
Using PCA to Improve Evolutionary Cellular Automata
Algorithms

Mehran Najafi
Dept. of Computer Science

McMaster University
Ontario, Canada

najafm@mcmaster.ca

Hamid Beigy
Dept. of Computer Engineering

Sharif University
Tehran, Iran

Beigy@sharif.edu

ABSTRACT
The difficulty of designing cellular automatons’ transition rules to
perform a particular problem has severely limited their
applications. Using a genetic algorithm to evolve cellular
automata for fining these rules, is a good solution. Conventional
evolutionary methods use random test configurations for
calculating fitness values of each transition rule. In this paper, we
use Principal Component Analysis to build better test
configurations. By emphasizing on diversity between test
instances in a test plan, we can evaluate rules better and faster as
well as increase their accuracy. In this paper, we propose two
models based on this idea. Experimental results on density
classification and synchronization tasks prove that our methods
are more efficient than the conventional one.

Categories and Subject Descriptors
I.2.11 Distributed Artificial Intelligence

General Terms
Algorithms, Performance

Keywords
Genetic Algorithms, Evolutionary Cellular Automata,
Improvement in test strategies, Principal Component Analysis

1. INTRODUCTION
Recently, parallel computers based on cellular automata (CAs
[1]), have gained attention as a method of designing complex
systems. However, the difficulty of designing CAs’ transition
rules to perform a particular task has severely limited their
applications. The evolutionary design of CA rules has been
studied by the EVCA group [2] in detail. A genetic algorithm
(GA) is used to evolve CAs for calculating transition rules.
For testing a transition rule, the number of possible test cases is
too large, so we can not define fitness as the fraction of correct
classifications over all possible initial configurations (ICs).
Instead, fitness was defined as the fraction of correct
classifications over a sample consisting of small number of ICs.
Almost in the all proposed methods, these finite ICs have been
determined randomly.

In this paper, we interest in evaluating transition rules more
accurately. For this purpose, test configurations must prepare
different scenarios for each transition rule. So we use Principal
Component Analysis (PCA) to select test fields with the
maximum diversity. We propose two models based on this idea.

2. Cellular Automata and Evolutionary
Cellular Automata
A Cellular Automata (CA) consists of a collection of time-
dependent variables Si

t called the local states, arrayed on a lattice
of N sites (or cells). This collection of cells can be organized in
one or more dimensions. The collection of all local states is called
the configuration. Where S0 denotes an initial configuration (IC).
Typically, the equation of motion for a CA is specified by a look
up table that maps a site’s neighborhood to a new local state.

Inverse problem in CA concerned with designing transition rules
for a desirable CA final status. Evolutionary Cellular Automata
[3] is a solution for the inverse problem. In this approach an initial
population of chromosomes, which each of them is a candidate
transition rule, is created. Then the fitness of each rule is
evaluated on some test configurations. After calculating all the
chromosomes fitness, some genetic algorithm operators (like as
mutation or cross over) are applied on the chromosomes. The next
generation is selected from the current modified generation. This
procedure will be iterated until a transition rule with satisfactory
fitness is reached.

Several modified version of the initial approach have been
introduced. Coevolving CA [4] evolves a population of test
configurations as well as a population of transition rules in each
iteration. Hence evolving test configurations makes learning hard
after a few iterations, this method can not be effective. In the rule
changing cellular automata [5], each chromosome contains
several transition rules instead of only one rule.

3. Proposed Method
With consideration to the all methods which have been introduced
so far, it can be concluded that all of them, calculate fitness on
random test plans. On the other hand, the number of possible test
plans is too far in compare to actual number of test plans which is
used in these methods. (For example, in a lattice with 149 binary
cells there are 2149 different test plans, but only 100 of them are
used for calculating rules fitness.). In our proposed methods, we
use PCA to extract some different test scenarios (As opposed to
random scenarios in other methods) for evaluating each rule
better.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

1129

Principal Component Analysis (PCA) [6] is a very famous
method which used in pattern recognition applications directly or
indirectly. The main characteristic of PCA is its feature reduction.
PCA can describe a set of instances with a feature space whose
dimension is less than the initial space. Basises for the new space
are chosen such that when the instances are projected on them, the
differences between instances will be maximized. These base
vectors are built with considering the covariance matrix of
instances (Covariance matrix indicates instances similarities).

Two different models based on PCA are proposed here for
generating test plans more efficient:

Model I-According to the first PCA coefficient

1) A set of 100 random test configurations is built. 2) PCA
coefficients for all instances in the set are calculated. 3) Instances
are sorted according to their first PCA coefficient. 4) From the
sorted set, some instances are chosen to add to the test set. This
work is done according to their positions (For example in our
experiments, we select test plans with indexes 1,25,50,75 and 100
for adding to the test set.) 5) Go to step 1 until the sufficient
number of test plans is provided.

Model II- According to some of the PCA coefficients

1) A large enough set of random test plans is created. 2) PCA
coefficients for all members of this set are calculated. 3) With
using a clustering method (like as K-means [7]) test plans are
clustered according to the some of their highest PCA coefficients.
4) From each cluster, a test plan is selected and is added to the test
set. (In our experiments, we create 100,000 random test plans,
select 10 first PCA coefficients for each instance and use K-
means algorithm for their clustering. Also we assume K=100).

It can be shown that differences between first PCA coefficients of
a set are equal to the differences between their values from the set
average. So the first model can be done with averaging instead of
calculating PCA on a set. As a result the first model is faster than
the second one. In the other way, the second model selects test
plans among more instances as well as compares all of them once.
So it gets the better results but in a longer time. Either of these
models can be used in the conventional EVCA algorithms as
following. (The same algorithm we use in our experiments).

1) Select 100 chromosomes randomly. 2) Use mode I or mode II
for extracting 100 test plans. 3) Calculate chromosomes fitness on
the test plans. 4) Select 20% of the chromosomes based on their
fitness values and transfer them to the next generation. 5) Select
two random chromosomes as parents between the above 20%
chromosomes 6) Do single point cross-over between them and get
the child. 7) Mute the child with a 0.1 probability for each
chromosomes cell. 8) Add the child to the next generation. 9) Go
to step 5 until remaining 80% of the next generation is provided.

These 9 steps are formed one generation of our evolutionary
cellular automata. These generations continue until the generation
number is reached to the pre-defined iteration. In the last
generation the rule whose fitness is the highest one, will be

selected as the final transition rule. (In the conventional method
step 2 is substituted by Extracting 100 random test plans).

4. Experimental Results
For examining our models, we compare them with the
conventional evolutionary methods in two famous fields. The
density classification task and the synchronization task [5]. (We
use the same problem definitions and conditions as [5] in our
experiments).

The final transition rule which obtained for density classification
task without our modification has 49% accuracy while using
model I improves accuracy to 57% and model II improves to
62%.

Likewise for the synchronization task, the second case study, the
result is improved from 44% (conventional method) to 46% (In
the model I) and 57% (In the model II).

5. Conclusions
In this paper, a new approach for the better evaluation of
transition rules is proposed. In this method, we use PCA feature
space as a measure for extracting test plans which have maximum
differences with each other. Two models are proposed for this
purpose. Model I use only one PCA coefficients and is faster
while model II uses several PCA coefficients and gets better
result. Our experiments reveal that the proposed methods
converge faster and also have better performance in compare to
the conventional EVCA.

6. REFERENCES
[1] Wolfram, S. A New Kind of Science. Book. Wolfram Media

Inc. (2002).
[2] Mitchell, M., Crutchfield, J. P., and Hraber, P. Evolving

Cellular Automata to Perform Computations: Mechanisms
and Impediments. Physica D 75 (1994).

[3] Wolfram, S. Cellular automata as models of complexity,
Nature. Vol. 311,(1984).

[4] Paredis J., Coevolving Cellular Automata: Be Aware of the
Red Queen!, Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA97), (1997).

[5] Kanoh1 H., Wu2 Y., Evolutionary Design of Rule Changing
Cellular Automata, Knowledge-Based Intelligent
Information and Engineering Systems, (2003)

[6] Jolliffe I., Principal Components Analysis, Book, Springer
(2002).

[7] Kanungo T., Mount D., Netanyahu N., Piatko C., Silverman
R., Wu A., An Efficient k-Means Clustering Algorithm:
Analysis and Implementation, IEEE Transactions on Pattern
Analysis and Machine Intelligence , Vol 24, (2002).

1130

