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ABSTRACT

Genetic algorithms are random heuristic search (RHS) al-
gorithms with a wide range of applications in adaptation
and optimisation problems. The most advanced approach
for a general theory of genetic algorithms is offered by the
dynamical system model which describes the stochastic tra-
jectory of a population under the dynamics of a genetic algo-
rithm with the help of an underlying deterministic heuristic
function and its fixed points. However, even for the simple
genetic algorithm (SGA) with fitness-proportional selection,
crossover and mutation the determination of the population
trajectory and the fixed points of the heuristic function is
unfeasible for practical problem sizes. In order to simplify
the mathematical analysis a-selection is introduced in this
paper. Based on this selection scheme it is possible to derive
the dynamical system model and the fixed points in closed
form. Although the heuristic function is not compatible with
the equivalence relation imposed by schemata in the strict
sense a simple coarse-grained system model with a single ex-
ogenous parameter is derivable for a given schemata family.
In addition to the theoretical analysis experimental results
are presented which confirm the theoretical predictions.
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1.2.8 [Computing Methodologies]: Artificial Intelligence—

Problem Solving, Control Methods, and Search

General Terms
Algorithms
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1. INTRODUCTION

Genetic algorithms mimic the basic mechanisms of bio-
logical evolution and molecular genetics in simplified form.
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These RHS algorithms are based on populations of individ-
ual solutions which evolve according to selection and genetic
operators like crossover and mutation. Since they were pro-
posed by HOLLAND [1] genetic algorithms have been used in
a wide range of applications, e.g. for search as well as numer-
ical and combinatorial optimisation problems [2]. Despite
their successful applications genetic algorithms still lack a
general and stringent theory which guides the practitioner in
tailoring the algorithm to a specific application domain [3].
The first approach to theoretically describe the functioning
of the SGA was the so-called schema theorem [1] which gives
a lower bound for the expected number of individuals rep-
resenting particular hyperplanes or schemata in the search
space within the next generation. In recent years the schema
theory and its implications like the so-called building block
hypothesis have been criticised [3, 7]. As an alternative a dy-
namical system model was introduced for the SGA by VOSE
et al. [8, 5, 7, 6]. In this model the SGA’s stochastic dy-
namics is modeled according to an underlying deterministic
heuristic function which describes the expected next popu-
lation of the SGA given the current population. According
to theoretical and empirical evidence the population trajec-
tory is attracted by the fixed points of the heuristic function.
However, even for moderate problem sizes the determination
of the fixed points becomes unfeasible. Therefore, in order to
simplify the mathematical analysis we introduce the genetic
algorithm with a-selection in this paper.

The paper is organised as follows. After a brief description
of the SGA over search spaces of binary ¢-tuples in section
2, the dynamical system model is summarised in section
3. The underlying heuristic function is formulated for the
SGA with fitness-proportional selection, 1-point or uniform
crossover and bitwise mutation. The genetic algorithm with
a-selection is introduced in section 4 based on the notion of
the best individual randomly mating with other individuals
in the current population. The dynamical system model of
a genetic algorithm with a-selection is derived in section 5.
The fixed points of the corresponding heuristic function are
calculated analytically and compared to simulation results
showing a close agreement between theory and experiment.
As is well known the heuristic function is not compatible
with the equivalence relation imposed by schemata due to
the selection operation. Although this fact still holds for a
genetic algorithm with a-selection a simplified model for a
given schemata family with a single exogenous parameter
can be derived as shown in section 6. Further, projections
onto the space of schemata are discussed. A brief conclusion
is given in section 7.



2. SIMPLE GENETIC ALGORITHM

In this section the SGA with fitness-proportional selec-
tion, 1-point or uniform crossover and bitwise mutation [7]
is described which is used for the maximisation of a fit-
ness function f. This fitness function f is defined over the
search space Q = Z4 = {0, 1}* consisting of binary /-tuples
a= (ag,a1,...,ap-1),ie. f: Q=R

2.1 Algorithm

The SGA works over populations P(t) defined as multisets
P(t) = (ao(t),a1(t),...,ar—1(t)) consisting of r individual
binary {-tuples ai(t) = (ak,0(t),ar,1(t),...,are—1(t)) € Q
with fitness values f (ax(t)). For the creation of offspring in-
dividuals in each generation t genetic operators like crossover
xo and mutation puo are applied to parental individuals
which are selected according to their fitness values as shown
in Fig. 1. The population P(0) is initialised appropriately,
e.g. by randomly choosing individuals in 2.

t:=0;
initialise population P(0);
while end of adaptation # true do
for k=0tor—1do
select parental ¢-tuples b(t) and c(t);
apply crossover xo and mutation uqo
ai(t +1) = o (xa (b(t), ¢(t)));
evaluate fitness f (ax(t +1));
end
t:=t+1;
end

Figure 1: Simple genetic algorithm (SGA).

2.2 Selection

For fitness-proportional selection each individual a () in
population P(t) is selected with a probability px(t) which is
directly proportional to its (positive) fitness f (ar(t)) > 0.
The individual selection probability is then given by

_ S

pk(t) -1
> 1 (ay(®)

(1)

2.3 Crossover

The crossover operator xo : 2 X  — € takes two se-
lected individual ¢-tuples a = (ao,a1,...,a¢—1) and b =
(bo, b1, . ..,be—1) and randomly generates an offspring ¢-tuple
¢ = (co,c1,...,ce—1) according to ¢ = xa(a,b).

For 1-point crossover a position 1 < XA < £ — 1 is ran-
domly chosen with uniform probability and the two ¢-tuples
(ao7 ey AN—1, b)\, ey bgfl) and (bo7 e ,b)\,l, ax, ... ,azfl)
are generated one of which is chosen as offspring ¢ with equal
probabilities. The 1-point crossover operator is applied with
crossover probability x.

In case of uniform crossover each bit of the offspring ¢
is chosen with probability x from the ¢-tuple a and with
probability 1 — x from the ¢-tuple b or vice versa.

2.4 Mutation

In the SGA with binary ¢-tuples the bitwise mutation op-
erator po : 2 — 2 is defined by randomly flipping each bit
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of the individual ¢-tuple a = (ao,a1,...,a,—1) with small
mutation probability u. A typical value is p ~ %.

3. DYNAMICAL SYSTEM MODEL OF THE
SIMPLE GENETIC ALGORITHM

Following [7] the dynamical system model for the SGA
is briefly summarised in this section. In view of the search
space §2 of binary ¢-tuples we identify each binary /¢-tuple
(ao,a1,...,a¢—1) = aoai ...ae—1 with the integer a = ag -
2614 q,-2072 4, Aar_2-2'4ap_1-2°. The respective fitness
is given by fo = f(a). This leads to the search space Q =
{0,1,...,n—1} with cardinality || = n = 2°. Based on this
binary number representation we define the bitwise modulo-
2 addition a @ b, bitwise modulo-2 multiplication a ® b and
bitwise binary complement @, e.g. 3¢5 = 0114101 = 110 =
6,3®5 =011® 101 = 001 =1 and 3 = 011 = 100 = 4
for ¢-tuples of length ¢ = 3. Vice versa, the integer a € )
is also viewed as a column vector (ao, a1, ... ,ag_l)T so that
we can define the scalar product a™ = ao - bo + a1 - by +
coot ag—2-bp—o2 4+ ae—1 - be—1. In the following we will also
make use of the all-one ¢-tuple 1 which corresponds to the
integer n — 1 = 2¢ — 1. Furthermore, the indicator function
[t =j] = di; isdefined by i =j] =1if i = j and 0 if ¢ # j.

In the dynamical system model [7] the dynamics of the
SGA is compactly formulated by defining the population
vector p = (po,p1,...,pn—1)". Each component

LS =il

pi =~
JjEP

gives the proportion of the element ¢ € ) in the current
population P. The population vector p is an element of the
simplex A= {peR" :p; >0A Y, _opi =1}. For a popu-
lation of size r the number of possible population vectors is
given by ("*:71). In the limit of infinite populations with
r — oo the population vectors are dense in the simplex A.
For simplicity we will take the simplex A as the defining re-
gion of the population vector p which is strictly valid only
for large populations with r > 1.

The SGA is now described as an instance of RHS 7 : A —
A according to p(t + 1) 7 (p(t)) with 7 depending on
the random selection and genetic operators. As outlined in
[7] T can be equivalently represented by a suitable heuristic
function G : A — A which for a given population vector p
yields the probability distribution G (p). This probability
distribution

(2)

is used to generate the next population as illustrated in Fig.
2. For the SGA the heuristic function G = M o F is given
by the composition of the selection operation F and the
mixing operation M comprising crossover xq and mutation
to. The transition probabilities of the RHS 7 are given by
the formula [7]

G (p), = Pr{individual ¢ is sampled from Q}

Pr{r(p) =q} =r]] L(EZ); :

1EQ

®3)

The trajectory p, 7 (p), 72 (p), ... approximately follows
the trajectory p, G (p), G* (p), ... of the deterministic dy-
namical system defined by the heuristic function G with

E{r(p)} =3¢ () (4)
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Figure 2: Genetic algorithm as RHS 7 with heuristic
function G.

Because of the corresponding mean quadratic deviation

E{ll7 (p) = G (P)II"} = % (11 @)I) ()

the RHS 7 behaves like the deterministic dynamical sys-
tem model in the limit of infinite populations with r — co.
As illustrated by experimental evidence the RHS 7 shows
punctuated equilibria, i.e. phases of relative stability nearby
a fixed point w = G (w) of the heuristic function G disrupted
by sudden transitions to another dynamical equilibrium near
another fixed point. We call this the fized point hypothesis
of genetic algorithms.

3.1 Selection

For fitness-proportional selection the respective heuristic
function F (p), = Pr{individual i selected} is given by [7]

fi-pi fi-pi
®); Sieafi-pi f'p ©
with fitness vector f = (fo, f1,..., fa_1) .

3.2 Crossover

For the crossover operator yq applied to the individual
{-tuples a and b with crossover probability x we make use
of a random crossover mask m € ) according to

xo(a,b) =a@maemeb
or
xe(a,b) =a@mPEmeb

each with probability % For 1-point crossover the crossover
mask m is randomly chosen from 2 according to the proba-
bility distribution vector x = (X0, X1,---,Xn—1)" with [7]

1_X7 m=0
Xm=1{ 727, m=2"—1with1<A<l-1 (7
0 , otherwise

In case of uniform crossover the probability distribution vec-
tor x = (X0, X1,---,Xn—1)" is given by [7]

|

3.3 Mutation

The bitwise mutation operator uo can be described with
the help of the random mutation mask m € Q according to
ua(a) = a ® m. The mutation mask m is randomly chosen

1—x+x-27¢% m=0

et (8)

m >0
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from Q2 according to the probability distribution vector p =
(Hos 11, fin—1)" with [7]
1T
Hm = [
3.4 Heuristic

The mixing operation comprises crossover xo and muta-
tion po. With the help of the respective probability distri-
butions for crossover and mutation we obtain

Pr{uo (xo(a,b)) = c}
S 1y - Prixa(a,b) = c@ j}

ERC TN (9)

JEQ
= ZMZ%‘[GQMGB{@I):CEB]'] .
JEQ 1€Q

Taking into account
Pr{pa (xa(a,b)) = ¢} = Pr{ua (xa(a ® ¢,b @ ¢)) = 0}
this yields
Pr{uqa (xa(a,b)) = ¢} = Mageboc
with the n X n mixing matrix

M = Z MAM

3 lieuen®j=1] .
u,veEN

(10)

The heuristic function G follows according to

g (p)z

Pr{individual ¢ is sampled from Q}
Y. F®), F®), Pr{pa (xa(u,v)) =i}

u,vEN

= > F®), F®), Musivei
u,vEN

= D> F®ugi F®)yei Muw - (11)
u,vEN

By defining the mixing operation M : A — A according to

M (p)z = Z Pudi * Pvdi - Mu,v

u,vEN

(12)

the heuristic function is given by the composition G = MoF.

In order to determine the heuristic function G the mixing
matrix M has to be calculated. This can be done efficiently
with the help of the WALSH transform [9, 10]. For a matrix A
the WALSH transform is A = W-A-W with the nx n WALSH
matrix Wi ; =n~ /2. (—1)iTj. Correspondingly, the WALSH
transform of a vector v yields ¥ = W-v. The WALSH matrix
W is symmetric and orthogonal, i.e. W= = WT = W. In
Fig. 3 the WALSH matrix is illustrated for n = 2° = 64.

For crossover and mutation performed after crossover the
WALSH transform of the mixing matrix M is given by

nl/2

2

[i®j=0]- ;- Z (Xkai + Xka))

kEQ; gz
with Qx = {i € Q:i®k = 0}. Due to the factor [i ® j = 0]
the components J\//T” are nonzero only if i® j = 0 or j € Q,
respectively. With the WALSH transform of the mutation
mask distribution [7]

T

)t

i =n""%(1- (13)



Figure 3: Illustration of the WALSH matrix W for

n=25=64.

the transformed mixing matrix M is obtained as follows.

(1-

—

)1T(i®j)
Mi_’j

_ 2p
2

= [i®j=0]- > (ke + ko)

keigy

(14)

Although the mixing matrix M can be calculated efficiently
(for 1-point crossover a closed-form expression for the WALSH
transform M is known [7]) the fixed point analysis of the
heuristic function G becomes unfeasible even for moderate ¢
due to its dependence on the population vector p via F (p)
and the cardinality n = 2° of the search space Q. Therefore,
in the next section we introduce the genetic algorithm with
a-selection which yields a simpler heuristic function and al-
lows to derive a closed-form solution for the fixed points.

4. SIMPLE GENETIC ALGORITHM WITH
a-SELECTION

Let the current population be described by the population
vector p and let

b=argmax {fi :i € QA p; >0} (15)

be the best individual in the current population. Clearly,
this best individual or a-individual b depends on the popula-
tion vector p (for clarity of notation we omit this dependence
in the following). In the genetic algorithm with a-selection
the a-individual b is mated with individuals randomly cho-
sen from the current population with uniform probability.
The genetic algorithm with a-selection is shown in Fig. 4.

S. DYNAMICAL SYSTEM MODEL OF THE
SIMPLE GENETIC ALGORITHM WITH
a-SELECTION

In the following we determine the dynamical system model
for the genetic algorithm with a-selection by deriving the
heuristic function G (p) for a given population vector p.

5.1 Heuristic

The a-individual b is selected as the first parent for cre-
ation of a new offspring, whereas the second parent is chosen
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t:=0;
initialise population P(0);
while end of adaptation # true do
select a-individual b(t) as first parent;
for k=0tor—1do
select second parent c¢(t) randomly;
apply crossover xo and mutation uqo
ak(t +1) := po (xa (b(t),c(1)));
evaluate fitness f (ax(t + 1));
end
t:=t+1;
end

Figure 4: Genetic algorithm with a-selection.

uniformly at random from the current population according
to the probability distribution

Pr{individual j is selected} = p;
with j € Q. The heuristic function G is then given by

G (p), Pr{individual ¢ is sampled from Q}

ij -Pr{ua (xa(b,j)) =i}

> v Mowijei -
JEQ

(16)

By defining the n X n system matrix
Aij = Mygi joi (17)

we obtain the linear system of equations for the new popu-
lation vector

g=G()=A-p.
With the permutation matrix (03); ; = [i & j = b] and the
twist (M™), ; i@, of the symmetric mixing matrix M =

M the system matrix A can also be expressed as

A=o,-M" -0y .

(18)

(19)

Due to the a-selection scheme we gain a simpler heuristic
function G which is completely described by the a-individual
b and the mixing matrix M or system matrix A, respectively.

5.2 Fixed Points

Because of the linear relationship G (p) = A - p in case
of a given a-individual b the fixed points w = G (w) of the
heuristic function G are obtained from the eigenvectors of
the system matrix A to eigenvalue A =1, i.e. A-w =w. To
this end, we consider the WALSH transform of both sides of
the equation ¢ = A - p according to

G=W -q=W-A-p=W -A-W-W-p=A-p

where we have made use of the orthogonality of the WALSH
matrix W. For an eigenvector v with eigenvalue A we obtain

Av=X v & A-D=\79.

The system matrix A and its WALSH transform A have the
same eigenvalues with eigenvectors which are also related by
the WALSH transform. The WALSH transform of the system
matrix can be calculated as follows

—~ T(igi o~
Aij=(=1)" U9 Mg ; . (20)



The system matrix A as well as its WALSH transform A

depend on the a-individual b.

As an example we consider the genetic algorithm with a-
selection and mutation without crossover, i.e. x = 0. For
the WALSH transform of the mixing matrix we obtain

1/2
—~ n R
Mij = —— (fi-

This yields

i =0+, [i=0])

Aij =

= 0]+ [i = 4])

For crossover xq and mutation po the WALSH transform
of the mixing matrix fulfills ]\/Z” x [t ®j = 0]. With this
relation we obtain A; ; o ]/\Zi@j,j_o( [(i®j)®j = 0]. Because
(1®j)®7 = 0is equivalent to j®i = 0 or 5 € €, respectively,
the components A\” of the WALSH transform of the system
matrix are nonzero only if j € £; which is possible only for
j < i. It follows that the WALSH transform A is a lower
triangular matrix with elgenvalues i given by the diagonal
elements \; = AZ P = Mo i. This yields the eigenvalues

T .
(1—2w*

Ai =
2

= > Ok + Xkaa) (21)

ke

of the system matrix A. It is a remarkable fact that the
eigenvalues do not depend on the a-individual b. Taking
into account Zieﬂ xi = land 0 < p < % it is evident
from this expression that the eigenvalues are bounded by
0 < \; < 1. The system matrix A and its WALSH transform
A are therefore positive semidefinite. Because of A = 1 and
0< X\ <1—-2uforl <i<mn-—1 there exists a single
eigenvector w which is a fixed point of the heuristic function

w=G0w)=A4 w .

Both the system matrix A and the fixed point w depend on
the a-individual b. According to the fized point hypothesis
the population will stay near this fixed point w. If a new
best or a-individual b € Q is found the genetic algorithm
will converge to the new fixed point thus showing punctuated
equilibria, i.e. phases of relative stability nearby a fixed point
disrupted by sudden transitions to another fixed point.

The fixed point w can be determined explicitly with the
help of the WALSH transform. First we note that due to the
relation @ = A - & and the lower triangular matrix A we
can recursively calculate the WALSH transform of the fixed
point according to

-
|
-

w; = A\z \J ] (22)

1
1-— ;4\“

Il
<}

J
for 1 < i < n — 1 starting with @o = n~/? which ensures
that >, wi = 1. The fixed point is then obtained via the
inverse WALSH transform w =W - @.

5.3 Experimental Results

For the shifted and inverted ONEMAX problem with fit-
ness function f; = lT(i @ 10) and ip = 128 (corresponding to
the number of 0’s in the binary representation of i ®ig € )
Fig. 5 shows the theoretical and estimated population vec-
tors p in generation t = 25 for a genetic algorithm with
a-selection for £ = 10 and n = 2'° = 1024 using 1-point
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crossover with crossover probability x = 1, bitwise mutation
with mutation probability u = %, population size r = 100
and random initial population. The EucLIDean distance of
the simulated population vector p to the fixed point w is

> Ipi — wil® =0.0921 .
1€Q

There is a close match between the theoretical prediction
and the experimental result.
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Figure 5: Population vector p according to the
dynamical system model with heuristic function G
(top) and its estimate from a single run of the ge-
netic algorithm with a-selection as RHS 7 (bottom).

6. COARSE-GRAINED SYSTEM MODEL

With the help of the dynamical system model for the ge-
netic algorithm with a-selection we will now explore coarse-
grained system models based especially on schemata.

6.1 Equivalence Relations and Schemata

First we consider equivalence relations = according to [7].
Two equivalent individuals ¢ = j in the search space 2 be-
long to the same equivalence class [i] = {j € Q:j =1} €

Q/=. This can be expressed with the help of the linear
operator (also called the quotient map)
= _p—a_) L, Jell
sus==i={o Jgli -

ie. i =jif Z; = 1. As discussed in [7] the equivalence
of individuals can be extended to the equivalence of popu-
lations. Two populations are equivalent if the proportions
of individuals j € Q in each of the equivalence classes [i]
with ¢ € Q are the same in both populations. By using the
population vectors p and q in the simplex A this yields

p=q & VieQ:) [i=jl-pi=) li=il-q .
jeQ jen
Taking into account Ep;),; = [ = j] we obtain the expression
2jeali =7l pi =2 cq i1 - pi = (Ep)}; and therefore

p=q & Ep=Z2q.



A dynamical system defined by the heuristic function G is
consistently modeled with the help of a simplified coarse-
grained system model implied by the equivalence relation =

if the diagram in Fig. 6 commutes, i.e. ZG (p) LG (Ep) =
g (p) with p = Ep. This amounts to the requirement that
for two equivalent population vectors p and g the population
vectors in the next generation G (p) and G (g) must also be
equivalent: p=q = G (p) =G (q).

g

P G (p)

\ 4

[1]
[1]

EG (p)

\

g

Figure 6: Commutativity diagram for the equiva-
lence relation = with quotient map =.

According to [7] schemata can be considered as specific
equivalence relations. We define a schemata family with the
help of the ¢-tuple £ € Q via the quotient map

Eg,=0®&=1] .

Here, i € Q¢ = {i € Q:i®€ =0} and j € Q. Two indi-
viduals j, k € € are equivalent if they agree on the defining
positions defined by £ according to j =k < jRE=k®E.
The number of the defining positions is 17¢ which leads to
the cardinality |Q¢| = 21" ¢ of Q¢. With the 2*" € x 2¢ matrix
= the proportion of the population representing the schema
or equivalence class [i] = i @ (g, respectively, is given by

EP)y = Eu, pi=2 i®&=il-pi= Y piaj -

JEQ JEQ JEQg

(23)

6.2 Schema Heuristics

As discussed in [7] the mixing operation M of the SGA
with crossover and mutation is compatible with the equiv-
alence relation defined by the schemata family &, i.e. the
diagram shown in Fig. 7 commutes. This property of the
mixing operation M and the schemata family £ has been
argued in [7, 11] as the reason for implicit parallelism. How-
ever, the selection operation F in general is not compatible
with the equivalence relation = and, therefore, the heuristic
function G = M o F is not compatible either [4, 7].

p M

» M (p)

[1]
[1]

(1]
b

M

Figure 7: Commutativity diagram of the mixing op-
eration M for the equivalence relation imposed by
the schemata family &.
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In the following we will analyse this general observation
in case of a-selection. For the genetic algorithm with a-
selection, crossover and mutation we have derived in Eq. 16
the heuristic function

G(P); =D pi Mysije

jeQ
with a-individual b = argmax {f; : i € Q A p; > 0} and mix-
ing matrix (see Eq. 10)

Mij= ) hw

u,vEN

u + w . — .
.%.h@u@u@]:v] .
The proportion of the expected next population represent-
ing the schema [i] = i ® Q with i € Q¢ can be calculated

according to
(Eg (p))[i] Z g (p)i@j
i€Qg

DD e Misisjreio; -

]'Eﬂz ke

After a lengthy calculation we obtain

(EG (P))[i] Z (EP)[j] : (Mﬁ)[b@i],[]’@i]
JEQe
= Z Py (Me) i, (i (24)
JEQg

with p = Zp and the 217€ 5 217¢ schema mixing matrix
(Me)ga, 15
(Ex) [w T (Ex) (@]

= Z (E“)[v]' 5 fRuedTRj =1
u,v€Q§
~ ~u +~ﬂ . — .
u,vEQg

with ¥ = Ex and @ = ZEp. By defining the 217E 1T
system matrix

(A = Me)paq, e (26)
with 7,5 € Q¢ and a given a-individual b € €2 we obtain the
linear system of equations for the new schema population
vector ¢ = g~(Ep) = A¢ - Ep or equivalently

qa=A4c-p . (27)

The schema heuristic function G and the schema system
matrix A depend on the a-individual b. Therefore, the
heuristic function G is not compatible with the equivalence
relation imposed by schemata in the strict sense. If in the
next generation the a-individual b is lost or a better individ-
ual is sampled from the search space (2 the schema heuristic
function G and the schema system matrix A¢ change. The
a-individual b (or its corresponding equivalence class [b])
thus acts like an exogenous parameter to the coarse-grained
system model as illustrated in Fig. 8.

Similar to the system matrix A the WALSH transform
A\g = We - A¢ - We of the schema system matrix A with
217¢ » 91"€ WaLSH matrix We over Q¢ can be calculated
according to

~

(A,

Tamn e
=(-1)" " (Me)ai (28)
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Figure 8: Dynamical system model with heuristic
function G (top) and its coarse-grained system model
with schema heuristic function G (bottom) depend-
ing on the a-individual b.

with 4,7 € Q¢. The schema system matrix A as well as
its WALSH transform ;4\5 depend on the a-individual b. As
for the system matrix A it can be shown that the WALSH
transform 25 of the schema system matrix A¢ is a lower
triangular matrix with an eigenvalue A = (;4\5)[0],[0] =1
leading to the schema fixed point w = A¢ - @.

6.3 Experimental Results

For numerical calculations the equivalence class [i] € Q/=
is identified with ¢ € Q¢. The elements of ¢ are numbered
in ordinary binary fashion, e.g. for £ = 5 and £ = 13 we iden-
tify {00000, 00001, 00100, 00101, 01000, 01001, 01100, 01101}
with the set {000, 001,010,011, 100, 101, 110, 111} of binary
3-tuples or index numbers {0, 1,2, 3,4, 5,6, 7}, respectively.

We consider the shifted and inverted ONEMAX problem
with fitness function f; = 1T (i@ ) for £ = 10 and n =
210 = 1024 with the optimal binary ¢-tuple 3o = 0010000000
or ig = 128, respectively. Fig. 9 shows the theoretical and
estimated schema population vectors p in generation ¢ =
25 for a genetic algorithm with a-selection using 1-point
crossover with crossover probability xy = 1, bitwise mutation
with mutation probability u = %, population size r = 100
and randomly initialised population.

The schemata family is defined by the binary ¢-tuple & =
0011100000 or & = 224, respectively. For the calculation of
the corresponding 23 x 2% schema system matrix

Ae =
0.405 0.145 0.113 0.081 0.081 0.045 0.045 0.037
0.045 0.305 0.013 0.045 0.009 0.045 0.005 0.013
0.045 0.016 0.337 0.081 0.009 0.005 0.045 0.013
0.005 0.034 0.037 0.294 0.001 0.005 0.005 0.037
0.405 0.305 0.337 0.294 0.729 0.405 0.405 0.337
0.045 0.145 0.037 0.081 0.081 0.405 0.045 0.113
0.045 0.034 0.113 0.045 0.081 0.045 0.405 0.113
0.005 0.016 0.013 0.081 0.009 0.045 0.045 0.337

we have used the equivalence class [b] = [io] = [0010000000]
according to the index number 4 of the best individual b = i
for all generations ¢ of the dynamic system model. The

(Ep)m

P)[i]

=)
=

corresponding WALSH transform

A; =
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.400 0.400 0.000 0.000 0.000 0.000 0.000 0.000
0.400 0.000 0.400 0.000 0.000 0.000 0.000 0.000
0.284 0.036 0.036 0.284 0.000 0.000 0.000 0.000
-0.400 0.000 0.000 0.000 0.400 0.000 0.000 0.000
-0.249 -0.071 0.000 0.000 0.071 0.249 0.000 0.000
-0.284 0.000 -0.036 0.000 0.036 0.000 0.284 0.000
-0.199 -0.028 0.000 -0.028 0.028 0.000 0.028 0.199

of the schema system matrix is a lower triangular matrix.
The EucLiDean distance of the simulated schema population
vector p to the schema fixed point @ is

Z {15[1'] - ‘Tj[i]|2 = 0.0972 .
lileQ/=

There is again a close match between the theoretical predic-
tion and the experimental result.
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Figure 9: Schema population vector p = Zp accord-
ing to the coarse-grained system model with schema
heuristic function G (top) and its estimate from a

single run of the genetic algorithm with a-selection
as RHS 7 (bottom).

6.4 Schema Projections

There exists an interesting relationship between the pro-
jection onto the space 2¢ and the WALSH transform as al-
ready observed in [7]. With the help of the unit vector
e; = (0,...,0,1,0,...,0)" the j-th component of which
is equal to 1 the population vector p can be written as
p = Z].eﬂpj -e;. Let pe denote the projection onto the
space {2¢. Then the projection p¢p of the population vector
p onto ¢ is given by

pep= > piej= [j@E=0]p;-e; .
JEQ JEQ
If we neglect all components which are projected onto 0 the
T
projection pe can be formulated as the 2* ¢ x 2% matrix

(P =li=3]-li®€=0]
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with j € Q. Taking into account i € Q¢ and [i ® € = 0]
the projection map (pe);;,;, = [ ®& =1 - [j®&{ =10]is
obtained. We observe a cl]ose relationship between the pro-
jection map and the quotient map Zp;); = [j ® £ = ] de-
fined for a schemata family £. In fact, the WALSH transform
pe = We - pe - W with 2° x 2° WaALSH matrix W over Q and

T T
21 € x 21 ¢ WALSH matrix We over Q¢ is obtained from

22 =225 o pe=213.

This yields the schema population vector

~

ps P
22 W pe - Wop
21TE/2

=p 21Tg/2 .

“We - pep

Making use of the schema heuristic Zq = A¢ - Zp we have

TF ~ TF ~
2 2 We - peg = Ac 2" 2 We - pep

leading to

peq =We - Ag- We - pep = Ag - pep (29)
The vector pep corresponds to the WALSH transformed pop-
ulation vector p which is projected onto {2¢; it evolves ac-
cording to the WALSH transformed schema system matrix
A\g as shown in Fig. 10. As before, the matrix A\g depends
on the a-individual b.

p—» A > g
pep —» A |— peg
Figure 10: Projection of the WALsH transformed

population vectors p and § = A - p according to the
dynamical system model with WALSH transformed
system matrix A (top) onto the space ¢ of schemata
(bottom) for a genetic algorithm with a-selection.

7. CONCLUSION

The dynamical system model represents the current state
of the art of genetic algorithm theory [3, 7]. For practical
problem sizes, however, the determination of the population
trajectory and the fixed points of the underlying heuristic
function G becomes unfeasible.

In this paper a-selection has been introduced in order to
simplify the mathematical analysis and to enable the deriva-
tion of the dynamical system model and the fixed points of
the heuristic function in closed form. It turned out that for
a given a-individual b the heuristic function G of the RHS is
defined by a linear system of equations with system matrix
A. There exists a single fixed point w which can be calcu-
lated analytically from the WALSH transformed system ma-
trix A. Experimental results showed close agreement to the
theoretical predictions obtained from the derived dynamical
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system model. It has to be observed that the dynamical
system model for the genetic algorithm with a-selection de-
pends on the a-individual b. If in the next generation this
individual is lost or a better individual is sampled from the
search space (2 the heuristic function G changes due to the
dependence of the system matrix A on the a-individual b,
thus showing punctuated equilibria.

The introduction of the a-selection scheme further allowed
to explicitly determine the coarse-grained system model for
a schemata family defined by the ¢-tuple £&. For a given
a-individual the corresponding RHS is defined by a linear
system of equations with schema system matrix A with
similar properties as the system matrix A.

Finally, it was shown that population vectors which are
WALSH transformed and subsequently projected onto 2
evolve according to the WALSH transform of the schema
system matrix A\g. Again, the schema system matrix 25
depends on the a-individual b.

The reason for the analytical simplifications gained for the
genetic algorithm with a-selection lies in the fact that the
fitness function f is hidden from the mathematical formula-
tion by introducing the a-individual b. Since a-selection is a
strong selection scheme which might be too strong for prac-
tical applications future research will be oriented towards
genetic algorithms with weaker selection schemes.
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