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ABSTRACT
This paper empirically investigates parallel competent ge-
netic algorithms (cGAs) [4]. cGAs, such as BOA [21], LINC-
GA [15], D5-GA [28], can solve GA-difficult problems by au-
tomatically learning problem structure as gene linkage. Par-
allel implementation of cGAs can reduce computational cost
due to the linkage learning and give us problem solving en-
vironments for a wide spectrum of real-world problems. Al-
though some parallel cGAs have been proposed [16, 18, 19],
the effect of the parallelizations has not been investigated
enough. This paper empirically discusses the applicability
and property of parallel cGAs, including a new parallel cGA,
parallel D5-GA.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Linkage, Parallelization

1. INTRODUCTION
Competent genetic algorithms (cGAs) [4] are designed to

solve hard problems quickly, reliably and accurately. To
solve a wide spectrum of real-world problems, effective build-
ing block (BB) mixing is essential. However, it is sometimes
difficult to encode strings to ensure that the traditional one-
(or multi-) point crossover mixes BBs properly. Therefore,
cGAs must learn linkage — the relationship between vari-
ables tightly linked to form a BB. In fact, cGAs calculate fit-
ness differences and/or estimate the distribution of promis-
ing strings to learn the linkage [8, 9, 12, 15, 20, 21, 23, 25].
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Linkage identification techniques which calculate fitness dif-
ferences caused by perturbation of variables are called per-
turbation methods (PMs) and those which estimate the dis-
tribution of promising strings are called estimation of distri-
bution algorithms (EDAs).

Recently, parallel cGAs have been developed to reduce
new computational costs due to the linkage learnings. For
example, PBOA, DBOA, parallel BOA [18, 19] based on
BOA [21] and pLINC [16] based on LINC [15] have been
proposed. The parallel versions of BOA constructs mod-
els in parallel in addition to parallel evaluation of offsprings.
LINC performs numerous fitness evaluations to identify link-
age and pLINC does these evaluations in parallel. These
parallel cGAs have saved computational time in a parallel
computation environment.

However, there have been few investigations on the effect
of the parallelizations of cGAs [17]. The scalability of cGAs
with problem size in a single processor has been realized.
Then how the scalability with the number of processors is?
In this paper, we empirically discuss the applicability and
property of some parallel cGAs. Before the discussion, we
add a new parallel cGA called parallel D5-GA in our inves-
tigations. The D5 (Dependency detection for distribution
derived from fitness differences) [28] identifies the linkage in
a hybrid manner, by combining linkage identification tech-
niques of PMs and EDAs. To exploit the linkage, D5-GA
employs a crossover method called CDC (Context depen-
dent crossover) [27] which can combine overlapping building
blocks.

This paper is organized as follows. We provide a brief re-
view on parallel GAs, linkage, and cGAs in the next section.
In section 3, we parallelize D5-GA in addition to the re-
views of D5 and CDC. In section 4, we perform experiments
to discuss parallel cGAs. Finally, we conclude in section 5.

2. BACKGROUND

2.1 Parallel GAs
Because GAs work with a set of candidate solutions rather

than a single point, it had been expected that parallel imple-
mentations of GAs would reduce the time to find a feasible
solution [1,3].

In early days of GAs, simple GAs had been implemented
in parallel using master-slave model [2], island model [5] [6],
etc. The master-slave model GAs compute fitness in multi-
ple processors and apply other operators in a master proces-
sor. In most cases, they provide solutions which are equiv-
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(1) set t := 0, initialize population Pt

(2) select promising solutions P ′
t from Pt

(3) construct a Bayesian network B based on the P ′
t

(4) sample new solutions Ot from B
(5) replace some better strings in Pt with Ot

(6) if the termination criterion is not met, let
t := t + 1
and go to (2); otherwise, terminate

Figure 1: The Procedure of BOA

Calculation of the LINC 
conditions

// Linkage identification Broad cast the population

Collect the results

Initialize population

Calculation of the LINC 
conditions Calculation of the LINC 

conditions

Generating linkage groups

Figure 2: The procedure of pLINC

alent to those obtained by serial GAs in shorter time. The
island model GAs run GAs with small population in some
processors independently and exchange strings between pro-
cessors every generation(s). Sometimes, they perform better
than serial GAs, because building blocks in small popula-
tions increase faster and are combined through the exchange
of strings.

These simple parallel GAs could not overcome the prob-
lem of simple GAs, i.e. building block disruptions. Building
blocks (BBs) are highly fit sub-strings composed of interde-
pendent variables and GAs must increase and combine them
as whole blocks. If variables belonging to a BB are encoded
loosely, one- (or multi-) point crossover might disrupt it.
However, nevertheless the linked variables must be encoded
tightly to combine BBs appropriately, such encodings are
sometimes difficult.

2.2 Linkage and building blocks
It is considered that most of real-world problems are de-

composable or quasi-decomposable into sub-problems. For
such a (quasi-) decomposable function composed of some
sub functions, BBs should be candidate solutions of the sub-
functions. It is important to preserve and combine BBs ap-
propriately. However, such important sub-strings are gen-
erally unknown. Therefore, there have been many efforts
to detect variables tightly linked to form a BB automati-
cally [8,9,12,15,20,21,23,25]. The relationship between such
variables is called linkage. Competent GAs [4] construct
probabilistic models and/or calculate fitness differences to
identify linkage in order to solve problems quickly, reliably,
and accurately. Linkage identification techniques which cal-
culate fitness differences caused by perturbation of variables
are called perturbation methods (PMs) and those which es-
timate the distribution of promising strings are called esti-
mation of distribution algorithms (EDAs). Some cGAs are
described in section 2.3.

2.3 Parallel competent genetic algorithms
To reduce the computational cost to identify linkage, par-

allel implementations of cGAs have been considered.
For example, PBOA, DBOA, parallel BOA [18,19] which

are BOA [21] with the parallel Bayesian network construc-
tion, and pLINC [16] which is the parallel version of LINC
[15] and pPADA [11] which is the parallel version of PADA
have been proposed.

Bayesian optimization algorithm (BOA), which is one of
EDAs or probabilistic model building GAs (PMBGAs) [10,
22], constructs a Bayesian network which fits promising strings
and generates new strings from the network every genera-
tion. Figure 1 shows the algorithm of BOA. In the par-
allelization of BOA, not only fitness evaluations but also
network constructions are parallelized. To construct feasi-
ble Bayesian networks (directed acyclic networks) in par-
allel, some tricks are required. PBOA and DBOA restrict
edge directions in advance and parallel BOA performs back-
tracking after sub-networks are corrected from processors.
Therefore, it is sometimes difficult to obtain models which
are equivalent to the ones constructed by the original BOA.

Linkage Identification by Nonlinearity Check (LINC) [15],
which is one of PMs, identifies linkage before the evolution
stage of GAs. LINC calculates fitness differences by per-
turbations and judges whether any two variables (i, j) are
independent or not by checking the non-linearity of the fit-
ness differences. In concrete, if the following condition (1)
is satisfied for all strings, LINC considers that (i, j) are in-
dependent; otherwise they are linked.

|Δfij(s) − (Δfi(s) + Δfj(s)) | < ε, (1)

Δfi(s) = f(· · · si · · · · · · ) − f(· · · si · · · · · · )
Δfj(s) = f(· · · · · · sj · · · ) − f(· · · · · · sj · · · )

Δfij(s) = f(· · · si · sj · · · ) − f(· · · si · sj · · · ),

where si = 1 − si and sj = 1 − sj . Because LINC re-
quires O(l2) fitness evaluations to check arbitrary pairs of
l variables, the parallelized version of LINC (pLINC) has
been proposed in [16]. In pLINC, several processors re-
ceive population from a master processor and perform the
non-linearity checks to sent results to the master proces-
sor (Figure 2). Other linkage identification methods based
on perturbations, such as Linkage Identification by non-
Monotonicity Detection (LIMD), Linkage Identification with
Epistasis Measures (LIEM) and Linkage Identification with
Epistasis Measures considering Monotonicity (LIEM2) [13–
15] can be parallelized in a same way. Because the non-
linearity checks in (1) can be performed independently in
multiple processors, linkage models by pLINC are equiva-
lent to these obtained by the original LINC. However, it is
sometimes difficult to provide enough processors to catch up
with the growth of problem size l.

3. PARALLELIZATION OF A GA USING D5

AND CDC
Before considering the above mentioned parallel compe-

tent GAs, we show and parallelize another competent GA
employing a linkage identification method called Dependency
Detection for Distribution Derived from fitness Differences
(D5) [28] and a crossover method for complexly overlapping
BBs called Context Dependent Crossover (CDC) [27].
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Initialize population with n strings

for i = 1 to l
/* Calculate fitness differences */
for each s ∈ P

s′ = s1 · · · si · · · sl /* Perturb i-th variable */
Δfi(s) = f(s′) − f(s)

end

/* Cluster strings according to Δfi */
classify s ∈ P into C1, C2, · · · according to Δfi(s)

/* Estimate clusters */
for each Ci

Find the set which gives the minimum entropy in
Ci and let it Vi.

end
end

Figure 3: The Linkage Identification by D5

3.1 D5

Like LINC, D5 identifies linkage before the evolution stage
of GAs. D5 combines the mechanisms of EDAs and PMs to
reduce fitness evaluations in existing PMs even for EDA-
difficult problems. Figure 3 shows the algorithm of D5. Af-
ter initializing population, it investigates linkages for each
variable i. The si in all strings s are perturbed to calculate
fitness differences,

Δfi(s) = f(· · · si · · · · · · ) − f(· · · si · · · · · · ).
Then, strings are classified according to Δfi(s). Each of the
resulted clusters is estimated to obtain variables linked to i.

For decomposable functions f(s) =
∑

Vj
fj(svj ) where fj

is a sub-function and Vj is a set of variables belonging to fj ,
the difference Δfi(s) is defined only by variables linked to
i:

Δfi(s) = f(· · · si · · ·) − f(· · · si · · ·)
=

∑
i∈Vj

fj(· · · si · · · ) −
∑
i∈Vj

fj(· · · si · · · ).

After strings are clustered based on Δfi(s), the variables in
the sets Vj such that i /∈ Vj take random values and their
entropies become large. On the other hand, variables in Vj

such that i ∈ Vj take some particular sub-strings (sometimes
a single sub-string) and their entropies should become small.
Therefore, the set of variables which depend on i can be
identified by finding the set of variables which minimizes
the entropy.

After all linkage sets Vi (i = 1, 2, · · · , l) are obtained,
they are collected to construct final linkage sets to be used
by crossover operators. For problems with non-overlapping
BBs, we can omit linkage identifications for variables which
have been already found to link other variables. However,
in the general problems, linkage identifications should be
performed for all variables.

3.2 Context dependent crossover
If linkage sets have been obtained, we can consider a sub-

string constructed of variables in a same linkage set as a

Construct a graph G = (N, E) where nodes correspond
to linkage sets and edges correspond to overlaps
between their nodes

For each pair of strings
· Remove nodes where corresponding parental
sub-strings are equal.

· Remove edges where corresponding overlaps do not
cause any BB disruption. Let the new graph G′.

· Choose two nodes n1, n2 randomly from G′.
· Partition G′ into G1 = (N1, E1) and G2 = (N2, E2)
s.t. n1 ∈ N1, n2 ∈ N2 and the number of cut edges
are minimum

· Let V =
⋃

Vj∈N1
Vj and exchange variables in V

end

Figure 4: The algorithm of Context Dependent
Crossover

BB candidate. For example, for a linkage set {1, 4, 5}, sub-
strings 1∗∗11∗∗∗· · · , 0∗∗11∗∗∗· · · , · · · , are BB candidates.

For overlapping BBs such as 1∗∗11∗∗∗· and ∗∗100∗∗∗· · · ,
D5-GA employs Context Dependent Crossover (CDC) [27]
to combine them appropriately. CDC is the extension of the
crossover method proposed by Yu et. al. [29]. To reduce BB
disruptions even for complexly overlapping BBs, it considers
the potential of the BB disruptions in detail by investigating
values of parents in addition to the problem structure.

The algorithm of CDC is shown in Figure 4. The overlap-
ping problem structure is represented by a graph G where
nodes correspond to linkage sets (and BBs) and edges corre-
spond to overlaps between linkage sets of their nodes. While
the crossover by Yu et. al. uses only one graph throughout
the optimization, CDC reconstruct the graph for each pair
of strings. The nodes where corresponding BBs are identi-
cal in parents are removed and the edges where correspond-
ing overlapping do not disrupt BBs are also removed. The
reconstructions reduce BB disruptions and enrich crossover
patterns even for problems with complexly overlapping BBs.
For the reconstructed graph G, the min-cut that divides ran-
domly selected two nodes is searched and BBs in one of the
sub-graphs are exchanged to generate offsprings.

3.3 Parallelization of the D5 and CDC
D5 evaluates fitness to obtain fitness differences caused by

perturbations. These are performed independently. More-
over, the clustering and estimation of clusters for each vari-
able i are also independent. Therefore, it can be parallelized
using a simple master-slave approach, in which each proces-
sor detects linkages for certain variables.

Figure 5 shows the algorithm of parallel D5. First, a mas-
ter processor sends population to other processors. Slave
processors calculate fitness differences, cluster strings ac-
cording to the differences, and estimate clusters to detect
linkages for allocated variables. After all linkage identifica-
tions for the allocated variables are finished, the slave proces-
sors send their results to the master processor. The master
processor constructs final linkage sets which are going to be
used by crossover operators. For homogeneous systems, each
processor detects linkages for l/np variables where np is the
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For i=1,2,3,4,5,6,7,8,9,10,..
  For each s
    df(s) = f(s’) - f(s)
    Classify strings into clutesrs
    Estimate each cluster

For s1, s2, s3, s4, s5, s6, ...
  Evaluate fitness f(s)

// Initialize population

// Linkage identification

For i=1,2,..
  For each s
    df(s) = f(s’) - f(s)
    Classify strings into clutesrs
    Estimate each cluster

For s1, s2, ...
  Evaluate fitness f(s)

For s11, s12, ...
  Evaluate fitness f(s)

For i=5,6,..
  For each s
    df(s) = f(s’) - f(s)
    Classify strings into clutesrs
    Estimate each cluster

For i=8,9,..
  For each s
    df(s) = f(s’) - f(s)
    Classify strings into clutesrs
    Estimate each cluster

For s21, s22, ...
  Evaluate fitness f(s)

// Initialize population

// Linkage identification

Send fitness

Send population

Send linkage

Figure 5: parallelization of D5. The left one is the original algorithm and the right one is the parallelized D5

For (s1, s2), (s3, s4), ...
  Context Dependent Crossover
  Evalute offsprings

Send population, graph, mating list

Send offsprings
and their fitness

For (s11, s12), (s13, s14), ...
  Context Dependent Crossover
  Evalute offspringsFor (s21, s22), (s23, s24), ...

  Context Dependent Crossover
  Evalute offsprings

Figure 6: Parallelization of the evolution using CDC

number of processors. While the number of variables with
respect to the ability of each processor will be assigned for
heterogeneous systems, we consider only the homogeneous
systems in this paper to make our investigation easy.

After linkage identification, population evolves in paral-
lel (Figure 6). In each generation, a master processor sends
population, mating lists and the original graph to other pro-
cessors. The original graph represents overlapping relation-
ships obtained by linkage sets. Each processor combines
strings allocated by the mating lists using CDC – recon-
structs the original graph and finds the min-cut — and eval-
uates offsprings. After all allocated crossovers are finished,
the processors send offsprings and their fitnesses to the mas-
ter processor. The master processor replaces parental strings
by the offsprings using niching.

In following, we call this parallel D5 or pD5.

4. EXPERIMENTS AND DISCUSSIONS
In the following, we investigate the applicability and prop-

erty of some of parallel cGAs —pD5-GA , parallel BOA and
pLINC-GA— experimentally. In our experiments, we focus
on the total computational time and speed-up factor. The
speed-up factor S = Ts/Tp is calculated by the ratio of the
time by serial processing Ts and time by parallel processing
Tp. While most of the computational time will be spent on
the fitness evaluations for computationally expensive func-
tions, the other processes will effect the total computational
time for computationally efficient functions. Therefore, we

consider the computational time not the number of evalua-
tions and we change not only problem size but also time to
evaluate each fitness function.

First, we consider the computational times and speed-up
factors of pD5 and pLINC. The times to obtain optimal solu-
tion are recorded. While the LINC and D5 identify linkages
in different manners, they evolve strings in a similar way.

We employ the sum of 5-bit trap functions (3):

f(s) =

m∑
j=1

trap5(svj ), (2)

sv1 = s1s2s3s4s5, sv2 = s6s7s8s9s10, · · ·
trap5(svj ) =

{
4−u

5
, u = 0, 1, 2, 3, 4

1, u = 5
(3)

where s is string, m is the number of sub-functions (5-
bit trap functions), fj is j-th sub-function, svj is the sub-
solution of the fj , u is the number of ones in a sub-string
svj . In this experiment, there is no overlap between linkage
sets. The string length is set to l = 100, 200, 300. The eval-
uation processes are suspended for tsleep = 0.00, 0.02 and
0.04 seconds. The total computation time to obtain the op-
timal solution is recorded. Population sizes are varied in
linkage identification phase and evolution phase and defined
to obtain the optimal solution (Table 1). Crossover prob-
abilities are Pc = 1.0 and Mutation rates are Pm = 0.0.
Restricted tournament replacement (RTR) [7] is employed
and the window size is l/8.

Table 1: Population size

pD5 pLINC
l linkage evolution linkage evolution

100 400 300 12 300
200 450 380 20 380
300 450 500 25 500

All experiments are performed using 16 IBM x3455 com-
puters (AMD Dual-Core processor 1.8GHz, Memory 1GB)
connected via Gigabit Ethernet.
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Figure 7: The total computational time (left) and
speedup (right) of pD5 and pLINC for trap function
when tsleep = 0.00, 0.02, 0.04 sec.

Figure 7 shows the computational time and speedup for
each number of processors by pD5 and pLINC for functions
with tsleep = 0.00, 0.02, 0.04 seconds.

When tsleep = 0.00, pLINC finds the optimal solution
faster than pD5, because pD5 performs some complex pro-
cesses such as clustering and estimation to obtain linkage
relationships. Since the fitness evaluations do not take time,
the speed-up factors S of pD5 and pLINC are small.

The left column of Figure 7 shows that when tsleep and
problem size become larger, pLINC takes longer execution
time. This is because the original LINC requires O(l2) fit-
ness evaluations where l is problem size. While pLINC
delivers higher speed-up than pD5 for tsleep = 0.02, for
tsleep = 0.04, both of the pD5 and pLINC deliver almost
linear speed-up because the fitness evaluation time domi-
nates in the total execution time.

Table 2: The estimated number of fitness function
evaluations for pD5 and pLINC for each problem
size. Population size is shown in Table 1.

l pD5 pLINC
100 40,400 60,612
200 90,450 402,020
300 135,450 1,128,775

To understand the above phenomenon of the computa-
tional time of pD5 and pLINC, we change tsleep from 0 to
0.0001 seconds by little and little. Because the usleep()
function which stops function evaluations cannot give ex-
act suspend time for such small time, we count the number
of function evaluations in each CPU and stop the product
of the number and tsleep all together. In this experiment,
we consider only the linkage identification phase and do not
perform the evolution phase. The sum of trap functions
are employed again. The string length is l = 100, 200, 300.
Population size is set as same as the previous experiment.

Figure 8 shows the computational times which pD5 and
pLINC require to detect linkage with respect to tsleep. The
top row is the case of the number of processors np is 1 and
the bottom is for np = 8. Table 2 shows the estimated num-
ber of function evaluations for each linkage identification
method. As shown in the table 2, pLINC spends more fit-
ness evaluations for large problems. However, pD5 requires
more time to detect linkage than pLINC when function eval-
uation is completed instantly due to the complex process of
its linkage identification. For example, for l = 100, pD5

takes longer time when tsleep is less than 7.0 × 10−5, and
pLINC takes longer time when tsleep is more than 7.0×10−5.
For l = 200 or 300, pD5 overtakes pLINC even when tsleep

is less than the case of l = 100. Moreover, these results
are observed similarly in a single processor (np = 1) and in
multiple processors (np = 8).

In the following, we consider the above situation theoret-
ically. Because processors receive population and send link-
age information in both of the pD5 and pLINC, the process
of each processor should be more critical than the communi-
cation. Therefore, we consider the process of each processor.
Let tf the time to evaluate one fitness function (the sum of
tsleep and real evaluation time), l problem size. Population
size used by pLINC is nl and that used by pD5 is nd. Be-
cause the number of fitness function evaluations in LINC is(

l(l−1)
2

+ l
)

nl [15], pLINC takes

(
l(l − 1)

2
+ l

)
nl

tf

np

seconds every processor. The other processes of pLINC take
very short time, which can be approximated by 0.

The number of function evaluations in D5 is lnd [28] and
the time for the evaluations is

lnd
tf

np
.

The other processes are clustering and estimation. They are
performed l times. Let each clustering time tc and estima-

tion time te. Then, (tc+te)l
np

is taken for them. Therefore,

pD5 takes

nd
tf

np
+

(tc + te)l

np

seconds every processor.
To simplify the analysis, we ignore the fact that te and tc

are not constant and function of l. Then, pD5 finishes faster
than pLINC when(

l(l − 1)

2
+ l

)
nl

tf

np
> lnd

tf

np
+

(tc + te)l

np

tf >
(tc + te)(

l−1
2

+ 1
)
nl − nd

.
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Figure 8: The total computational time for linkage identification per tsleep of each fitness evaluation time

Because population sizes nl, nd increase O(log l) or less for
l [15,26], when l becomes large, the denominator of the right
side of the above equation increases and the threshold of tf

decreases.
Secondly, we perform experiments to compare pD5-GA

and parallel BOA [18] for functions composed of overlap-
ping building blocks. In the following experiments, we focus
on the performance in the evolution processes. While the
parallel BOA detects linkage and evolves strings simulta-
neously, the pD5-GA and pLINC-GA detect linkage in ad-
vance and then evolve strings. The evolving processes of the
pD5-GA and pLINC-GA are same and the linkage identifi-
cation processes of them have been examined in the previ-
ous experiments, we compare the pD5-GA and parallel BOA
and omit the pLINC-GA here. Moreover, since the evolving
processes are very easy for problems with non-overlapping
building blocks, we change test problems from those with
non-overlapping building blocks to those with overlapping
building blocks. The parallel BOA, which showed better
performance than DBOA in [18], constructs network in par-
allel and evaluates fitness in parallel. The parallel network
construction is based on random addition of edges in parallel
with a roll-back mechanism when it causes an infeasible net-
work. The pD5-GA is performed in a way shown in section
3.

We employ test functions composed of the sum of over-
lapping 5-bit trap functions used in [27]. Unlike the original
5-bit trap function defined in (2), the components of each
trap function are chosen stochastically. The j-th trap func-
tion is composed of variables sampled as:

vj = (N(3j, σ2) mod l, N(3j, σ2) mod l,

· · ·, N(3j, σ2) mod l), (7)

where N(μ, σ2) is the normal distribution with mean μ and
variance σ2. While for small σ2 building blocks overlap only

Table 3: Population sizes for pD5-GA and parallel
BOA. (D5l is for linkage identification and D5e is for
evolution)

σ2 l = 60 l = 90
D5l D5e BOA D5l D5e BOA

12 500 300 3000 600 400 5000∼6000
52 900 800 7000 1200 900 10000 ∼12000

with its neighbouring ones, for large σ2 they overlap ran-
domly because their components are selected almost at ran-
dom. For example, for small σ2, trap functions are composed
of

s1s2s3s4s5, s4s5s6s7s8, s7s8s9s10s11, · · ·
On the other hand, for large σ2, they are

s10s12s15s27s38, s15s17s19s22s29, s9s15s17s21s38, · · ·
We consider σ2 = 12 and σ2 = 52 and μ = 3j (j =

1, 2, · · · ), l = 60, 90. Population sizes are defined to obtain
the optimal solution for the pD5-GA and parallel BOA and
shown in Table 3. Fitness evaluation takes tsleep = 0.00, 0.04
and 0.08 seconds.

Figure 9 shows the total computational times and speedup
factors. For tsleep = 0.00, parallel BOA takes longer com-
putational time than pD5 because the network construction
performed every generation dominates in the computational
time. Note that when shared memory is available, parallel
BOA gives better speed-up as shown in [18] and elsewhere.
However, because processors communicate several times ev-
ery generation to construct network, parallel BOA cannot
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Figure 9: The total computational time and speedup for the functions with overlapping BBs (σ2 = 52) by pD5

and parallel BOA

result such good speed-up in a distributed memory architec-
ture.

For tsleep = 0.04, 0.08 and σ2 = 1, the computational
times of pD5 and parallel BOA are almost equal, because
the original pD5 and BOA require O(l log l) and O(l1.55) fit-
ness evaluations respectively [24, 26] and there is no signifi-
cant difference for relatively small problem size (l = 60, 90).
When σ2 = 52 and tsleep = 0.04, 0.08, parallel BOA is faster
in a single processor, which means the number of evaluations
in the serial BOA is smaller. However, in multiple proces-
sors, the computational time of parallel BOA becomes al-
most equal to pD5 for l = 60, and it becomes more than
pD5 for l = 90.

Looking at the speed-up factors, pD5 results more speed-
up for tsleep = 0.04 and 0.08 because the roll-back mecha-
nism in parallel BOA cannot make equivalent Baysian net-
work to the one from original BOA. Therefore, the number of
generations and strings in parallel BOA increases when the
number of processors increases. For tsleep = 0.08, the differ-
ence of the speed-up is small because fitness evaluations take
most part of the computational time in both algorithms.

5. CONCLUSION
We have empirically investigated parallel competent GAs

including pD5-GA which has been parallelized in this paper.
D5-GA can be parallized based on a master-slave approach

because the linkage identification by D5 can be performed
independently for each variable. For functions which can
be evaluated in no time, pD5 takes longer computational
time than pLINC due to the complexity of its mechanism.
On the other hand, pD5 detects linkage faster than pLINC
for computationally expensive functions because pLINC re-
quires many function evaluations. These results are ob-
served similarly in a single processor and in multiple proces-
sors. At a certain amount of time to evaluate fitness, pLINC
and pD5 finish at a same time. The threshold is considered
experimentally and theoretically, and it is shown that pD5

catches up with pLINC in a shorter time for a larger prob-
lem. Moreover, while the speedup factor of parallel BOA is
limited due to the quality of models constructed in paral-
lel, that of pD5-GA rises with the growing fitness evaluation
time.

Further research should investigate the performance of
parallel cGAs for other systems such as heterogeneous sys-
tems, systems with shared memory. In addition, for real-
world applications, parallel cGAs for real-valued strings should
be investigated.
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