (CA) consists of a collection of time-
dependent variables Si

t called the local states, arrayed on a lattice 
of N sites (or cells). This collection of cells can be organized in 
one or more dimensions. The collection of all local states is called 
the configuration. Where S0 denotes an initial configuration (IC). 
Typically, the equation of motion for a CA is specified by a look 
up table that maps a site’s neighborhood to a new local state. 

Inverse problem in CA concerned with designing transition rules 
for a desirable CA final status. Evolutionary Cellular Automata 
[3] is a solution for the inverse problem. In this approach an initial 
population of chromosomes, which each of them is a candidate 
transition rule, is created. Then the fitness of each rule is 
evaluated on some test configurations. After calculating all the 
chromosomes fitness, some genetic algorithm operators (like as 
mutation or cross over) are applied on the chromosomes. The next 
generation is selected from the current modified generation. This 
procedure will be iterated until a transition rule with satisfactory 
fitness is reached. 

Several modified version of the initial approach have been 
introduced. Coevolving CA [4] evolves a population of test 
configurations as well as a population of transition rules in each 
iteration. Hence evolving test configurations makes learning hard 
after a few iterations, this method can not be effective. In the rule 
changing cellular automata [5], each chromosome contains 
several transition rules instead of only one rule.     

3. Proposed Method 
With consideration to the all methods which have been introduced 
so far, it can be concluded that all of them, calculate fitness on 
random test plans. On the other hand, the number of possible test 
plans is too far in compare to actual number of test plans which is 
used in these methods. (For example, in a lattice with 149 binary 
cells there are 2149 different test plans, but only 100 of them are 
used for calculating rules fitness.). In our proposed methods, we 
use PCA to extract some different test scenarios (As opposed to 
random scenarios in other methods) for evaluating each rule 
better.  
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Principal Component Analysis (PCA) [6] is a very famous 
method which used in pattern recognition applications directly or 
indirectly. The main characteristic of PCA is its feature reduction. 
PCA can describe a set of instances with a feature space whose 
dimension is less than the initial space. Basises for the new space 
are chosen such that when the instances are projected on them, the 
differences between instances will be maximized. These base 
vectors are built with considering the covariance matrix of 
instances (Covariance matrix indicates instances similarities).  

Two different models based on PCA are proposed here for 
generating test plans more efficient: 

Model I-According to the first PCA coefficient 

1) A set of 100 random test configurations is built. 2) PCA 
coefficients for all instances in the set are calculated. 3) Instances 
are sorted according to their first PCA coefficient. 4) From the 
sorted set, some instances are chosen to add to the test set. This 
work is done according to their positions (For example in our 
experiments, we select test plans with indexes 1,25,50,75 and 100 
for adding to the test set.) 5) Go to step 1 until the sufficient 
number of test plans is provided. 

Model II- According to some of the PCA coefficients 

1) A large enough set of random test plans is created. 2) PCA 
coefficients for all members of this set are calculated. 3) With 
using a clustering method (like as K-means [7]) test plans are 
clustered according to the some of their highest PCA coefficients. 
4) From each cluster, a test plan is selected and is added to the test 
set. (In our experiments, we create 100,000 random test plans, 
select 10 first PCA coefficients for each instance and use K-
means algorithm for their clustering. Also we assume K=100).  

It can be shown that differences between first PCA coefficients of 
a set are equal to the differences between their values from the set 
average. So the first model can be done with averaging instead of 
calculating PCA on a set. As a result the first model is faster than 
the second one. In the other way, the second model selects test 
plans among more instances as well as compares all of them once. 
So it gets the better results but in a longer time. Either of these 
models can be used in the conventional EVCA algorithms as 
following. (The same algorithm we use in our experiments).      

1) Select 100 chromosomes randomly. 2) Use mode I or mode II 
for extracting 100 test plans. 3) Calculate chromosomes fitness on 
the test plans. 4) Select 20% of the chromosomes based on their 
fitness values and transfer them to the next generation. 5) Select 
two random chromosomes as parents between the above 20% 
chromosomes 6) Do single point cross-over between them and get 
the child. 7) Mute the child with a 0.1 probability for each 
chromosomes cell. 8) Add the child to the next generation. 9) Go 
to step 5 until remaining 80% of the next generation is provided. 

These 9 steps are formed one generation of our evolutionary 
cellular automata. These generations continue until the generation 
number is reached to the pre-defined iteration. In the last 
generation the rule whose fitness is the highest one, will be 

selected as the final transition rule. (In the conventional method 
step 2 is substituted by Extracting 100 random test plans). 

4. Experimental Results 
For examining our models, we compare them with the 
conventional evolutionary methods in two famous fields. The 
density classification task and the synchronization task [5]. (We 
use the same problem definitions and conditions as [5] in our 
experiments).  

The final transition rule which obtained for density classification 
task without our modification has 49% accuracy while using 
model I improves accuracy to 57% and model II improves to 
62%.  

Likewise for the synchronization task, the second case study, the 
result is improved from 44% (conventional method) to 46% (In 
the model I) and 57% (In the model II).   

5. Conclusions 
In this paper, a new approach for the better evaluation of 
transition rules is proposed. In this method, we use PCA feature 
space as a measure for extracting test plans which have maximum 
differences with each other. Two models are proposed for this 
purpose. Model I use only one PCA coefficients and is faster 
while model II uses several PCA coefficients and gets better 
result. Our experiments reveal that the proposed methods 
converge faster and also have better performance in compare to 
the conventional EVCA. 
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