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1. INTRODUCTION
Traditional approaches dealing with pseudo-boolean func-

tion mostly use the inherent standard basis. When we con-
sider another basis instead of the standard one, the link-
age structure between basis elements and the ruggedness of
the problem space can be completely different from original
ones. Through a change of basis, a complex/difficult prob-
lem may be changed into a simple/easy one and vice versa.

Chryssomalakos and Stephens [4] theoretically dealt with
the bases of function space on Z

n
2 . In this paper, we inves-

tigate bases of more fundamental space, i.e., those of the
vector space Z

n
2 = ({0, 1}n,⊕).1

Gene reordering [3, 8] can be considered as a special case
of the change of basis. If T is just a permutation matrix, a
change of basis means a reordering of gene positions in en-
coding. The concept of changing basis is much more general
than that of gene reordering.

Coordinate changes based on eigenspace and orthogonal-
ization have been studied [10, 11]. But, they focused on real-
code representation. These results cannot apply to pseudo-
boolean functions using binary representation because of the
following proposition.

Proposition 1. Let T be a nonsingular binary matrix.
Then, if T is not the identity matrix I, the eigenspace of T

does not span Z
n
2 .

Proof. The spectrum of T is a subset of Z2. Since T is
nonsingular, zero cannot be an eigenvalue of T . If T has an

1⊕ is the exclusive-or (XOR) operator. (a1, a2, . . . , an) ⊕
(b1, b2, . . . , bn) = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn).
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eigenvalue, it must be one. Suppose that the eigenspace of T

spans Z
n
2 . Then there exist linearly-independent n eigenvec-

tors with one as eigenvalue. Let A be the matrix in columns
of which has such n eigenvectors. Then TA = A. Since A is
nonsingular, T = I. This is a contradiction.

2. COORDINATE-CHANGE
A matrix A is called binary if A ∈ Mn×n(Z2). Binary ma-

trices have been widely used to deal with the adjacency of a
graph [1, 2]. In particular, Anderson and Feil [1] transformed
the light bulb puzzle into the problem of solving a linear sys-
tem Ax = b from its graph structure, where A ∈ Mn×n(Z2)
and x, b ∈ Z

n
2 . Then the solution could be obtained by com-

puting the inverse of A, i.e., x = A−1b. Binary matrices are
also useful in dealing with the cut/cycle subspace of a graph,
which is a vector space over Z2 [2, 5]. They can also be used
to represent a change of basis of a vector space over Z2 in
combinatorial problems. In this paper, we will present this
new application of binary matrices.

A basis for a vector space of dimension n is a sequence of n

vectors with the property that every vector in the space can
be uniquely expressed as a linear combination of the basis
vectors. Since it is often desirable to work with more than
one basis for a vector space, it is important to be able to
easily transform coordinate-wise representations of vectors
and linear transformations taken with respect to one basis
to their equivalent representations with respect to another
basis. Such a transformation is called a change of basis. The
following theorem is easily induced from the basic theory of
linear algebra [6].

Theorem 1. Let B1 and B2 be two bases for Z
n
2 . Then

there exists a nonsingular matrix T ∈ Mn×n(Z2) such that
for every v ∈ Z

n
2 , T (v)B1

= (v)B2
, where (v)B is the repre-

sentation of v with respect to the basis B.

The matrix T in Theorem 1 is called coordinate-change ma-
trix from the basis B1 to B2.

The standard basis Bs for Z
n
2 is {e1, e2, . . . , en}, where

ej = (0, . . . , 0, 1, 0, . . . , 0) is the element of Z
n
2 with 1 only in

the j-th place and 0s elsewhere. Given a nonsingular matrix
T ∈ Mn×n(Z2), the matrix T can be regarded as coordinate-
change matrix from the standard basis to another basis BT

related to T . That is, for every v ∈ Z
n
2 , T (v)Bs

= (v)BT
and

then BT = {Te1, T e2, . . . , T en}. Hence the problem of find-
ing a new basis becomes that of finding a proper nonsingular
binary matrix.
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3. EXPERIMENTS
We tested on two n-dimensional pseudo-boolean functions.

These functions are simplified adaptations of Kauffman’s
NK landscapes [7]. Kauffman defined a function with n

bits, in which each bit’s fitness contribution depends on its
k neighbors. NK landscapes thus have“tunable ruggedness”
and are often used to test genetic algorithms. We defined
two functions with k = 1, n−2, respectively. Each variable’s
fitness contribution depends on its next k variables. Three
test functions are given in the following.

F2(x) =
n−1
X

i=1

xi ⊕ xi+1 + xn ⊕ x1 and

Fn−1(x) =

n
X

i=1

x1 ⊕ · · · ⊕ xi−1 ⊕ xi+1 · · · ⊕ xn,

where each xi ∈ Z2.
Suppose that T is a nonsingular binary matrix. Let x =

(x1 x2 · · · xn)T be (v)Bs
and y = (y1 y2 · · · yn)T be (v)BT

,
where v ∈ Z

n
2 . Then Tx = y. Hence, F2(x) = F2(T

−1y)
and Fn−1(x) = Fn−1(T

−1y).
For the function F2, we choose the coordinate-change ma-

trix T = (ti,j) such that ti,i = ti,i+1 = 1 and ti,j = 0
elsewhere. For the function Fn−1, we choose the matrix
T = (ti,j) such that ti,i = 0 and ti,j = 1 elsewhere. Then
T is nonsingular when n is even, because T 2 = (1 − I)2 =
O − 2 · 1 + I = I, where 1 is an n × n binary matrix of
which each element is always 1. Given a coordinate-change
matrix T , its inverse T−1 can be efficiently computed by
the Gaussian elimination method. In the case of n = 6,

0  1  1  0  0  0
0  0  1  1  0  0
0  0  0  1  1  0
0  0  0  0  1  1
0  0  0  0  0  1

1  1  0  0  0  0
0  1  1  1  1  1
0  0  1  1  1  1
0  0  0  1  1  1
0  0  0  0  1  1
0  0  0  0  0  1

1  1  1  1  1  1
1  0  1  1  1  1
1  1  0  1  1  1
1  1  1  0  1  1
1  1  1  1  0  1
1  1  1  1  1  0

0  1  1  1  1  1
1  0  1  1  1  1
1  1  0  1  1  1
1  1  1  0  1  1
1  1  1  1  0  1
1  1  1  1  1  0

0  1  1  1  1  1

T for F2 T−1 for F2 T for Fn−1 T−1 for Fn−1.
Hence we can rewrite the functions F2 and Fn−1 based the
new basis BT as follows:

F2(T
−1

y) =

n−1
X

i=1

yi +

n−1
M

i=1

yi and

Fn−1(T
−1

y) =
n

X

i=1

yi,

where each yi ∈ Z2.
For test, we used the genetic algorithm of [9] with typical

parameter setting. The genetic algorithm maximizes test
functions. All genetic parameters but evaluation function
are the same and given in the following.

number of variables (n) 40
population size 100

selection tournament selection
with size 2

crossover rate 1.0
crossover type one-point crossover
mutation rate 0.1
mutation type gene-wise mutation

replacement proportion 0.75
maximum number 200

of generations

Table 1 shows the results under the same genetic frame-
work. The optimal value of each test function is 40. Each

Table 1: Results (n = 40)
Test Best Ave Std Optimal

Function (%-gap) Value

F2(x) 40 38.27 (4.33) 0.87 40
F2(T

−1y) 40 39.27 (1.83) 0.98 40
Fn−1(x) 33 29.37 (26.58) 1.38 40

Fn−1(T
−1y) 40 39.73 (0.68) 0.45 40

From 30 trials.
The value of %-gap is computed as follows:

100 × (optimum−average)
optimum

.

figure of the table came from 30 runs. For every case, after
changing the standard basis into another nice one, the per-
formance was significantly improved. In particular, test on
the function Fn−1 shows that the new basis is much better
than the standard basis. It naturally comes from the fact
that the new basis completely removes the strong linkage
structure inherent in the function represented by the stan-
dard basis.

However, this paper does not give any hints about what
basis should be chosen to make the search space smooth.
More studies about the mechanism to find a good basis, i.e.,
a good coordinate-change matrix, would be promising. To
do this, it will be a good initial study to investigate the space
of nonsingular binary matrices, i.e., general linear group over
Z

n
2 . Some problems may hardly be affected by a change

of basis. Research about what problems to be affected by
changing basis and how much for the problems to be affected
is also left for future study.
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