
ASAGA: An Adaptive Surrogate-Assisted Genetic
Algorithm

Liang Shi
Computer Science Department, University of Georgia

538 Boyd Graduate Studies Research Center,
Athens, GA 30602

706-583-0828
shi@cs.uga.edu

Khaled Rasheed
Computer Science Department, University of Georgia

219B Boyd Graduate Studies Research Center,
Athens, GA 30602

706-542-3444
Khaled@uga.edu

ABSTRACT
Genetic algorithms (GAs) used in complex optimization domains
usually need to perform a large number of fitness function
evaluations in order to get near-optimal solutions. In real world
application domains such as the engineering design problems,
such evaluations might be extremely expensive computationally.
It is therefore common to estimate or approximate the fitness
using certain methods. A popular method is to construct a so
called surrogate or meta-model to approximate the original fitness
function, which can simulate the behavior of the original fitness
function but can be evaluated much faster. It is usually difficult to
determine which approximate model should be used and/or what
the frequency of usage should be. The answer also varies
depending on the individual problem. To solve this problem, an
adaptive fitness approximation GA (ASAGA) is presented.
ASAGA adaptively chooses the appropriate model type;
adaptively adjusts the model complexity and the frequency of
model usage according to time spent and model accuracy.
ASAGA also introduces a stochastic penalty function method to
handle constraints. Experiments show that ASAGA outperforms
non-adaptive surrogate-assisted GAs with statistical significance.

Categories and Subject Descriptors: G.1.6
[Optimization]: Constrained optimization, Global optimization;
I.2.8 [Artificial Intelligence]: Miscellaneous-Evolutionary
computing and genetic algorithms

General Terms: Algorithms, Performance,
Experimentation.

Keywords
Genetic algorithms, Surrogate-assisted evolution, Adaptive Meta-
modeling, Fitness approximation

1. INTRODUCTION
Genetic algorithms have proven repeatedly to be powerful for
solving optimization problems and thus are used in a wide range

of real-world applications such as engineering design domains. In
such domains, it is not uncommon to see that fitness functions are
discontinuous, non-differential, highly multi-modal, noisy and
ambiguous [1, 2]. It is therefore not surprising that GAs usually
perform better than conventional optimizers such as sequential
quadratic programming and Simulated Annealing [1, 4]. Many
challenges are still faced in the application of GAs to real-world
domains. For engineering design problems, a large number of
objective evaluations may be required in order to obtain near
optimal solutions. Moreover, the search space can be complex
with many constraints and a small feasible (physically realizable)
region. However, determining the quality (fitness) of each point
may involve the use of a simulator or an analysis code that takes
an extremely long time. Therefore it is impossible to be cavalier
about the number of objective evaluations used for an
optimization [2].

For such problems surrogate-assisted evolution methods based on
fitness approximation are preferable as they can simulate the
exact fitness with much less computational cost. A good fitness
approximation method can still lead the GA process to find
optimal or near-optimal solutions and is also tolerant to noise. The
reader can refer to Jin et al. [3, 6] for details. A problem with
fitness approximation methods arises because it is difficult to
determine which approximate model is appropriate and how often
the model should be used in each domain. Even for one domain,
the answer is not usually fixed but varies with the different stages
of the optimization process. A fixed approximate model cannot
possibly fit well in all kinds of optimization problems as well as
all stages.

In this paper we present ASAGA (Adaptive Surrogate-Assisted
Genetic Algorithm). ASAGA has a skeleton of GADO [1, 2],
which is a GA that proved to be powerful for solving engineering
design problems. ASAGA uses global and local approximate
models by using a clustering technique with one local model for
each cluster. The global model can adaptively evolve from a
simple average of the fitness of all individuals in a population, all
the way to a Support Vector Machine (SVM) model. The model
evolution depends on time spent and the model accuracy. The
local models follow similar rules except that the final model is the
quadratic model (not the SVM) since each local model is based on
a sample set which is not so large. The number of clusters is also
adaptively controlled according to the type of model currently
used, the model accuracy, and the size of the cluster.

In ASAGA, the frequency of model usage is also adaptively
adjusted according to the time spent on each approximate as well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

1049

as actual fitness evaluation and model accuracy. Intuitively, if the
approximate model formation and usage eat up a lot of the total
optimization time, the frequency should be reduced. On the other
hand, if the approximate model fits very well, the frequency
should be increased. A formula that takes into account both
factors and reaches a trade-off point is applied in ASAGA.

The remainder of this paper is organized as follows. In section 2,
several kinds of fitness approximation methods and comparative
studies of the different approximate models are given. In section
3, the proposed approach is described in detail. In section 4,
experimental results are presented. The paper is concluded in
Section 5 with a discussion of open questions and future work.

2. FITNESS APPROXIMATION METHODS
AND COMPARATIVE STUDIES
2.1 Machine Learning and Statistical
Learning Methods
So far many Machine Learning and statistical learning methods
have been used for fitness approximation in GAs. In this paper,
several of the most popular ones are briefly reviewed next.

2.1.1 Fitness Inheritance
One approach is to set the fitness of a child solution to the average
fitness of its parents or a weighted average based on how similar
the child is to each parent. A re-sampling method combined with
a simple average fitness inheritance method is used [10]. Another
approach is to divide the population into building blocks
according to certain schemata. Then an individual gets its fitness
from the average fitness of all the members in each building block
which this individual belongs to [8].

2.1.2 Radial Basis Function Model (RBF)
The RBF model is popular for fitness approximation [4, 14]. An
RBF network consists of an input layer with the same number of
input units as the problem dimension, a single hidden layer of k
nonlinear processing units and an output layer of linear weights
wi. The output y(x) of the RBF network is given as a liner
combination of a set of radial basis functions expressed as:

||)(||)(
1

0 ii

k

i
i cxwwxy −+= ∑

=

φ
 (1)

where w0 and wi are the unknown coefficients to be learned. The
term ||)(|| ii cx −φ , also called the kernel, represents the ith
radial basis function. A Gaussian kernel is the most commonly
used in practice having the form:

)
2

||||exp(||)(|| 2

2

σ
φ i

ii
cxcx −

−=−
 (2)

A detailed comprehensive description of RBF networks can be
found in [26].

2.1.3 Clustering Techniques
Classic clustering algorithms include hierarchical clustering,
partition clustering (such as k-means algorithm), and overlapping
clustering. Among them, the k-means algorithm appears to be the
most popular one applied in GAs due to its relative simplicity and
low computational cost. In [11], the whole population is divided

into many clusters. Only the center of each cluster is evaluated.
Other individuals’ fitness values in the clusters are computed
using the distance from their centers. Another approach is to build
an approximate model based on sample points composed of the
cluster centers. Then every other individual’s fitness is estimated
by the approximate model [13]. One important clustering
technique applied in EA is to divide the population into several
clusters, and then build an approximate model for each cluster.
Multiple approximate models are believed to gain more local
information about the search space and fit better than a single
model [21]. ASAGA also uses this method.

2.1.4 Multilayer Perceptron Neural Network
(MLPNN)
An MLPNN model is used to accelerate the convergence by
replacing the original fitness function [24]. In engineering design
domains, MLPNN is used to reduce the complex fitness function
evaluation times [20]. A simple feed-forward MLPNN with one
input layer, one hidden layer and one output layer can be
expressed as:

0
11

)()(θθ ++= ∑∑
==

ji

n

i
ij

K

j
j xwfwxy

 (3)

where n is the number of input neurons (which is usually equal to
the problem dimension), K is the number of nodes of the hidden
layer, and the function f is called the activation function which is
most commonly the logistic function. W and θ are the unknown
weights to be learned. The reader can refer to Bishop et al. [26]
for a comprehensive study.

2.1.5 Polynomial Models
Polynomial models are also called Response Surface methods.
Commonly used quadratic polynomial models have the form:

ji

nn

ji
iji

n

i
i xxaxaaXF ∑∑

===

∧

++=
,

1,11
0)(

 (4)

where a0, ai and aij are the unknown coefficients to be fitted, n is
the dimension of the problem.

Usually the least-squares approximation method is used to fit the
unknown coefficients. The main limitation of the least-squares
method is that the number of sample points N must exceed
(n+1)(n+2)/2 for a second-order polynomial model. Even if this
condition is satisfied, the fitting cannot be guaranteed because the
singularity problem will still happen if two sample points are too
close to each other. Another drawback of the least-squares method
is that its computational complexity grows fast with the problem
dimension. The gradient method is introduced to address the
problems of the least-squares method. More implementation
details for these two methods for fitting a polynomial model can
be found in [18].

2.1.6 Kriging Models
The Kriging model is used to build the global models [14] and it
is used to accelerate the optimization by reducing the expensive
computational cost of the original fitness function [25]. A Kriging
model can be mathematically expressed as:

)()(xZxy += β (5)

1050

where β is usually a constant representing a global model and Z(x)
is the realization of a stationary Gaussian random function that
creates a localized deviation from the global model. The
estimated model in equation (5) is given as:

)()(1
∧

−
∧∧

−+= ββ fyRxry T
 (6)

where f is a column vector which is filled with ones, and R is the
correlation matrix which can be obtained by computing the
correlation function which is often a Gaussian exponential
correlation function. The Kriging method can give the accuracy
information about the fitting by showing the confidence intervals
of the estimated values without extra computational cost. One
disadvantage of this method is that it is sensitive to the problem’s
dimension.

2.1.7 Support Vector Machines (SVM)
Good features of SVM are that it is not sensitive to local optima
and that the optimization process does not depend on the problem
dimension and seldom goes overfitting. A detailed description of
SVM can be found in [9]. Applications of SVM for fitness
approximation can be found in [17]. The epsilon-SVM regression
model is commonly used for fitness approximation, where the
linear epsilon-insensitive loss function is defined by:

))(,0max()(),,(εε −−=−= xfyxfyfyxL (7)

The sum of the linear epsilon-insensitive losses must be
minimized which is equivalent to a constrained minimization
problem having the form:

∑∑
=

∗

=

++
N

i
i

N

i
i

T CCww
112

1 ζζ
 (8)

subject to the following constraints:

∗+≤−+ iii
T ybxw ζεφ)(

， iii
T

i bxwy ζεφ +≤−−)(

Niii ,...,1,0, =≥∗ζζ (9)

where)(xφ is called the kernel function.

Some approximation methods are combined for constructing the
fitness approximation models in some earlier applications. In [13]
the MLPNN model is combined with clustering methods for
constructing approximate models. In [14, 23], the Kriging method
is used for constructing the global approximate model for pre-
selection and then RBF models are built upon those pre-selected
sample points for further fitness approximation.

2.2 Comparative Studies for Approximate
Models
The neural network model and the polynomial model were
compared in [19]. The author concluded that the performance of
the two types of approximation was comparable in terms of the
number of functional evaluations required to build the
approximations and the number of undetermined parameters
associated with the approximations. However, the polynomial
model had much less construction cost. In [21], a quadratic
polynomial model was found to be the best among the polynomial

model, RBF network, and the Quickprop neural network when the
models are built for regions created by clustering techniques. The
authors were in favor of the polynomial model because they
found that the polynomial model formed approximations more
than an order of magnitude faster than the other methods and did
not require any tuning of parameters. The authors also pointed out
that the polynomial approximation was in a mathematical form
which could be algebraically analyzed and manipulated as
opposed to the black-box results that neural networks give.

The Kriging model and the neural network model were compared
using benchmark problems [27]. However, no clear conclusion
was drawn about which model is better. Instead, the author
showed that the optimization with a meta-model could lead to
degraded performance. Another comparison was presented in [22]
between the polynomial model and the Kriging model. By testing
these two models on a real-world engineering design problem, the
author found that the polynomial and the Kriging approximations
yielded comparable results with minimal difference in predictive
capability. Comparisons between several approximate models
were presented in [7], which compared the performance of the
polynomial model, the multivariate adaptive splines, the RBF
model, and the Kriging model using fourteen test problems with
different scales and nonlinearities. The conclusion was that the
polynomial model is the best for low-order nonlinear problems
and the RBF model is the best for dealing with high-order
nonlinear problems.

Model performance may depend on the problem to be addressed
and more than one criterion needs to be considered. The model
accuracy probably is the most important criterion since low
accuracy approximate models may lead the whole optimization
process to inferior optima. The model accuracy also should be
based on new sample points instead of the training data set points.
The reason for this is that for some models such as the neural
network, an overfitting problem is common. An overfitting model
works very well on training data yielding good model accuracy
though it might work badly on new sample points. Other criteria
are also important including robustness, efficiency, and the time
for model construction and updating. A good comparison would
consider the model accuracy as well as all of those criteria.

It is difficult to draw a clear conclusion on which model is the
best for the reasons stated above, though the polynomial model
seems to be the best choice for a local model when we are dealing
with local regions or clusters and have enough sample points [21].
In such cases, the fitting problem usually has low-order
nonlinearity and the polynomial model is the best candidate
according to Jin et al. [7]. Because of the good features of SVM
(see above), the SVM model becomes a very good choice for
constructing the global model, especially when the problem has a
high dimension, many local optima, and enough sample points.

3. THE PROPOSED METHOD
ASAGA uses a skeleton of GADO (Genetic Algorithm for Design
Optimization), a GA that was designed with the goal of being
suitable for use in engineering design. It uses new operators and
search control strategies that target the domains that typically
arise in such applications. GADO has been applied in a variety of
optimization tasks that span many fields [1, 2]. It demonstrated a
great deal of robustness and efficiency relative to competing
methods.

1051

In GADO, each individual in the GA population represents a
parametric description of an artifact, such as an aircraft or a
missile. All parameters take on values in known continuous
ranges. The fitness of each individual is based on the sum of a
proper measure of merit computed by a simulator or some
analysis code, and a penalty function if relevant. The penalty
function consists of an adaptive penalty coefficient multiplied by
the sum of all constraint violations if any. A steady state GA
model is used, in which operators are applied to two parents
selected from the elements of the population via a rank based
selection scheme, one offspring point is produced, and then an
existing point in the population is replaced by the newly
generated point via a crowding replacement strategy. Floating
point representation is used. Several crossover and mutation
operators are used, most of which were designed specifically for
the target domain type. GADO also uses a search-control method
[2] that saves time by avoiding the evaluation of points that are
unlikely to correspond to good designs. GADO was further
improved by adding a surrogate-assisted component which forms
approximate models and uses them for speedup through informed
genetic operators. These operators are described in detail in [16].
The main idea is to make the genetic operators such as mutation
and crossover more informed using approximate models. In every
place where a random choice is made, for example when a point
is mutated, instead of generating just one random mutation we
generate several, rank them using the approximate model, then
take the best to be the result of the mutation. GADO includes
informed mutation, crossover and initial population formation.

3.1 Adaptive Approximate Model Selection
ASAGA utilizes both the global and local model structure. It fits
one global approximate model for the optimization function and
many local models for different regions (clusters). One advantage
of this structure is that local models can fit much better since the
approximate model will be defined over a smaller, less complex
search region. Thus more local details can appear in successive
approximations. On the other hand, the global model catches
more global information and may prevent the search from falling
into certain local optima. Ideally all the points previously
evaluated in the course of the optimization should be used to
construct the approximations. However, if the number of
iterations is very large or to save time, a large enough sample (the
default value is 2000) of evaluated points can be used to construct
the approximate models. A good feature of ASAGA is that all
current individuals hold exact fitness and approximate models are
used for informed operators and initialization and never directly
replace the original fitness. Thus it prevents the searching process
from converging to false optima.

Based on the discussion in section 2.3, we know that the
polynomial model is a good candidate for low-order nonlinearity
problems; thus it becomes a good choice for the local approximate
models. Because of good features of SVM (described in 2.1.7), it
is believed to be a good choice for the global optimization model.
In this paper, the SVM model is implemented using the lightSVM
package. The implementation details can be found in [15].

ASAGA provides an adaptive mechanism to switch between
different approximate models. Here the switching is one way,
upgrading from lower to higher complexity only. The Global
model upgrade path is shown in Fig. 1. The local model upgrade

path is similar to the global one except that a local model never
reaches the SVM model. The upgrade is triggered by a threshold.
A formula calculates a value taking into account the model
accuracy and the time spent at the approximation phase. If this
value is less than a certain threshold, an upgrade happens. The
formula is:

)/1(21 TTRv +×= (10)

where R is the correlation coefficient between the exact fitness
and the approximate fitness, 1T is the time spent at the
approximation phase and 2T is the total optimization time.

The reason the correlation coefficient is used to measure the
model accuracy is because of the way ASAGA uses approximate
models. In ASAGA, informed operators (described above) are
used as the approximate model incorporation mechanism.
Because of the way informed operators work, the absolute
difference between the approximate fitness and exact fitness is not
important, whereas the good correlation between them is what
really matters for informed initialization, crossover and mutation.
The correlation coefficient equation is given by:

∑∑

∑

==

=

−−

−−
=

n

i
i

n

i
i

n

i
ii

yyxx

yyxx
R

1

2

1

2

1

)()(

))((

 (11)

where x is a vector of all exact fitness values for the sample
points, and y is the corresponding estimated fitness values given
by an approximate model. R is between -1 and +1. In our
proposed algorithm, the R is usually between 0.5 and 1 for fitness
models and between 0 and 1 for violation models, since
approximate models fit very well.

According to the formula (10), 21 / TT is between 0 and 1 but
never reaches 1, in practice, 21 / TT seldom exceeds 0.5. So the
threshold is usually between 0.5 and 1.5 for fitness models and is
between 0 and 1.5 for violation models. In order to choose a good
threshold we run a set of experiments with different thresholds.
We use a 5 dimension Ackley’s function as the following:

eeexf

n

i
i

n

i
i x

n
x

n
Ackley ++

∑
−

∑
−= ==

−

2020)(11

2)2cos(112.0 π

3030 ≤≤− ix (12)

Population Average and KNN

Linear Polynomial Model

Quadratic Polynomial Model

SVM Model

Figure 1. Approximate model upgrading path for global
models.

1052

The average best fitness for 30 runs with different random starting
populations is reported with the corresponding number of function
evaluations in Fig. 2. From the figure we can see that all the lines
have little difference (logarithm scale), whereas the line
representing a threshold 0.9 stays at the bottom most of the time
reaching the best final value. It was further found that any
threshold larger than 0.95 performs the same as 0.95 and any
threshold smaller than 0.65 performs the same as 0.65. Thus the
threshold was set to 0.9 for objective function models. Following
the same process, the threshold was set to 0.5 for the constraint
violation function models in the experiments. Figure 3 shows the
performance for three threshold values. The figure shows that a
threshold of 0.5 yields the best result. The model update is
triggered if the v value in (10) is smaller than the pre-set
threshold.

-6

-5

-4

-3

-2

-1

0

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fitness function evaluations

Fi
tn

es
s

fu
nc

tio
n

va
lu

es
 (n

at
ur

al
 lo

g)

v=0.9
v=0.85
v=0.8
v=0.75
v=0.7
v=0.65
v=0.95

Ackley's function

26.78

26.83

26.88

26.93

26.98

27.03

27.08

500 600 700 800 900 1000
fitness function evaluations

fit
ne

ss
 v

al
ue

v=0.5
v=0.3
v=0.7

Sandgren's #13

3.2 Adaptive Clustering Techniques
Since clusters are introduced in ASAGA, determining the number
of clusters becomes a critical issue. Dividing the optimization
trace (i.e. all the points evaluated using the actual fitness function

so far) into too many clusters may lead to failure of the local
model fit because too few sample points may restrict us to a
model that does not capture the local space information well.
ASAGA uses least-squares approximation to develop polynomial
models for the local model construction. In addition, too few
sample points may result in a singularity problem. On the other
hand, too few clusters loose the benefit of the global and local
model system. The large clusters are still complex and difficult to
fit with any approximate model.

To solve this problem, ASAGA uses an adaptive clustering
technique to adjust the number of clusters during the
optimization. After 2 times the population size of fitness function
evaluations, (i.e. when the number of sample points reaches
double the population size), the first two clusters are created by
splitting the current sample points to 2 clusters with the K-means
algorithm. Then it will be periodically determined if the number
of clusters needs to be increased based on two factors. The first
factor is the requirements of fitting a polynomial model. The
minimal number of sample points needed for fitting a linear
polynomial model is (n+1). It is (n+1)(n+2)/2 for fitting a
quadratic polynomial model. In practice, these minimal numbers
still need to be increased to avoid the singularity problem. In
ASAGA 1.5 times the minimal numbers are applied. To be
eligible for splitting, a cluster should have 3.5 times the minimal
required number of sample points to ensure that the resulting sub-
clusters still have enough points to fit models. The second factor
is the correlation coefficient R introduced in formula (11) above.

The number of clusters is increased when a cluster satisfies two
conditions:

1. The cluster has sample points more than 3.5 times the
minimal requirement for its current model.

2. The R of this cluster is lower than certain threshold, in
ASAGA, 0.9 for an objective function and 0.5 for a
violation function.

The reason for using the number “3.5” is that we found it to be the
minimal number for which the singularity problem does not
happen. The splitting is recursively performed (i.e., the resulting
sub-clusters can be further split) as long as they satisfy the two
conditions. These two conditions are checked periodically at fixed
intervals of actual fitness evaluations. The interval is usually set
to the population size.

3.3 Adaptive Approximate Model Usage
ASAGA uses informed operators guided by approximate models
in the same way as GADO, its ancestor uses them. In informed
mutation for example, a number of random mutations are
generated as candidate children and ranked using the approximate
model. Then their best according to that ranking is evaluated
using the actual fitness function. However, GADO with surrogate
-assisted uses a fixed number of such random mutations. A fixed
number is not suitable for all problems. Too few mutations will
not get the full benefit of the usage of the approximate model,
whereas too many mutations will greatly increase the
computational cost for little or no additional gain. The same
argument holds for informed crossover and initialization. ASAGA
uses an adaptive number of candidate children based on a formula
considering the model accuracy and computational cost
simultaneously. The formula is as follows:

Figure 2. ASAGA performance with different thresholds
tested by a 5D Ackley’s function.

Figure 3. ASAGA performance with different thresholds
for constraint violations

1053

)
)/(

(
21 TTC

RRoundN
×

=
 (13)

where N is the number of the potential children with minimum 1.
R, T1 and T2 are defined in the same manner as in (10). C is a
small constant which was set to 0.2 based on experimental results.
Fig. 4 shows ASAGA performances on Ackley’s function (12)
with different parameter C settings. The curves have little
difference but the line C=0.2 stays at the bottom most of the time
and reaches the minimum value among all three lines at the end.

-6

-5

-4

-3

-2

-1

0

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fitness function evaluations

Fi
tn

es
s

fu
nc

tio
n

va
lu

es
 (n

at
ur

al
 lo

g)

c=0.2

c=0.1

c=0.3

Ackley's function

3.4 Stochastic Constraint Handling
ASAGA inherits the penalty function method used in GADO to
deal with the constraints. In GADO, the fitness is the sum of the
objective function value and a penalty coefficient multiplied by
the violation function [1]. The violation function is the sum of the
violations of all the violated constraints. The penalty coefficient is
adaptively changed according to the feasible points found so far.
ASAGA makes a further improvement on this penalty function
method by making this fitness assignment stochastic. ASAGA
randomly decides, with a small probability, to switch from the
normal method above to a method in which only the objective
function value or only the violation function value is considered
instead of both. When it chooses to switch, then it checks if any
feasible points have been found. If so, then the objective function
alone is considered the fitness. Thus there is more pressure on
objective improvement. On the other hand, if feasible points have
not been found, ASAGA uses only the violation function as
fitness. Thus there is more pressure on finding feasible points.

4. EXPERIMENTS AND RESULTS
In this section, ASAGA is tested on benchmark functions with
constraints. In every experiment the population size was set to its
default value of 10 times the problem dimension. The first four
domains were introduced by Eric Sandgren in his Ph.D. thesis [5]
in which he presented 30 engineering design optimization
problems. The fifth experimental domain comes from a real
engineering design problem called Welded Beam Design
previously used as benchmark in several studies such as in [12].

We compared ASAGA to three methods: GADO, GADO with
surrogate assist (GADO-R), and ASAGA without SVM model
(ASAGA-NSVM).
GADO was used with no approximate model assist. GADO-R is
based on GADO with a global and local model structure by
clustering technique. It incorporates fixed approximation models
which are quadratic polynomial models through informed
operators [2, 16]. ASAGA-NSVM is similar to the proposed
ASAGA except that its final model stops at Polynomial and will
never be upgraded to the SVM model. All four methods ran 30
times with different random starting populations on each problem.
The average best fitness values of the 30 runs with corresponding
number of actual fitness evaluations are shown.
Figures 5 through 9 show the performance of these four methods.
Notice that only feasible regions are shown. So the search traces
in these figures do not start from the beginning since certain time
is needed to find feasible solutions. In Sandgren’s domain number
3, the ASAGA-NSVM and ASAGA have almost the same
performance but both outperform GADO-R and GADO. In
Sandgren’s domains number 13, 21 and 22, ASAGA is obviously
the winner among all four methods. Notice that the ASAGA-
NSVM also outperforms the other two methods which have no
adaptive fitness approximation or usage. In the Welded Beam
design problem, ASAGA-NSVM performs the best where
ASAGA is slightly worse than the ASAGA-NSVM but performs
much better than the other two methods. Based on these
experiments we can draw a conclusion: the surrogate-assisted GA
performs better than the GA with no surrogate assist at all but the
adaptive surrogate-assisted GA outperforms the non-adaptive
surrogate-assisted GA.
Table 1 shows the statistical analysis and performance
comparison of GADO-R which is a fixed surrogate-assisted GA
and ASAGA which is an adaptive surrogate-assisted GA. A T-test
is conducted in the five test domains. A T-test value less than 0.05
suggests a statistically significant difference between two objects.
In this experiment, all five p-values are less than 0.05, some are
even less than 0.01, which suggests ASAGA performs better than
GADO-R with statistical significance.

-3.0667

-3.0657

-3.0647

-3.0637

-3.0627

-3.0617

-3.0607

500 600 700 800 900 1000
fitness function evaluations

fit
ne

ss
 v

al
ue

GADO

GADO-R

ASAGA-NSVM

ASAGA

Sandgren's #3

 Figure 5. Sandgren #3 with global optima -3.0666.

Figure 4. ASAGA performances with different
parameter C tested by a 5D Ackley’s function.

1054

26.78

26.83

26.88

26.93

26.98

27.03

27.08

500 600 700 800 900 1000
fitness function evaluations

fit
ne

ss
 v

al
ue

GADO

GADO-R

ASAGA-NSVMASAGA

Sandgren's #13

120

125

130

135

140

145

150

155

160

165

8000 9000 10000 11000 12000 13000 14000 15000 16000

fitness function evaluations

fit
ne

ss
 v

al
ue

GADO

GADO-R

ASAGA-NSVM

ASAGA

Sandgren's #21

180

190

200

210

220

230

240

250

260

270

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000
fitness function evaluations

fit
ne

ss
 v

al
ue

GADO

GADO-R

ASAGA-NSVM

Sandgren's #22

ASAGA

2.38

2.48

2.58

2.68

2.78

2.88

2.98

3.08

2500 3000 3500 4000 4500 5000

fitness function evaluations

fit
ne

ss
 v

al
ue

GADO

GADO-R

ASAGA-NSVM

ASAGA

Welded Beam Design

Sandgren's and
Welded Beam
design (WB)

Average
of best
fitness

T-test
value

GADO-R -3.0665
#3 ASAGA -3.0666 0.0019

GADO-R 26.83
#13 ASAGA 26.79 0.0005

GADO-R 135.42
#21 ASAGA 124.11 0.0177

GADO-R 188.64
#22 ASAGA 182.74 0.0267

GADO-R 2.4396
WB ASAGA 2.4139 0.0019

5. FINAL REMARKS
Using fitness approximation methods to assist a GA or Evolutionary
Algorithm (EA) have gained increasing popularity in recent years.
An interesting question in this area is: what is the best model for
fitness approximation? Though the answer depends on the problem
and user requirements, we found an interesting generic solution
which is to try the simplest model first. If the performance is not
satisfactory or degrades with time, more sophisticated models are
used.
So far many researchers use only one type of approximation model
[25]. Some researches use multiple models for different levels of
approximation but the approximate model itself is still fixed [13,
14]. ASAGA introduces an interesting research direction because it
uses an adaptive modeling method. This adaptive method can
provide the best trade-off between model performance and
efficiency by adaptively adjusting the approximation. Experiments
on benchmark domains and engineering design domains show that
ASAGA outperforms good non-adaptive surrogate-assisted GAs.

Figure 6. Sandgren #13 with global optima 26.78.

Figure 7. Sandgren #21 with global optima 97.5.

Figure 8. Sandgren #22 with global optima 174.7.

Figure 9. Welded Beam design with global optima
2.38116.

Table 1. Statistical analysis of GADO-R and ASAGA

1055

There are still several open questions regarding this method that
could be addressed in future work. One question would be if there is
a better way to control model updates. The other question would be
whether model updates should happen in the reverse direction as
well, i.e. the more sophisticate model may be replaced by a simpler
model at some point, perhaps when many more clusters are
introduced.

6. REFERENCES
[1] K. Rasheed. GADO: A genetic algorithm for continuous

design optimization. Technical Report DCS-TR-352,
Department of Computer Science, Rutgers University, 1998.
Ph.D. Thesis.

[2] Khaled Rasheed, Haym Hirsh: Learning to be selective in
genetic-algorithm-based design optimization. Artificial
Intelligence in Engineering Design Analysis and
Manufacturing 13(3): 157-169, 1999.

[3] Y. Jin and J. Branke. Evolutionary optimization in uncertain
environments: A survey. IEEE Transactions on Evolutionary
Computation, 9(3):303-317, 2005.

[4] Y. S. Ong, P. B. Nair, A. J. Keane, and K. W. Wong.
Surrogate-Assisted Evolutionary Optimization Frameworks for
High-Fidelity Engineering Design Problems. In Y. Jin, editor,
Knowledge Incorporation in Evolutionary Computation,
Studies in Fuzziness and Soft Computing, pages 307--332.
Springer, 2004.

[5] Eric Sandgren. The utility of nonlinear programming
algorithms. Technical report, Purdue University. Ph.D. Thesis,
1977.

[6] Y. Jin. A comprehensive survey of fitness approximation in
evolutionary computation. Soft Computing Journal, 9(1):3--12,
2005.

[7] R. Jin, W. Chen, and T.W. Simpson. Comparative studies of
metamodeling techniques under miltiple modeling criteria.
Technical report 2000-4801, AIAA, 2000.

[8] K. Sastry, D.E. Goldberg, and M. Pelikan. Don't evaluate,
inherit. In Proceedings of Genetic and Evolutionary
Computation Conference, pages 551-558, 2001. Morgan
Kaufmann.

[9] N. Cristianini and J. Shawe-Taylor. An Introduction to Support
Vector Machines. Cambridge Press, 2000.

[10] LT Bui, HA Abbass, D Essam. Fitness inheritance for noisy
evolutionary multi-objective optimization. Proceedings of the
2005 conference on Genetic and evolutionary computation,
pages: 779-785. 2005.

[11] H.-S. Kim and S.-B. Cho. An efficient genetic algorithm with
less fitness evaluation by clustering. In Proceedings of IEEE
Congress on Evolutionary Computation, pages 887-894, 2001.
IEEE.

[12] K Deb. An Efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and
Engineering, 2000, Elsevier.

[13] Y. Jin and B. Sendhoff. Reducing fitness evaluations using
clustering techniques and neural networks ensembles. In
Genetic and Evolutionary Computation Conference, volume
3102 of LNCS, pages 688--699, 2004. Springer.

[14] Z. Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane and K. Y. Lum.
Combining Global and Local Surrogate Models to Accelerate
Evolutionary Optimization. IEEE Transactions on Systems,
Man and Cybernetics - Part C, Vol. 37, No. 1, pp. 66-76.
2007.

[15] T. Joachims. 11 in: Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola (ed.),
MIT Press, 1999.

[16] K. Rasheed and H. Hirsh. Informed operators: Speeding up
genetic-algorithm-based design optimization using reduced
models. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'2000), pp. 628--635, 2000.

[17] X Llorà, K Sastry, DE Goldberg, A Gupta, L Lakshmi.
Combating User Fatigue in iGAs: Partial Ordering, Support
Vector Machines, and Synthetic Fitness. In Proceedings of the
2005 conference on Genetic and evolutionary computation,
pages: 1363-1370. 2005.

[18] William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery. Numerical Recipes in C: the Art of
Scientific Computing. Cambridge University Press, Cambridge
[England]; New York, 2nd edition, 1992.

[19] W. Carpenter and J.-F. Barthelemy. A comparison of
polynomial approximation and artificial neural nets as response
surface. Technical report 92-2247, AIAA, 1992.

[20] M. Hüscken, Y. Jin, and B. Sendhoff. Structure optimization of
neural networks for aerodynamic optimization. Soft Computing
Journal, 9(1):21--28, 2005.

[21] Khaled Rasheed, Xiao Ni, Swaroop Vattam. "Comparison of
Methods for Developing Dynamic Reduced Models for Design
Optimization". Soft Computing Journal, 9(1):29--37, 2005.

[22] T. Simpson, T. Mauery, J. Korte, and F. Mistree. Comparison
of response surface and Kriging models for multidiscilinary
design optimization. Technical report 98-4755, AIAA, 1998.

[23] Z. Zhou, Y.S. Ong, and P.B. Nair. Hierarchical surrogate-
assisted evolutionary optimization framework. In Congress on
Evolutionary Computation, pages 1586--1593, 2004. IEEE.

[24] Y. Jin, M. Hüsken, M. Olhofer, and B. Sendhoff. Neural
networks for fitness approximation in evolutionary
optimization. In Y. Jin, editor,Knowledge Incorporation in
Evolutionary Computation, pages 281--305. Springer, Berlin,
2004.

[25] D. Bueche, N.N. Schraudolph, and P. Koumoutsakos.
Accelerating evolutionary algorithms with Gaussian process
fitness function models. In IEEE Trans. on Systems, Man, and
Cybernetics: Part C, 35(2):183-194, 2005.

[26] C.M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[27] L. Willmes, T. Baeck, Y. Jin, and B. Sendhoff. Comparing
neural networks and kriging for fitness approximation in
evolutionary optimization. In Proceedings of IEEE Congress
on Evolutionary Computation, pages 663--670, 2003.

1056

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

