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ABSTRACT 
In many design tasks it is difficult to explicitly define an objective 
function. This paper uses machine learning to derive an objective 
in a feature space based on selected examples of previous designs, 
thus implicitly capturing the features that distinguish that set from 
others without requiring a predetermined measure of fitness. A 
genetic algorithm is used to generate new designs, and these are 
shown to recognisably display the appropriate features. It is 
demonstrated that the range of relevant features and optimal 
solutions is easily varied in proportion to the examples selected to 
define the objective. Methods for improving the function for GA 
search are discussed. 

Track: Real-World Applications. 

Categories and Subject Descriptors 
I.5.5 [Pattern Recognition]: Implementation – interactive 
systems, special architectures. 

J.6 Computer-Aided Engineering – Computer-aided design (CAD  

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Architecture, design/synthesis, fitness evaluation, genetic 
algorithm, machine learning. 

1. INTRODUCTION 
The ability of evolutionary algorithms and related search 
techniques to explore a varied space of solutions with efficiency 
and often surprising innovation makes them useful tools for 
design [1]. This typically requires the explicit definition of a goal 
or objective function and so has been ideally suited to engineering 
optimisation tasks. For many design problems however, and 
particularly for those of great complexity, it is difficult to specify 
such a goal in advance. 

Design and creativity themselves, particularly in a social context, 
are often seen as processes of guided, but open exploration. Steels 
[17] has shown that effective languages can be generated without 
an external measure of quality by allowing robots to speak and 
evaluate each other in an environment, and Nehaniv and 
Dautenhahn [12] propose an algebraic framework for similar 
imitation and interaction. Such approaches have been 
incorporated into genetic algorithms by allowing the objective to 
change over time. Saunders and Gero [13] allow a consensus of a 
community of agents to guide this, and alternatively Maher and 
Poon [11] co-evolve both goals and solutions simultaneously. 
Alternatively, multiobjective optimisation methods such as Pareto 
optimisation [20] allow broader definitions of a goal by finding a 
range of possible solutions, but each single objective must be 
clearly defined. 

The method presented here generates an objective function for a 
genetic algorithm (GA) based only on labelled or classified 
examples of previous designs, and thus requires no explicit 
statement of objectives. It uses supervised learning to reduce the 
dimensionality of initial parameters to a low dimensional feature 
space Φ, in which only the features relevant to the original 
classification apply. This space is related to the notion of the 
archetype as described in [6]. Fitness is then determined by a 
distance measurement within this space. 

This is demonstrated in the design of office floor plans, in which 
the location and orientation of many desk units form a complex 
spatial configuration. It is a problem of sufficient complexity that 
no consensus on measures of fitness currently exists. In practical 
use the designer need not specify one, but simply classify plans. 
The grid representation is generic, and can just as well apply to 
other domains such as urban form. The representation of 
solutions, both in the genome and in fitness evaluation is 
described first below, followed by the method of constructing Φ. 
Methods for improving the mapping are detailed, and the method 
is tested to evolve solutions as defined by various sets of 
archetypal plans.  

2. PLAN REPRESENTATION 
Several methods were used in this research to represent the layout 
of desks within a plan, one of which is detailed here. These vary 
in the amount of constraints used and the corresponding size of 
the search space. All take an underlying orthogonal grid as their 
structure, and as such, only produce orthogonal arrangements as 
implemented, but could be used with plans that contain several 
non-orthogonal grids or in principal extended for use with 
hexagonal or other planning grids if required. The methods 
ultimately represent desk/chair units as a filled/void pair within 
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one grid square. These may be in one of four orientations, as well 
as completely empty or completely filled. 

 
Figure 1. Possible desk types and positions in the grid. 

Without constraints the search space is large: for an n × n plan 
grid the number of possible solutions is 6n² or roughly 10112 for 
even a small plan of n=12. Within this the majority are 
nonsensical arrangements and unusable spaces: large numbers of 
desks clumped together with no access or impassable groups 
blocking individual units. It is more efficient to assume the 
convex open area as the basic unit of space [7], and define this 
instead of individual desks. To enable access to all seats, it is 
assumed that desks are placed around the perimeter of a convex 
space with chairs facing toward the centre. Convex spaces may be 
connected together by the absence of desks to allow passage from 
one to the next.  

2.1 Genome Representation 
A parametric model is used to determine the shape, size and 
connectivity of spaces, but these can be repeated over any sized 
plan. Convex spaces are laid out according to a larger grid, its size 
and the configuration of desks within spaces determined by five 
distinct parameters:  

di the i-axis size of a space unit (integer 2 to 9) 

dj  the j-axis size of a space unit (integer 2 to 9) 

off optional offset of every second row (integer 0 to 7) 

C distance along the side of a space for a passage (4 × 4 
array of reals –1 to 1) 

G indices indicating which spaces to use from C (4 × 1 
array of integers 1 to 4) 

The five parameters are converted to binary values and assembled 
to form a single gene string for use in the GA. The real valued 
distances of C are approximated to five bits to ensure a resolution 
not less than that of the maximum length of di or dj. All 
parameters taken together form a 97 bit string which is operated 
upon using standard binary mutation and two point crossover. 
There is some redundancy in the encoding of four desk 
configurations in C when some may not be used, and in the 
unused, negative portion of the range of C, but the total size of the 
search space is no greater than 297 or roughly 1029. This is far 
smaller than the unconstrained search space and is constant 
regardless of the plan size. 

2.2 Graph Representation of Spatial Features 
In evaluating the phenotype, the parameters that will form the 
objective function are initially unknown, so we must begin with 
initial data that is as generic and comprehensive as possible. A 
method is required through which to encode all qualities of the 
space that may become necessary features in the feature space Φ. 
Two related techniques, visibility graph analysis [19] and axial 

graph analysis [7,18] have demonstrated the effectiveness of 
graph representations as a general approach for varied plan types.  

Properties of visibility and axial graphs have been shown to be 
strongly related to both spatial perception and resulting behaviour 
of people within spaces. Strong correlations have been found with 
measures of visibility graphs and observed way-finding, 
movement and use in buildings [19] and urban pedestrian 
movement [3]. Axial graphs have likewise been shown to be 
closely related to directly observed movement [13,8], building use 
and social interaction [16], and indirect behaviour such as land 
values and crime [9]. 

As a generic evaluation technique, graph representations are both 
spatially relevant and capable of capturing necessary variation. 
Crucially, the graph is also very different from the genome 
representation. Three methods of graph representation are used 
that can be derived from the plan phenotype: an axial or visibility 
graph between seats, and two versions of a modified boundary 
graph – one for open spaces and another for desk groups. 
Common to all three is that the basic unit of spatial division is the 
desk or empty grid square.  

 
Figure 2. Three graphs derived from the plan: axial (top), 

boundary (centre) and desk graphs (bottom) are shown for 
two differing plans. 

2.2.1 Axial / visibility graph features 
An algorithm was implemented to generate axial (visibility) maps 
by drawing links between each chair node to every other chair 
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node that can be connected by an unobstructed, direct sight line 
through empty space. This differs from an axial line map defined 
by plan vertices [18], but the use of the set modules with chair 
points as the only possible nodes greatly reduces the computation 
time necessary to generate a graph. Graph nodes in this 
representation are not the lines themselves, but the chair points in 
the plan. Two examples of the resulting axial graphs are displayed 
in figure 2 (top). 

2.2.2 Boundary graph features 
The boundary graph is meant to capture all immediate or 
continuous spatial connections, regardless of sight. The basic 
node is still taken as the individual chair point, but empty space is 
also considered and links are drawn only between nodes that are 
directly face-wise adjacent. A chair point is connected to any 
other chair immediately behind or to the side or to an open space 
onto which it backs. All adjacent void spaces are then grouped 
together into one single node, regardless of size, representing all 
continuous space within the boundaries formed by the desks. 
Boundary graphs are shown in figure 2 (centre). 

2.2.3 Desk graph features 
Desk graphs capture the relationships between adjacent desks. 
They are generated by the same method as the boundary graphs, 
except the graph nodes are the desks rather than chairs, and these 
are connected to all other adjacent desks. The resulting graph will 
generally not be unified, but segmented into discrete sub-graphs 
each corresponding to a connected group of desks. The desk 
graphs for two plans are in figure 2 (bottom).   

2.3 Measuring between graphs 
Several approaches to similarity measurement have been based on 
small graphs of adjacency or connectivity of spaces in plan. 
Dalton and Kirsan [2] use the number of transformations 
necessary to derive one such graph from another to measure the 
similarity between buildings, and Jupp and Gero [10] suggest an 
analysis based on similarity and complexity measures of semantic 
graphs. With larger and more complex graphs as generated by 
axial lines, calculation of similarity becomes more difficult, but 
this can be overcome with graph spectral analysis. In image 
recognition applications, this has been used to effectively query a 
large database of logotype images for matches [14]. Spectral 
analysis of a graph uses the eigenvalues and eigenvectors of its 
connectivity matrix, and is relevant to the kinds of analysis 
considered here. The spectrum of a graph, or ordered set of 
eigenvalues, is useful in that it can be used to represent the graph 
as a single feature vector. 

For any graph with a set of nodes V and a set of edges E, the 
adjacency matrix A is a |V| × |V| matrix defined by:  

  ⎧  1 if (i,j) ∈ E 
A(i,j) = ⎨         or 

⎩  0 otherwise.   (1) 

The spectrum of the graph is defined as the set of ordered 
eigenvalues of this matrix, sorted such that any isomorphic graphs 
will have the same order of eigenvalues. Sorting by value, such 
that λ1 < λ2 < … < λ|V|, the spectrum will be a vector composed of 
the |V| eigenvalues: 

S = ( λ1, λ2, … , λ|V|)T.    (2) 

A feature vector of dimensionality n is derived from this by 
performing a cubic spline interpolation of the |V| values in S to a 
new vector 

S’ = ( l1, l 2, … , l n)T,    (3) 

and thus all spectra may be mapped in the same n-dimensional 
space [5].  

3. METHOD OF PLAN GENERATION 
With such a measurement, and given an existing plan as a goal, 
fitness in the GA may be calculated as inversely proportional to 
the distance between a given plan’s graph and that of the given 
prototype: 

f(i) = 1 /  √ ∑j=1:n ( S’i (j) – S’goal (j) )2  (4) 

where S’ is the spectrum as given in (3). 

When such a goal is impossible to determine explicitly, a group of 
plans may be selected as examples. As a simple case, one might 
desire a general arrangement of groups of regular, outward facing 
desks as in Figure 2 (left) as opposed to linear rows, inward 
facing groups or random clumps. The size of these groups may be 
irrelevant, as may be their position relative to one another. Such a 
design goal is admittedly straightforward to describe, and to 
evaluate visually, but does not appear explicitly in the spectral 
analyses. A group of existing plans may be selected that have this 
arrangement of desks, along with another that has an undesirable 
arrangement of rows. 

As a source of plans, the ClassPlan data set was created manually 
from 128 permutations of five parameters. Three affect local desk 
arrangement: 

variable 1: convex groups or linear rows 
variable 2: groups aligned or staggered 
variable 3: local length of desk groups 

and two represent global configuration: 

variable 4: space filled with desks or partially open 
variable 5: global plan shape and size (12 × 12, 24 × 12, 
12 × 24 or 24 × 24) 

These plans were intentionally created always to slightly differ 
from those which can be created by the parametric representation 
in section 2.1. 

The feature space mapping Φ(·) is created in which to measure the 
plans:  

{z1, …, zi } = Φ(S’) = Φ( { l1, l 2, … , l n } ).  (5) 

To do so, a feed-forward multilayer perceptron (MLP) was 
trained to classify two sets of 64 plans, one consisting of convex 
groups with a single target output of z = –1, and another of linear 
rows with a target of z = 1. The resulting mapping places the n-
dimensional spectrum S’ in a one-dimensional feature space Φ in 
which all convex group plans are clustered near a single point 
regardless of their other features of size, etc. The major 
consideration in the configuration of the network is the size of the 
hidden layer, which determines ability to discriminate or 
generalise, and was found to affect classification accuracy by up 
to 15% between 10 and 120 nodes. A hidden layer of 20 nodes 
was found by cross-validation to be the optimal configuration for 
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classifying the plans in ClassPlan, and was used for all 
subsequent experiments. 

The fitness is calculated much the same as in (4), except the 
distance is measured not to an objective prototype plan in the full 
feature space of the spectrum but as a distance within this reduced 
feature space.  

f(i) = 1 /  √ (Φ(S’i) – Φ(S’goal) )2   (6) 

The goal is set either to the measured position of the mean of the 
ideal plans, or simply to the original target of z = ±1. With a 
trained network these values are similar; in the following example 
the means are –0.996 and 0.982, and so the targets –1 and 1 were 
used.  

Figure 3 shows the results of two typical runs of the GA to evolve 
examples of a given class in the above feature space, either 
convex groups or linear rows. The algorithm has a population size 
of 40, a mutation rate of 4% and employed fitness proportional 
selection. Both results are recognisably of the target class but the 
designs evolved are novel: neither were present in the initial data 
set on which the MLP was trained.  

 
Figure 3. Plans produced by the GA for opposing objectives. 

3.1 Clarifying the Search/Perception Space 
An examination of the fitness over time in figure 3 (left) reveals 
in both cases an extreme jump in fitness after the first few 
generations after which no further improvement is made. For a 
GA to conduct an efficient search, it is desirable to have changes 
to the genome affect corresponding and ideally proportional 
changes to the fitness of the phenotype [1], but with an ideally 
trained two-class classifier that the MLP approximates, the 
response of all inputs within a class will be identical and 
equidistant from all examples of the opposite class. There is thus 
little variance in fitness unless the goal class has been achieved 
and no capacity to direct the search by fitness. 

This section will examine ways in which the perceptual space in 
which fitness is measured can be made more amenable to search 
by GA, and deals with two issues of usability of such a network in 

actual design. Two methods are suggested for improving the 
training of the MLP to yield a more navigable fitness landscape. 
While a continuous fitness evaluation is desired, it is often easier 
for a user to make a binary classification than to assign accurate 
continuous values, so the first develops a continuously variable 
feature space from training on discrete targets by tuning the 
activation function g(·) to saturate at the targets during training. 
The second begins training from weights initialised to the 
principal components of the data. These are tested below. 

3.1.1 Tuning the activation function g(·) 
Alteration of a neural network between training and evaluation to 
access learned internal representations is employed in 
unsupervised learning to make evaluations not explicit in the 
training output. The removal of the output layers of auto-
encoders, for example, can yield a principal or non-linear 
component analysis in a hidden layer [4]. A similar strategy is 
examined here to refine the feature space beyond the labels used 
in training. Classification of data toward discrete, opposing 
targets is appropriate given the construction of the ClassPlan data 
set and makes initial labelling easier for the user, but is 
detrimental to the later GA search. It is therefore desirable to 
allow the machine to be trained on a binary classification but 
make its evaluations on a continuous scale. It is the sigmoid 
activation function [4] in the MLP 

g(net) = α tanh(β net) = α (e+β net – e–β net) / (e+β net + e–β net)
      (7) 

that ultimately determines the placement of a sample in Φ, and the 
parameter α limits the range of activation values to ±α, where all 
extreme values saturate at the function’s asymptotes. If the 
network is trained with such a function and then used in fitness 
evaluation with the linear activation 

g(net) = α net     (8) 

in the output units only, this will disperse the values formerly 
saturating the asymptotes at ±α over the entire linear range ±∞.  

This can be enhanced by tightening the training function even 
further. A typical setting of α = 1.716 [4] results in a g(·) that is 
nearly linear in the target range [–1, 1]. If α = 1.0 is used so that 
g(·) saturates at the classification target values ±1, almost all 
values for net > 0 result in g(net) ≈ 1.0 and values for net < 0 
result in g(net) ≈ –1.0. This produces a more continuous space for 
evaluation. 

3.1.2 Validating the Continuity of Φ 
Zhu and Wilson [21] measure the effectiveness of spectral 
representations by comparing sequential distances between 
spectra with known edit distances when creating the graphs 
themselves. Similarly, the continuity of the feature space Φ can be 
judged by comparing distances against changes to a known 
parameter in the plans. A new plan set, SeqPlan, was used, 
consisting of four groups of 100 plans, each of which varies 
monotonically in ten steps of two parameters. One of these 
parameters is local (number of desks to a group) and corresponds 
roughly to variable 3 in the ClassPlan set, and the other is global 
(averall plan size), corresponding to variable 5. Each of these four 
plan sets has a different general configuration of desks. As 
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Figure 4. Uniform changes of parameters plotted in various 

feature spaces. 

in Section 3, the mapping Φ(·) was created based on variables 3 
and 5 of the ClassPlan set and then used to evaluate the 
corresponding features of the sequential data set. Ideally, even 
while trained only on opposing examples, the placement of sets of 
sequentially varying plans will still be incremental in Φ. The 
utility of the resulting space is then judged in terms of how 
closely linear the resulting output is.  

Results of training with the ‘tight’ sigmoid of α = 1.0 are 
displayed in figure 4b in comparison with a larger α = 1.716  

(figure 4a), and a general straightening of the sequences of plans 
is evident. The corresponding mean relative deviations are 
displayed in table 1. The overall relative deviation is seen to 
decrease by more than one third when trained with the ‘tight’ 
sigmoid α = 1.0, reducing in all cases except for that of the plan 
type 3 (the lightest line on the plots). 

3.1.3 Initialising weights with principal components 
An algorithm trained on the two class polarity of variables in 
ClassPlan must interpolate to a much finer degree in evaluating a 
complete set of ten sequential plans in SeqPlan. With the 
initialisation of MLP weights at random, it is possible that an 
inappropriate initial setting is not adequately ‘unlearned’ by the 
limited examples in the training set, and so the use of a decent 
first guess for these weights is compared to that of random 
initialisation. 

The principal components of the data set by definition capture 
most of the variability of the examples, and their orthogonality 
ensures that there will be no redundancy in the network. PCA is 
performed on the training set to yield the set of eigenvalues λ and 
eigenvectors φ of the covariance matrix, which are sorted in order 
of decreasing magnitude of |λ|. The MLP is to be trained with 20 
hidden nodes, so the first 20 { λ1 , λ2 , … , λ20 } and { φ1 , φ2 , … , 
φ20

 } are used. The eigenvectors representing the orthogonal 
principal components are used for the hidden layer weights, such 
that the net activation netj at a hidden layer node represents the 
projection of a given sample onto that component, and the 
eigenvalues are used for the output layer weights to weight the 
output in favour of the largest components. Because the 
projections can be quite large, and enter the saturation regions of 
g(·), these initial weights were scaled by 0.2 to maintain a net 
largely within the near-linear range of g(·). Each weight then is 
given by 

wij =  0.2 × φ j(i)    (9) 

wjk =  0.2 × λ j      (10) 

for the input and hidden layers respectively. 

Again, the performance was measured in terms of relative 
deviation of the sequences in SeqPlan. The output of the network 
trained on the ‘tight’ sigmoid with weights initialised as above in 
(9) and (10) is displayed in Figure 4c and the results of training 
with both activation functions are listed in Table 1. The mean 
relative deviations are seen to decrease with the use of principal 
components as the initial weights, and this occurs for most of the 
sample sets in both classes. The best overall definition of Φ 
appears to be given by training with both the tight sigmoid and 
initialising the MLP with the principle components of the data set. 

4. RESULTS 
The method was tested first in optimising to particular objectives 
defined by a series of plans as in section 3, and then in attempting 
to match individual plans as goals within the feature space Φ. The 
GA was run with a population size of 40, each time for 200 
generations, to produce plans constrained to a 12×12 grid. Fitness 
is calculated as inverse distance to a target in Φ as in (6). In all 
cases, examples of the ClassPlan set were used as the examples 
from which to derive the objective. It is relevant to note that 
because of the intentional mismatch between the genome 
representation and the ClassPlan set it is impossible to exactly 

Table 1. Mean relative deviations in Φ for various training 
methods. 

 Random initial weights Weights initialised from PCA 
 Normal 

training 
Tight sigmoid 
[-1,1] 

Normal 
training 

Tight sigmoid 
[-1,1] 

variable 5 3 5 3 5 3 5 3 

Type 1 .394 .410 .120 .375 .191 .363 .159 .351 
Type 2 .468 .348 .133 .300 .205 .200 .170 .194 
Type 3 .749 .571 .208 .750 .418 .581 .317 .590 
Type 4 .453 .344 .166 .341 .311 .269 .257 .284 
Mean .516 .418 .157 .441 .281 .353 .226 .355 
Method 
mean 

.467 .299 .317 .291 
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duplicate a particular ClassPlan example, so optimisation is 
intentionally restricted to approximating these plans. 

4.1 Optimising to Learned Objectives 
Although any labelling of example plans could be used to create 
the feature space Φ in which fitness is measured, the effectiveness 
of the algorithm is more easily judged when the goal is visually 
recognisable. The variables initially used to create the data set 
were used as objectives for the GA as each easily provides two 
opposing classes of 64 plans, but because global size was 
restricted to 12×12, only the local variables were used. 

Figures 5, 6 and 7 show the results of five runs of the GA for 
objectives set to each of the extremes of variables 1, 2 and 3. Two 
example plans from the training set are shown at left to represent 
the objective defined by Φ, although these represent a much 
larger group of 64 plans of varying arrangement and overall size. 
At right the best solutions found are drawn with their distance to 
the goal indicated.  

Each set of evolved plans can be seen to indicate the features 
common to the example plans: straight rows, small group size, 
etc., indicating both that the objective has been defined and that 
the GA was able to satisfy it. It is also evident that for each run 
the features not included in Φ are irrelevant. In Figure 5, the top 
row of plans contains only non-linear, convex groups of desks, 
but these range in size from small clumps of three or four (first 
plans at left) to large room like spaces of more than twenty (last 
plans on right).  

Some variation exists in the apparent accuracy to which the GA 
meets the supposed objectives. Although these can only be judged 
empirically, this accuracy may be graded by counting each plan 
recognisably in the correct class as a value of 1, each one not as a 
value of 0, and those undecided as 0.5. Over a trial of ten runs, the 
statistical accuracy for each of the classification variables was 
judged to be the following: 

variable 1. convex groups or linear rows: 95% 
variable 2. aligned or staggered groups: 70% 
variable 3. small or large groups:  90% 

This appears to match the ability of the MLP to learn the 
distinction between the initial sets on which it was trained. The 
accuracy of the classification as judged by cross validation on 
these three variables was 100%, 92% and 93%, differing in value 
from the above figures, but ranking the variables in the same 
order in terms of clarity or distinctiveness in the feature space. As 
indicated by the small distances to the objectives in Figure 5, 
these inaccuracies in the aligned and staggered group plans are 
due to the difficulty in initial MLP training to this variable, rather 
than the GA optimisation. Of the three, this also is the most 
difficult feature for the human eye to discern, and it is likely that 
a different, perhaps larger, training set of example plans would be 
needed to improve the results. 

 

 
Figure 5. Results of the GA producing convex groups (top), or 

linear rows (bottom). Sample plans representative of the 
training sets are shown at left. 

 

 
Figure 6. Results of the GA producing aligned (top), or 

staggered groups (bottom). 
 

Figure 7. Results of the GA producing small (top), or large 
groups (bottom). 
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4.2 Matching Plans in ClassPlan 
The above used a single labelling of plan groups to implicitly 
define an objective in a one dimensional space, but the same can 
be extended to a greater number of dimensions. The space may be 
created either by combining the dimensions of several training 
sessions of the MLP, or by using a label of several dimensions for 
each plan and training once. As before, the objective is 
represented by a goal point within this space Φ. 

A test of the method in optimising toward a multidimensional 
objective was conducted by deriving goals from all five of the 
variables represented by the ClassPlan set simultaneously. For 
purposes of visual evaluation these objectives were set equal to a 
particular known plan. Fitness would be a simple comparison 
against the existing plan, with one crucial difference in that all 
evaluation is performed in the learned feature space: a space only 
of five dimensions rather than hundreds. All five variables were 
expressed in the feature space, for a five dimensional 
measurement of the objective function (6).  

The optimisation was performed with targets set to match eight 
different plans in ClassPlan. Again, the three local variables were 
used to select these, and the selection of all permutations of the 
polar targets –1 and +1 for each of these variables in combination 
yielded the eight separate plans displayed in Figure 8 (left). The 
GA was run three times for each objective, and the results are 
displayed in Figure 8 (right), again with the distances in feature 
space of the resulting solutions displayed above. 

A visual analysis of the resulting plans confirms the similarity of 
the matches to the targets chosen. The first variable, contrasting 
convex groups with straight rows is easy to see in the examples, 
and is clearly emulated in all 24 cases except one: an attempt to 
match plan 81 which produces large convex groups rather than 
short rows. The second variable contrasts aligned groups (plans 1, 
4, 65, 68) with staggered (plans 17, 20, 81, 84). Although the 
novel group arrangements introduce some subjectivity into the 
validation, between 13 and 18 of the 24 results are members of 
the appropriate class. There is again some subjectivity in the 
judgement of the third variable of group length, as the ‘short’ 
example plans (1, 17, 65, 81) have two to three desks in a 
‘typical’ line while the ‘long’ examples (4, 20, 68, 84) have five 
or six. If one attempts to find the typical length of a row of desks 
in any of the resulting plans and counts 2, 3 or 4 as ‘short’, and 5, 
6 or 7 as ‘long’ then the number of plans that accurately meet 
their target is between 18 and 23 of the total 24. 

Unsurprisingly, the inclusion of more criteria in the objective 
function results in a more difficult search than in section 4.1. 
Evaluated by the same method the statistical accuracies over 24 
runs are slightly lower: 

variable 1. convex groups or linear rows: 96% 
variable 2. aligned or staggered groups: 67% 
variable 3. small or large groups:  83% 

Again the varying ability of the GA to produce plans to fit each of 
the classes correlates with the varying ability of the MLP to learn 
each of the variables as indicated by the cross-validation in sec. 
4.1.  

 
Figure 8. Results of the GA searching for a match to a plan in 

a multidimensional feature space Φ. 

5. CONCLUSION 
Rather than explicitly stating a measurement of fitness, this paper 
proposed that an objective function can be derived implicitly from 
a set of examples. A method has been developed to generate a 
space Φ in which fitness can be measured as a distance to a goal. 
Only the features relevant to the examples provided are expressed 
in this space, and so for an example set of given variance, the 
objective will have a corresponding variance. It has been shown 
how the space can be refined for easer search, improving the 
utility of the method for use in practice. 

A GA was implemented with implicitly defined objective 
functions for an office plan problem, and evolved plans show the 
features suggested by the sample sets on which the mapping to Φ 
was created. At no point were these features ever stated explicitly 
as a goal, but only implied by the set of selected example plans. 
The similarity of the results to the features selected in Section 4.1 
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and to specific plans in 4.2 indicates both that the objective can be 
learned, and that it is useful in GA optimisation. 

Because the reduced dimensionality of the feature space in which 
the fitness is measured only captures the relevant features, there 
may be many points in the full search space that are equidistant 
from any particular goal in Φ. Within this range there is a large 
and varied set of optimal solutions, not unlike the Pareto optimal 
set of a multiobjective problem. Increasing the dimensionality of 
Φ but maintaining a specific point as the goal effectively adds 
criteria to the objective, making it more specific. This is 
evidenced by the results of Section 4.2, in which the three plans 
shown for each objective when matching plans (Figure 8) in 
general appear far more alike than those for a given run of the 
single dimension GA in Section 4.1. 

The classes chosen to define the objectives in Section 4.1 appear 
obvious to the eye, but are not clearly evident in the graph 
spectrum itself. The fact that they can be distinguished in this way 
indicates that arbitrary classes may be used, including far more 
subtle but relevant distinctions. The benefit of the method is that 
it could be extended to more complex problems in which the 
objectives are not evident to the user. 

In many design situations where it is difficult to determine a 
measurement of fitness, this would provide a potentially more 
natural way for designers to work with setting objectives. These 
are still set precisely, but are implicit, not explicit. Experience and 
empirical observation of designs in the real world often indicates 
examples that perform well or poorly for reasons too complex to 
be fully evident even under close analysis, and such a definition 
of objectives is equivalent to saying ‘make something like these’. 
The method has been demonstrated for the example of office plan 
layout, but applies to all domains of design. 
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