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ABSTRACT 
Genetic algorithms (GAs) used in complex optimization domains 
usually need to perform a large number of fitness function 
evaluations in order to get near-optimal solutions. In real world 
application domains such as the engineering design problems, 
such evaluations might be extremely expensive computationally. 
It is therefore common to estimate or approximate the fitness 
using certain methods. A popular method is to construct a so 
called surrogate or meta-model to approximate the original fitness 
function, which can simulate the behavior of the original fitness 
function but can be evaluated much faster. It is usually difficult to 
determine which approximate model should be used and/or what 
the frequency of usage should be. The answer also varies 
depending on the individual problem. To solve this problem, an 
adaptive fitness approximation GA (ASAGA) is presented. 
ASAGA adaptively chooses the appropriate model type; 
adaptively adjusts the model complexity and the frequency of 
model usage according to time spent and model accuracy. 
ASAGA also introduces a stochastic penalty function method to 
handle constraints. Experiments show that ASAGA outperforms 
non-adaptive surrogate-assisted GAs with statistical significance. 

Categories and Subject Descriptors: G.1.6 
[Optimization]: Constrained optimization, Global optimization; 
I.2.8 [Artificial Intelligence]: Miscellaneous-Evolutionary 
computing and genetic algorithms 

General Terms: Algorithms, Performance, 
Experimentation. 

Keywords 
Genetic algorithms, Surrogate-assisted evolution, Adaptive Meta-
modeling, Fitness approximation 

1. INTRODUCTION 
Genetic algorithms have proven repeatedly to be powerful for 
solving optimization problems and thus are used in a wide range 

of real-world applications such as engineering design domains. In 
such domains, it is not uncommon to see that fitness functions are 
discontinuous, non-differential, highly multi-modal, noisy and 
ambiguous [1, 2]. It is therefore not surprising that GAs usually 
perform better than conventional optimizers such as sequential 
quadratic programming and Simulated Annealing [1, 4]. Many 
challenges are still faced in the application of GAs to real-world 
domains. For engineering design problems, a large number of 
objective evaluations may be required in order to obtain near 
optimal solutions. Moreover, the search space can be complex 
with many constraints and a small feasible (physically realizable) 
region. However, determining the quality (fitness) of each point 
may involve the use of a simulator or an analysis code that takes 
an extremely long time. Therefore it is impossible to be cavalier 
about the number of objective evaluations used for an 
optimization [2].  

For such problems surrogate-assisted evolution methods based on 
fitness approximation are preferable as they can simulate the 
exact fitness with much less computational cost. A good fitness 
approximation method can still lead the GA process to find 
optimal or near-optimal solutions and is also tolerant to noise. The 
reader can refer to Jin et al. [3, 6] for details. A problem with 
fitness approximation methods arises because it is difficult to 
determine which approximate model is appropriate and how often 
the model should be used in each domain. Even for one domain, 
the answer is not usually fixed but varies with the different stages 
of the optimization process. A fixed approximate model cannot 
possibly fit well in all kinds of optimization problems as well as 
all stages. 

In this paper we present ASAGA (Adaptive Surrogate-Assisted 
Genetic Algorithm). ASAGA has a skeleton of GADO [1, 2], 
which is a GA that proved to be powerful for solving engineering 
design problems. ASAGA uses global and local approximate 
models by using a clustering technique with one local model for 
each cluster. The global model can adaptively evolve from a 
simple average of the fitness of all individuals in a population, all 
the way to a Support Vector Machine (SVM) model. The model 
evolution depends on time spent and the model accuracy. The 
local models follow similar rules except that the final model is the 
quadratic model (not the SVM) since each local model is based on 
a sample set which is not so large. The number of clusters is also 
adaptively controlled according to the type of model currently 
used, the model accuracy, and the size of the cluster. 

In ASAGA, the frequency of model usage is also adaptively 
adjusted according to the time spent on each approximate as well 
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as actual fitness evaluation and model accuracy. Intuitively, if the 
approximate model formation and usage eat up a lot of the total 
optimization time, the frequency should be reduced. On the other 
hand, if the approximate model fits very well, the frequency 
should be increased. A formula that takes into account both 
factors and reaches a trade-off point is applied in ASAGA. 

The remainder of this paper is organized as follows. In section 2, 
several kinds of fitness approximation methods and comparative 
studies of the different approximate models are given.  In section 
3, the proposed approach is described in detail. In section 4, 
experimental results are presented. The paper is concluded in 
Section 5 with a discussion of open questions and future work. 

2. FITNESS APPROXIMATION METHODS 
AND COMPARATIVE STUDIES 
2.1 Machine Learning and Statistical 
Learning Methods 
So far many Machine Learning and statistical learning methods 
have been used for fitness approximation in GAs. In this paper, 
several of the most popular ones are briefly reviewed next. 

2.1.1 Fitness Inheritance 
One approach is to set the fitness of a child solution to the average 
fitness of its parents or a weighted average based on how similar 
the child is to each parent. A re-sampling method combined with 
a simple average fitness inheritance method is used [10]. Another 
approach is to divide the population into building blocks 
according to certain schemata. Then an individual gets its fitness 
from the average fitness of all the members in each building block 
which this individual belongs to [8]. 

2.1.2 Radial Basis Function Model (RBF) 
The RBF model is popular for fitness approximation [4, 14]. An 
RBF network consists of an input layer with the same number of 
input units as the problem dimension, a single hidden layer of k 
nonlinear processing units and an output layer of linear weights 
wi. The output y(x) of the RBF network is given as a liner 
combination of a set of radial basis functions expressed as: 
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where w0 and wi are the unknown coefficients to be learned. The 
term ||)(|| ii cx −φ , also called the kernel, represents the ith 
radial basis function. A Gaussian kernel is the most commonly 
used in practice having the form: 
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A detailed comprehensive description of RBF networks can be 
found in [26]. 

2.1.3 Clustering Techniques 
Classic clustering algorithms include hierarchical clustering, 
partition clustering (such as k-means algorithm), and overlapping 
clustering. Among them, the k-means algorithm appears to be the 
most popular one applied in GAs due to its relative simplicity and 
low computational cost. In [11], the whole population is divided 

into many clusters. Only the center of each cluster is evaluated. 
Other individuals’ fitness values in the clusters are computed 
using the distance from their centers. Another approach is to build 
an approximate model based on sample points composed of the 
cluster centers. Then every other individual’s fitness is estimated 
by the approximate model [13]. One important clustering 
technique applied in EA is to divide the population into several 
clusters, and then build an approximate model for each cluster. 
Multiple approximate models are believed to gain more local 
information about the search space and fit better than a single 
model [21]. ASAGA also uses this method. 

2.1.4 Multilayer  Perceptron  Neural Network 
(MLPNN) 
An MLPNN model is used to accelerate the convergence by 
replacing the original fitness function [24]. In engineering design 
domains, MLPNN is used to reduce the complex fitness function 
evaluation times [20]. A simple feed-forward MLPNN with one 
input layer, one hidden layer and one output layer can be 
expressed as: 
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where n is the number of input neurons (which is usually equal to 
the problem dimension), K is the number of nodes of the hidden 
layer, and the function f is called the activation function which is 
most commonly the logistic function. W and θ are the unknown 
weights to be learned. The reader can refer to Bishop et al. [26] 
for a comprehensive study. 

2.1.5 Polynomial Models 
Polynomial models are also called Response Surface methods. 
Commonly used quadratic polynomial models have the form: 
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where a0, ai and aij are the unknown coefficients to be fitted, n is 
the dimension of the problem.  

Usually the least-squares approximation method is used to fit the 
unknown coefficients. The main limitation of the least-squares 
method is that the number of sample points N must exceed 
(n+1)(n+2)/2 for a second-order polynomial model. Even if this 
condition is satisfied, the fitting cannot be guaranteed because the 
singularity problem will still happen if two sample points are too 
close to each other. Another drawback of the least-squares method 
is that its computational complexity grows fast with the problem 
dimension. The gradient method is introduced to address the 
problems of the least-squares method. More implementation 
details for these two methods for fitting a polynomial model can 
be found in [18]. 

2.1.6 Kriging Models 
The Kriging model is used to build the global models [14] and it 
is used to accelerate the optimization by reducing the expensive 
computational cost of the original fitness function [25]. A Kriging 
model can be mathematically expressed as: 

)()( xZxy += β                                                    (5) 
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where β is usually a constant representing a global model and Z(x) 
is the realization of a stationary Gaussian random function that 
creates a localized deviation from the global model. The 
estimated model in equation (5) is given as: 
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where f is a column vector which is filled with ones, and R is the 
correlation matrix which can be obtained by computing the 
correlation function which is often a Gaussian exponential 
correlation function. The Kriging method can give the accuracy 
information about the fitting by showing the confidence intervals 
of the estimated values without extra computational cost. One 
disadvantage of this method is that it is sensitive to the problem’s 
dimension. 

2.1.7 Support Vector Machines (SVM) 
Good features of SVM are that it is not sensitive to local optima 
and that the optimization process does not depend on the problem 
dimension and seldom goes overfitting. A detailed description of 
SVM can be found in [9]. Applications of SVM for fitness 
approximation can be found in [17]. The epsilon-SVM regression 
model is commonly used for fitness approximation, where the 
linear epsilon-insensitive loss function is defined by: 

))(,0max()(),,( εε −−=−= xfyxfyfyxL           (7) 

The sum of the linear epsilon-insensitive losses must be 
minimized which is equivalent to a constrained minimization 
problem having the form: 
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subject to the following constraints: 
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where )( xφ  is called the kernel function. 

Some approximation methods are combined for constructing the 
fitness approximation models in some earlier applications. In [13] 
the MLPNN model is combined with clustering methods for 
constructing approximate models. In [14, 23], the Kriging method 
is used for constructing the global approximate model for pre-
selection and then RBF models are built upon those pre-selected 
sample points for further fitness approximation. 

2.2 Comparative Studies for Approximate 
Models 
The neural network model and the polynomial model were 
compared in [19]. The author concluded that the performance of 
the two types of approximation was comparable in terms of the 
number of functional evaluations required to build the 
approximations and the number of undetermined parameters 
associated with the approximations. However, the polynomial 
model had much less construction cost. In [21], a quadratic 
polynomial model was found to be the best among the polynomial 

model, RBF network, and the Quickprop neural network when the 
models are built for regions created by clustering techniques. The 
authors were in favor of the polynomial model because they 
found that the polynomial model formed approximations more 
than an order of magnitude faster than the other methods and did 
not require any tuning of parameters. The authors also pointed out 
that the polynomial approximation was in a mathematical form 
which could be algebraically analyzed and manipulated as 
opposed to the black-box results that neural networks give. 

The Kriging model and the neural network model were compared 
using benchmark problems [27]. However, no clear conclusion 
was drawn about which model is better. Instead, the author 
showed that the optimization with a meta-model could lead to 
degraded performance. Another comparison was presented in [22] 
between the polynomial model and the Kriging model. By testing 
these two models on a real-world engineering design problem, the 
author found that the polynomial and the Kriging approximations 
yielded comparable results with minimal difference in predictive 
capability. Comparisons between several approximate models 
were presented in [7], which compared the performance of the 
polynomial model, the multivariate adaptive splines, the RBF 
model, and the Kriging model using fourteen test problems with 
different scales and nonlinearities. The conclusion was that the 
polynomial model is the best for low-order nonlinear problems 
and the RBF model is the best for dealing with high-order 
nonlinear problems. 

Model performance may depend on the problem to be addressed 
and more than one criterion needs to be considered. The model 
accuracy probably is the most important criterion since low 
accuracy approximate models may lead the whole optimization 
process to inferior optima. The model accuracy also should be 
based on new sample points instead of the training data set points. 
The reason for this is that for some models such as the neural 
network, an overfitting problem is common. An overfitting model 
works very well on training data yielding good model accuracy 
though it might work badly on new sample points. Other criteria 
are also important including robustness, efficiency, and the time 
for model construction and updating. A good comparison would 
consider the model accuracy as well as all of those criteria. 

It is difficult to draw a clear conclusion on which model is the 
best for the reasons stated above, though the polynomial model 
seems to be the best choice for a local model when we are dealing 
with local regions or clusters and have enough sample points [21]. 
In such cases, the fitting problem usually has low-order 
nonlinearity and the polynomial model is the best candidate 
according to Jin et al. [7]. Because of the good features of SVM 
(see above), the SVM model becomes a very good choice for 
constructing the global model, especially when the problem has a 
high dimension, many local optima, and enough sample points. 

3. THE PROPOSED METHOD 
ASAGA uses a skeleton of GADO (Genetic Algorithm for Design 
Optimization), a GA that was designed with the goal of being 
suitable for use in engineering design. It uses new operators and 
search control strategies that target the domains that typically 
arise in such applications. GADO has been applied in a variety of 
optimization tasks that span many fields [1, 2]. It demonstrated a 
great deal of robustness and efficiency relative to competing 
methods. 
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In GADO, each individual in the GA population represents a 
parametric description of an artifact, such as an aircraft or a 
missile. All parameters take on values in known continuous 
ranges. The fitness of each individual is based on the sum of a 
proper measure of merit computed by a simulator or some 
analysis code, and a penalty function if relevant. The penalty 
function consists of an adaptive penalty coefficient multiplied by 
the sum of all constraint violations if any. A steady state GA 
model is used, in which operators are applied to two parents 
selected from the elements of the population via a rank based 
selection scheme, one offspring point is produced, and then an 
existing point in the population is replaced by the newly 
generated point via a crowding replacement strategy.  Floating 
point representation is used.  Several crossover and mutation 
operators are used, most of which were designed specifically for 
the target domain type.  GADO also uses a search-control method 
[2] that saves time by avoiding the evaluation of points that are 
unlikely to correspond to good designs. GADO was further 
improved by adding a surrogate-assisted component which forms 
approximate models and uses them for speedup through informed 
genetic operators. These operators are described in detail in [16]. 
The main idea is to make the genetic operators such as mutation 
and crossover more informed using approximate models. In every 
place where a random choice is made, for example when a point 
is mutated, instead of generating just one random mutation we 
generate several, rank them using the approximate model, then 
take the best to be the result of the mutation. GADO includes 
informed mutation, crossover and initial population formation. 

3.1 Adaptive Approximate Model Selection 
ASAGA utilizes both the global and local model structure. It fits 
one global approximate model for the optimization function and 
many local models for different regions (clusters). One advantage 
of this structure is that local models can fit much better since the 
approximate model will be defined over a smaller, less complex 
search region. Thus more local details can appear in successive 
approximations. On the other hand, the global model catches 
more global information and may prevent the search from falling 
into certain local optima. Ideally all the points previously 
evaluated in the course of the optimization should be used to 
construct the approximations. However, if the number of 
iterations is very large or to save time, a large enough sample (the 
default value is 2000) of evaluated points can be used to construct 
the approximate models. A good feature of ASAGA is that all 
current individuals hold exact fitness and approximate models are 
used for informed operators and initialization and never directly 
replace the original fitness. Thus it prevents the searching process 
from converging to false optima. 

Based on the discussion in section 2.3, we know that the 
polynomial model is a good candidate for low-order nonlinearity 
problems; thus it becomes a good choice for the local approximate 
models. Because of good features of SVM (described in 2.1.7), it 
is believed to be a good choice for the global optimization model. 
In this paper, the SVM model is implemented using the lightSVM  
package. The implementation details can be found in [15].  

ASAGA provides an adaptive mechanism to switch between 
different approximate models. Here the switching is one way, 
upgrading from lower to higher complexity only. The Global 
model upgrade path is shown in Fig. 1. The local model upgrade 

path is similar to the global one except that a local model never 
reaches the SVM model. The upgrade is triggered by a threshold. 
A formula calculates a value taking into account the model 
accuracy and the time spent at the approximation phase. If this 
value is less than a certain threshold, an upgrade happens. The 
formula is: 

)/1( 21 TTRv +×=                                          (10) 

where R is the correlation coefficient between the exact fitness 
and the approximate fitness, 1T is the time spent at the 
approximation phase and 2T  is the total optimization time. 

 
 

 

The reason the correlation coefficient is used to measure the 
model accuracy is because of the way ASAGA uses approximate 
models. In ASAGA, informed operators (described above) are 
used as the approximate model incorporation mechanism. 
Because of the way informed operators work, the absolute 
difference between the approximate fitness and exact fitness is not 
important, whereas the good correlation between them is what 
really matters for informed initialization, crossover and mutation. 
The correlation coefficient equation is given by: 
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where x is a vector of all exact fitness values for the sample 
points, and y is the corresponding estimated fitness values given 
by an approximate model. R is between -1 and +1. In our 
proposed algorithm, the R is usually between 0.5 and 1 for fitness 
models and between 0 and 1 for violation models, since 
approximate models fit very well. 

According to the formula (10), 21 / TT is between 0 and 1 but 
never reaches 1, in practice, 21 / TT seldom exceeds 0.5. So the 
threshold is usually between 0.5 and 1.5 for fitness models and is 
between 0 and 1.5 for violation models. In order to choose a good 
threshold we run a set of experiments with different thresholds. 
We use a 5 dimension Ackley’s function as the following: 
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Figure 1. Approximate model upgrading path for global 
models. 
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The average best fitness for 30 runs with different random starting 
populations is reported with the corresponding number of function 
evaluations in Fig. 2. From the figure we can see that all the lines 
have little difference (logarithm scale), whereas the line 
representing a threshold 0.9 stays at the bottom most of the time 
reaching the best final value. It was further found that any 
threshold larger than 0.95 performs the same as 0.95 and any 
threshold smaller than 0.65 performs the same as 0.65. Thus the 
threshold was set to 0.9 for objective function models. Following 
the same process, the threshold was set to 0.5 for the constraint 
violation function models in the experiments. Figure 3 shows the 
performance for three threshold values. The figure shows that a 
threshold of 0.5 yields the best result. The model update is 
triggered if the v value in (10) is smaller than the pre-set 
threshold.  
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3.2 Adaptive Clustering Techniques 
Since clusters are introduced in ASAGA, determining the number 
of clusters becomes a critical issue. Dividing the optimization 
trace (i.e. all the points evaluated using the actual fitness function 

so far) into too many clusters may lead to failure of the local 
model fit because too few sample points may restrict us to a 
model that does not capture the local space information well. 
ASAGA uses least-squares approximation to develop polynomial 
models for the local model construction. In addition, too few 
sample points may result in a singularity problem. On the other 
hand, too few clusters loose the benefit of the global and local 
model system. The large clusters are still complex and difficult to 
fit with any approximate model. 

To solve this problem, ASAGA uses an adaptive clustering 
technique to adjust the number of clusters during the 
optimization. After 2 times the population size of fitness function 
evaluations, (i.e. when the number of sample points reaches 
double the population size), the first two clusters are created by 
splitting the current sample points to 2 clusters with the K-means 
algorithm. Then it will be periodically determined if the number 
of clusters needs to be increased based on two factors. The first 
factor is the requirements of fitting a polynomial model. The 
minimal number of sample points needed for fitting a linear 
polynomial model is (n+1). It is (n+1)(n+2)/2 for fitting a 
quadratic polynomial model. In practice, these minimal numbers 
still need to be increased to avoid the singularity problem. In 
ASAGA 1.5 times the minimal numbers are applied. To be 
eligible for splitting, a cluster should have 3.5 times the minimal 
required number of sample points to ensure that the resulting sub-
clusters still have enough points to fit models. The second factor 
is the correlation coefficient R introduced in formula (11) above. 

The number of clusters is increased when a cluster satisfies two 
conditions:  

1. The cluster has sample points more than 3.5 times the 
minimal requirement for its current model. 

2. The R of this cluster is lower than certain threshold, in 
ASAGA, 0.9 for an objective function and 0.5 for a 
violation function. 

The reason for using the number “3.5” is that we found it to be the 
minimal number for which the singularity problem does not 
happen. The splitting is recursively performed (i.e., the resulting 
sub-clusters can be further split) as long as they satisfy the two 
conditions. These two conditions are checked periodically at fixed 
intervals of actual fitness evaluations. The interval is usually set 
to the population size. 

3.3 Adaptive Approximate Model Usage 
ASAGA uses informed operators guided by approximate models 
in the same way as GADO, its ancestor uses them. In informed 
mutation for example, a number of random mutations are 
generated as candidate children and ranked using the approximate 
model. Then their best according to that ranking is evaluated 
using the actual fitness function. However, GADO with surrogate 
-assisted uses a fixed number of such random mutations. A fixed 
number is not suitable for all problems. Too few mutations will 
not get the full benefit of the usage of the approximate model, 
whereas too many mutations will greatly increase the 
computational cost for little or no additional gain. The same 
argument holds for informed crossover and initialization. ASAGA 
uses an adaptive number of candidate children based on a formula 
considering the model accuracy and computational cost 
simultaneously. The formula is as follows: 

Figure 2. ASAGA performance with different thresholds 
tested by a 5D Ackley’s function. 

Figure 3. ASAGA performance with different thresholds 
for constraint violations 
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where N is the number of the potential children with minimum 1. 
R, T1 and T2 are defined in the same manner as in (10). C is a 
small constant which was set to 0.2 based on experimental results. 
Fig. 4 shows ASAGA performances on Ackley’s function (12) 
with different parameter C settings. The curves have little 
difference but the line C=0.2 stays at the bottom most of the time 
and reaches the minimum value among all three lines at the end. 
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3.4 Stochastic Constraint Handling 
ASAGA inherits the penalty function method used in GADO to 
deal with the constraints. In GADO, the fitness is the sum of the 
objective function value and a penalty coefficient multiplied by 
the violation function [1]. The violation function is the sum of the 
violations of all the violated constraints. The penalty coefficient is 
adaptively changed according to the feasible points found so far. 
ASAGA makes a further improvement on this penalty function 
method by making this fitness assignment stochastic. ASAGA 
randomly decides, with a small probability, to switch from the 
normal method above to a method in which only the objective 
function value or only the violation function value is considered 
instead of both. When it chooses to switch, then it checks if any 
feasible points have been found. If so, then the objective function 
alone is considered the fitness. Thus there is more pressure on 
objective improvement. On the other hand, if feasible points have 
not been found, ASAGA uses only the violation function as 
fitness. Thus there is more pressure on finding feasible points. 

4. EXPERIMENTS AND RESULTS 
In this section, ASAGA is tested on benchmark functions with 
constraints. In every experiment the population size was set to its 
default value of 10 times the problem dimension. The first four 
domains were introduced by Eric Sandgren in his Ph.D. thesis [5] 
in which he presented 30 engineering design optimization 
problems. The fifth experimental domain comes from a real 
engineering design problem called Welded Beam Design 
previously used as benchmark in several studies such as in [12]. 

We compared ASAGA to three methods: GADO, GADO with 
surrogate assist (GADO-R), and ASAGA without SVM model 
(ASAGA-NSVM). 
GADO was used with no approximate model assist. GADO-R is 
based on GADO with a global and local model structure by 
clustering technique. It incorporates fixed approximation models 
which are quadratic polynomial models through informed 
operators [2, 16]. ASAGA-NSVM is similar to the proposed 
ASAGA except that its final model stops at Polynomial and will 
never be upgraded to the SVM model. All four methods ran 30 
times with different random starting populations on each problem. 
The average best fitness values of the 30 runs with corresponding 
number of actual fitness evaluations are shown. 
Figures 5 through 9 show the performance of these four methods. 
Notice that only feasible regions are shown. So the search traces 
in these figures do not start from the beginning since certain time 
is needed to find feasible solutions. In Sandgren’s domain number 
3, the ASAGA-NSVM and ASAGA have almost the same 
performance but both outperform GADO-R and GADO. In 
Sandgren’s domains number 13, 21 and 22, ASAGA is obviously 
the winner among all four methods. Notice that the ASAGA-
NSVM also outperforms the other two methods which have no 
adaptive fitness approximation or usage. In the Welded Beam 
design problem, ASAGA-NSVM performs the best where 
ASAGA is slightly worse than the ASAGA-NSVM but performs 
much better than the other two methods. Based on these 
experiments we can draw a conclusion: the surrogate-assisted GA 
performs better than the GA with no surrogate assist at all but the 
adaptive surrogate-assisted GA outperforms the non-adaptive 
surrogate-assisted GA. 
Table 1 shows the statistical analysis and performance 
comparison of GADO-R which is a fixed surrogate-assisted GA 
and ASAGA which is an adaptive surrogate-assisted GA. A T-test 
is conducted in the five test domains. A T-test value less than 0.05 
suggests a statistically significant difference between two objects. 
In this experiment, all five p-values are less than 0.05, some are 
even less than 0.01, which suggests ASAGA performs better than 
GADO-R with statistical significance.  
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 Figure 5. Sandgren #3 with global optima -3.0666. 

Figure 4. ASAGA performances with different 
parameter C tested by a 5D Ackley’s function. 
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Sandgren's and  
Welded Beam 
design (WB) 

Average 
of best 
fitness 

T-test 
value 

GADO-R -3.0665 
#3 ASAGA -3.0666 0.0019 

GADO-R 26.83 
#13 ASAGA 26.79 0.0005 

GADO-R 135.42 
#21 ASAGA 124.11 0.0177 

GADO-R 188.64 
#22 ASAGA 182.74 0.0267 

GADO-R 2.4396 
WB ASAGA 2.4139 0.0019 

 
 

5. FINAL REMARKS 
Using fitness approximation methods to assist a GA or Evolutionary 
Algorithm (EA) have gained increasing popularity in recent years. 
An interesting question in this area is: what is the best model for 
fitness approximation? Though the answer depends on the problem 
and user requirements, we found an interesting generic solution 
which is to try the simplest model first. If the performance is not 
satisfactory or degrades with time, more sophisticated models are 
used.  
So far many researchers use only one type of approximation model 
[25]. Some researches use multiple models for different levels of 
approximation but the approximate model itself is still fixed [13, 
14]. ASAGA introduces an interesting research direction because it 
uses an adaptive modeling method. This adaptive method can 
provide the best trade-off between model performance and 
efficiency by adaptively adjusting the approximation. Experiments 
on benchmark domains and engineering design domains show that 
ASAGA outperforms good non-adaptive surrogate-assisted GAs. 

Figure 6. Sandgren #13 with global optima 26.78. 

Figure 7. Sandgren #21 with global optima 97.5. 

Figure 8. Sandgren #22 with global optima 174.7. 

Figure 9. Welded Beam design with global optima 
2.38116. 

Table 1. Statistical analysis of GADO-R and ASAGA 
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There are still several open questions regarding this method that 
could be addressed in future work. One question would be if there is 
a better way to control model updates. The other question would be 
whether model updates should happen in the reverse direction as 
well, i.e. the more sophisticate model may be replaced by a simpler 
model at some point, perhaps when many more clusters are 
introduced. 
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