
Defining Implicit Objective Functions for Design Problems
Sean Hanna

Bartlett School of Graduate Studies
University College London

1-19 Torrington Place
London WC1E 7HB
+44 (0)20 7679 1661

s.hanna@ucl.ac.uk

ABSTRACT
In many design tasks it is difficult to explicitly define an objective
function. This paper uses machine learning to derive an objective
in a feature space based on selected examples of previous designs,
thus implicitly capturing the features that distinguish that set from
others without requiring a predetermined measure of fitness. A
genetic algorithm is used to generate new designs, and these are
shown to recognisably display the appropriate features. It is
demonstrated that the range of relevant features and optimal
solutions is easily varied in proportion to the examples selected to
define the objective. Methods for improving the function for GA
search are discussed.

Track: Real-World Applications.

Categories and Subject Descriptors
I.5.5 [Pattern Recognition]: Implementation – interactive
systems, special architectures.

J.6 Computer-Aided Engineering – Computer-aided design (CAD

General Terms
Algorithms, Design, Experimentation.

Keywords
Architecture, design/synthesis, fitness evaluation, genetic
algorithm, machine learning.

1. INTRODUCTION
The ability of evolutionary algorithms and related search
techniques to explore a varied space of solutions with efficiency
and often surprising innovation makes them useful tools for
design [1]. This typically requires the explicit definition of a goal
or objective function and so has been ideally suited to engineering
optimisation tasks. For many design problems however, and
particularly for those of great complexity, it is difficult to specify
such a goal in advance.

Design and creativity themselves, particularly in a social context,
are often seen as processes of guided, but open exploration. Steels
[17] has shown that effective languages can be generated without
an external measure of quality by allowing robots to speak and
evaluate each other in an environment, and Nehaniv and
Dautenhahn [12] propose an algebraic framework for similar
imitation and interaction. Such approaches have been
incorporated into genetic algorithms by allowing the objective to
change over time. Saunders and Gero [13] allow a consensus of a
community of agents to guide this, and alternatively Maher and
Poon [11] co-evolve both goals and solutions simultaneously.
Alternatively, multiobjective optimisation methods such as Pareto
optimisation [20] allow broader definitions of a goal by finding a
range of possible solutions, but each single objective must be
clearly defined.

The method presented here generates an objective function for a
genetic algorithm (GA) based only on labelled or classified
examples of previous designs, and thus requires no explicit
statement of objectives. It uses supervised learning to reduce the
dimensionality of initial parameters to a low dimensional feature
space Φ, in which only the features relevant to the original
classification apply. This space is related to the notion of the
archetype as described in [6]. Fitness is then determined by a
distance measurement within this space.

This is demonstrated in the design of office floor plans, in which
the location and orientation of many desk units form a complex
spatial configuration. It is a problem of sufficient complexity that
no consensus on measures of fitness currently exists. In practical
use the designer need not specify one, but simply classify plans.
The grid representation is generic, and can just as well apply to
other domains such as urban form. The representation of
solutions, both in the genome and in fitness evaluation is
described first below, followed by the method of constructing Φ.
Methods for improving the mapping are detailed, and the method
is tested to evolve solutions as defined by various sets of
archetypal plans.

2. PLAN REPRESENTATION
Several methods were used in this research to represent the layout
of desks within a plan, one of which is detailed here. These vary
in the amount of constraints used and the corresponding size of
the search space. All take an underlying orthogonal grid as their
structure, and as such, only produce orthogonal arrangements as
implemented, but could be used with plans that contain several
non-orthogonal grids or in principal extended for use with
hexagonal or other planning grids if required. The methods
ultimately represent desk/chair units as a filled/void pair within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

2013

one grid square. These may be in one of four orientations, as well
as completely empty or completely filled.

Figure 1. Possible desk types and positions in the grid.

Without constraints the search space is large: for an n × n plan
grid the number of possible solutions is 6n² or roughly 10112 for
even a small plan of n=12. Within this the majority are
nonsensical arrangements and unusable spaces: large numbers of
desks clumped together with no access or impassable groups
blocking individual units. It is more efficient to assume the
convex open area as the basic unit of space [7], and define this
instead of individual desks. To enable access to all seats, it is
assumed that desks are placed around the perimeter of a convex
space with chairs facing toward the centre. Convex spaces may be
connected together by the absence of desks to allow passage from
one to the next.

2.1 Genome Representation
A parametric model is used to determine the shape, size and
connectivity of spaces, but these can be repeated over any sized
plan. Convex spaces are laid out according to a larger grid, its size
and the configuration of desks within spaces determined by five
distinct parameters:

di the i-axis size of a space unit (integer 2 to 9)

dj the j-axis size of a space unit (integer 2 to 9)

off optional offset of every second row (integer 0 to 7)

C distance along the side of a space for a passage (4 × 4
array of reals –1 to 1)

G indices indicating which spaces to use from C (4 × 1
array of integers 1 to 4)

The five parameters are converted to binary values and assembled
to form a single gene string for use in the GA. The real valued
distances of C are approximated to five bits to ensure a resolution
not less than that of the maximum length of di or dj. All
parameters taken together form a 97 bit string which is operated
upon using standard binary mutation and two point crossover.
There is some redundancy in the encoding of four desk
configurations in C when some may not be used, and in the
unused, negative portion of the range of C, but the total size of the
search space is no greater than 297 or roughly 1029. This is far
smaller than the unconstrained search space and is constant
regardless of the plan size.

2.2 Graph Representation of Spatial Features
In evaluating the phenotype, the parameters that will form the
objective function are initially unknown, so we must begin with
initial data that is as generic and comprehensive as possible. A
method is required through which to encode all qualities of the
space that may become necessary features in the feature space Φ.
Two related techniques, visibility graph analysis [19] and axial

graph analysis [7,18] have demonstrated the effectiveness of
graph representations as a general approach for varied plan types.

Properties of visibility and axial graphs have been shown to be
strongly related to both spatial perception and resulting behaviour
of people within spaces. Strong correlations have been found with
measures of visibility graphs and observed way-finding,
movement and use in buildings [19] and urban pedestrian
movement [3]. Axial graphs have likewise been shown to be
closely related to directly observed movement [13,8], building use
and social interaction [16], and indirect behaviour such as land
values and crime [9].

As a generic evaluation technique, graph representations are both
spatially relevant and capable of capturing necessary variation.
Crucially, the graph is also very different from the genome
representation. Three methods of graph representation are used
that can be derived from the plan phenotype: an axial or visibility
graph between seats, and two versions of a modified boundary
graph – one for open spaces and another for desk groups.
Common to all three is that the basic unit of spatial division is the
desk or empty grid square.

Figure 2. Three graphs derived from the plan: axial (top),

boundary (centre) and desk graphs (bottom) are shown for
two differing plans.

2.2.1 Axial / visibility graph features
An algorithm was implemented to generate axial (visibility) maps
by drawing links between each chair node to every other chair

2014

node that can be connected by an unobstructed, direct sight line
through empty space. This differs from an axial line map defined
by plan vertices [18], but the use of the set modules with chair
points as the only possible nodes greatly reduces the computation
time necessary to generate a graph. Graph nodes in this
representation are not the lines themselves, but the chair points in
the plan. Two examples of the resulting axial graphs are displayed
in figure 2 (top).

2.2.2 Boundary graph features
The boundary graph is meant to capture all immediate or
continuous spatial connections, regardless of sight. The basic
node is still taken as the individual chair point, but empty space is
also considered and links are drawn only between nodes that are
directly face-wise adjacent. A chair point is connected to any
other chair immediately behind or to the side or to an open space
onto which it backs. All adjacent void spaces are then grouped
together into one single node, regardless of size, representing all
continuous space within the boundaries formed by the desks.
Boundary graphs are shown in figure 2 (centre).

2.2.3 Desk graph features
Desk graphs capture the relationships between adjacent desks.
They are generated by the same method as the boundary graphs,
except the graph nodes are the desks rather than chairs, and these
are connected to all other adjacent desks. The resulting graph will
generally not be unified, but segmented into discrete sub-graphs
each corresponding to a connected group of desks. The desk
graphs for two plans are in figure 2 (bottom).

2.3 Measuring between graphs
Several approaches to similarity measurement have been based on
small graphs of adjacency or connectivity of spaces in plan.
Dalton and Kirsan [2] use the number of transformations
necessary to derive one such graph from another to measure the
similarity between buildings, and Jupp and Gero [10] suggest an
analysis based on similarity and complexity measures of semantic
graphs. With larger and more complex graphs as generated by
axial lines, calculation of similarity becomes more difficult, but
this can be overcome with graph spectral analysis. In image
recognition applications, this has been used to effectively query a
large database of logotype images for matches [14]. Spectral
analysis of a graph uses the eigenvalues and eigenvectors of its
connectivity matrix, and is relevant to the kinds of analysis
considered here. The spectrum of a graph, or ordered set of
eigenvalues, is useful in that it can be used to represent the graph
as a single feature vector.

For any graph with a set of nodes V and a set of edges E, the
adjacency matrix A is a |V| × |V| matrix defined by:

 ⎧ 1 if (i,j) ∈ E
A(i,j) = ⎨ or

⎩ 0 otherwise. (1)

The spectrum of the graph is defined as the set of ordered
eigenvalues of this matrix, sorted such that any isomorphic graphs
will have the same order of eigenvalues. Sorting by value, such
that λ1 < λ2 < … < λ|V|, the spectrum will be a vector composed of
the |V| eigenvalues:

S = (λ1, λ2, … , λ|V|)T. (2)

A feature vector of dimensionality n is derived from this by
performing a cubic spline interpolation of the |V| values in S to a
new vector

S’ = (l1, l 2, … , l n)T, (3)

and thus all spectra may be mapped in the same n-dimensional
space [5].

3. METHOD OF PLAN GENERATION
With such a measurement, and given an existing plan as a goal,
fitness in the GA may be calculated as inversely proportional to
the distance between a given plan’s graph and that of the given
prototype:

f(i) = 1 / √ ∑j=1:n (S’i (j) – S’goal (j))2 (4)

where S’ is the spectrum as given in (3).

When such a goal is impossible to determine explicitly, a group of
plans may be selected as examples. As a simple case, one might
desire a general arrangement of groups of regular, outward facing
desks as in Figure 2 (left) as opposed to linear rows, inward
facing groups or random clumps. The size of these groups may be
irrelevant, as may be their position relative to one another. Such a
design goal is admittedly straightforward to describe, and to
evaluate visually, but does not appear explicitly in the spectral
analyses. A group of existing plans may be selected that have this
arrangement of desks, along with another that has an undesirable
arrangement of rows.

As a source of plans, the ClassPlan data set was created manually
from 128 permutations of five parameters. Three affect local desk
arrangement:

variable 1: convex groups or linear rows
variable 2: groups aligned or staggered
variable 3: local length of desk groups

and two represent global configuration:

variable 4: space filled with desks or partially open
variable 5: global plan shape and size (12 × 12, 24 × 12,
12 × 24 or 24 × 24)

These plans were intentionally created always to slightly differ
from those which can be created by the parametric representation
in section 2.1.

The feature space mapping Φ(·) is created in which to measure the
plans:

{z1, …, zi } = Φ(S’) = Φ({ l1, l 2, … , l n }). (5)

To do so, a feed-forward multilayer perceptron (MLP) was
trained to classify two sets of 64 plans, one consisting of convex
groups with a single target output of z = –1, and another of linear
rows with a target of z = 1. The resulting mapping places the n-
dimensional spectrum S’ in a one-dimensional feature space Φ in
which all convex group plans are clustered near a single point
regardless of their other features of size, etc. The major
consideration in the configuration of the network is the size of the
hidden layer, which determines ability to discriminate or
generalise, and was found to affect classification accuracy by up
to 15% between 10 and 120 nodes. A hidden layer of 20 nodes
was found by cross-validation to be the optimal configuration for

2015

classifying the plans in ClassPlan, and was used for all
subsequent experiments.

The fitness is calculated much the same as in (4), except the
distance is measured not to an objective prototype plan in the full
feature space of the spectrum but as a distance within this reduced
feature space.

f(i) = 1 / √ (Φ(S’i) – Φ(S’goal))2 (6)

The goal is set either to the measured position of the mean of the
ideal plans, or simply to the original target of z = ±1. With a
trained network these values are similar; in the following example
the means are –0.996 and 0.982, and so the targets –1 and 1 were
used.

Figure 3 shows the results of two typical runs of the GA to evolve
examples of a given class in the above feature space, either
convex groups or linear rows. The algorithm has a population size
of 40, a mutation rate of 4% and employed fitness proportional
selection. Both results are recognisably of the target class but the
designs evolved are novel: neither were present in the initial data
set on which the MLP was trained.

Figure 3. Plans produced by the GA for opposing objectives.

3.1 Clarifying the Search/Perception Space
An examination of the fitness over time in figure 3 (left) reveals
in both cases an extreme jump in fitness after the first few
generations after which no further improvement is made. For a
GA to conduct an efficient search, it is desirable to have changes
to the genome affect corresponding and ideally proportional
changes to the fitness of the phenotype [1], but with an ideally
trained two-class classifier that the MLP approximates, the
response of all inputs within a class will be identical and
equidistant from all examples of the opposite class. There is thus
little variance in fitness unless the goal class has been achieved
and no capacity to direct the search by fitness.

This section will examine ways in which the perceptual space in
which fitness is measured can be made more amenable to search
by GA, and deals with two issues of usability of such a network in

actual design. Two methods are suggested for improving the
training of the MLP to yield a more navigable fitness landscape.
While a continuous fitness evaluation is desired, it is often easier
for a user to make a binary classification than to assign accurate
continuous values, so the first develops a continuously variable
feature space from training on discrete targets by tuning the
activation function g(·) to saturate at the targets during training.
The second begins training from weights initialised to the
principal components of the data. These are tested below.

3.1.1 Tuning the activation function g(·)
Alteration of a neural network between training and evaluation to
access learned internal representations is employed in
unsupervised learning to make evaluations not explicit in the
training output. The removal of the output layers of auto-
encoders, for example, can yield a principal or non-linear
component analysis in a hidden layer [4]. A similar strategy is
examined here to refine the feature space beyond the labels used
in training. Classification of data toward discrete, opposing
targets is appropriate given the construction of the ClassPlan data
set and makes initial labelling easier for the user, but is
detrimental to the later GA search. It is therefore desirable to
allow the machine to be trained on a binary classification but
make its evaluations on a continuous scale. It is the sigmoid
activation function [4] in the MLP

g(net) = α tanh(β net) = α (e+β net – e–β net) / (e+β net + e–β net)
 (7)

that ultimately determines the placement of a sample in Φ, and the
parameter α limits the range of activation values to ±α, where all
extreme values saturate at the function’s asymptotes. If the
network is trained with such a function and then used in fitness
evaluation with the linear activation

g(net) = α net (8)

in the output units only, this will disperse the values formerly
saturating the asymptotes at ±α over the entire linear range ±∞.

This can be enhanced by tightening the training function even
further. A typical setting of α = 1.716 [4] results in a g(·) that is
nearly linear in the target range [–1, 1]. If α = 1.0 is used so that
g(·) saturates at the classification target values ±1, almost all
values for net > 0 result in g(net) ≈ 1.0 and values for net < 0
result in g(net) ≈ –1.0. This produces a more continuous space for
evaluation.

3.1.2 Validating the Continuity of Φ
Zhu and Wilson [21] measure the effectiveness of spectral
representations by comparing sequential distances between
spectra with known edit distances when creating the graphs
themselves. Similarly, the continuity of the feature space Φ can be
judged by comparing distances against changes to a known
parameter in the plans. A new plan set, SeqPlan, was used,
consisting of four groups of 100 plans, each of which varies
monotonically in ten steps of two parameters. One of these
parameters is local (number of desks to a group) and corresponds
roughly to variable 3 in the ClassPlan set, and the other is global
(averall plan size), corresponding to variable 5. Each of these four
plan sets has a different general configuration of desks. As

2016

Figure 4. Uniform changes of parameters plotted in various

feature spaces.

in Section 3, the mapping Φ(·) was created based on variables 3
and 5 of the ClassPlan set and then used to evaluate the
corresponding features of the sequential data set. Ideally, even
while trained only on opposing examples, the placement of sets of
sequentially varying plans will still be incremental in Φ. The
utility of the resulting space is then judged in terms of how
closely linear the resulting output is.

Results of training with the ‘tight’ sigmoid of α = 1.0 are
displayed in figure 4b in comparison with a larger α = 1.716

(figure 4a), and a general straightening of the sequences of plans
is evident. The corresponding mean relative deviations are
displayed in table 1. The overall relative deviation is seen to
decrease by more than one third when trained with the ‘tight’
sigmoid α = 1.0, reducing in all cases except for that of the plan
type 3 (the lightest line on the plots).

3.1.3 Initialising weights with principal components
An algorithm trained on the two class polarity of variables in
ClassPlan must interpolate to a much finer degree in evaluating a
complete set of ten sequential plans in SeqPlan. With the
initialisation of MLP weights at random, it is possible that an
inappropriate initial setting is not adequately ‘unlearned’ by the
limited examples in the training set, and so the use of a decent
first guess for these weights is compared to that of random
initialisation.

The principal components of the data set by definition capture
most of the variability of the examples, and their orthogonality
ensures that there will be no redundancy in the network. PCA is
performed on the training set to yield the set of eigenvalues λ and
eigenvectors φ of the covariance matrix, which are sorted in order
of decreasing magnitude of |λ|. The MLP is to be trained with 20
hidden nodes, so the first 20 { λ1 , λ2 , … , λ20 } and { φ1 , φ2 , … ,
φ20

 } are used. The eigenvectors representing the orthogonal
principal components are used for the hidden layer weights, such
that the net activation netj at a hidden layer node represents the
projection of a given sample onto that component, and the
eigenvalues are used for the output layer weights to weight the
output in favour of the largest components. Because the
projections can be quite large, and enter the saturation regions of
g(·), these initial weights were scaled by 0.2 to maintain a net
largely within the near-linear range of g(·). Each weight then is
given by

wij = 0.2 × φ j(i) (9)

wjk = 0.2 × λ j (10)

for the input and hidden layers respectively.

Again, the performance was measured in terms of relative
deviation of the sequences in SeqPlan. The output of the network
trained on the ‘tight’ sigmoid with weights initialised as above in
(9) and (10) is displayed in Figure 4c and the results of training
with both activation functions are listed in Table 1. The mean
relative deviations are seen to decrease with the use of principal
components as the initial weights, and this occurs for most of the
sample sets in both classes. The best overall definition of Φ
appears to be given by training with both the tight sigmoid and
initialising the MLP with the principle components of the data set.

4. RESULTS
The method was tested first in optimising to particular objectives
defined by a series of plans as in section 3, and then in attempting
to match individual plans as goals within the feature space Φ. The
GA was run with a population size of 40, each time for 200
generations, to produce plans constrained to a 12×12 grid. Fitness
is calculated as inverse distance to a target in Φ as in (6). In all
cases, examples of the ClassPlan set were used as the examples
from which to derive the objective. It is relevant to note that
because of the intentional mismatch between the genome
representation and the ClassPlan set it is impossible to exactly

Table 1. Mean relative deviations in Φ for various training
methods.

 Random initial weights Weights initialised from PCA
 Normal

training
Tight sigmoid
[-1,1]

Normal
training

Tight sigmoid
[-1,1]

variable 5 3 5 3 5 3 5 3

Type 1 .394 .410 .120 .375 .191 .363 .159 .351
Type 2 .468 .348 .133 .300 .205 .200 .170 .194
Type 3 .749 .571 .208 .750 .418 .581 .317 .590
Type 4 .453 .344 .166 .341 .311 .269 .257 .284
Mean .516 .418 .157 .441 .281 .353 .226 .355
Method
mean

.467 .299 .317 .291

2017

duplicate a particular ClassPlan example, so optimisation is
intentionally restricted to approximating these plans.

4.1 Optimising to Learned Objectives
Although any labelling of example plans could be used to create
the feature space Φ in which fitness is measured, the effectiveness
of the algorithm is more easily judged when the goal is visually
recognisable. The variables initially used to create the data set
were used as objectives for the GA as each easily provides two
opposing classes of 64 plans, but because global size was
restricted to 12×12, only the local variables were used.

Figures 5, 6 and 7 show the results of five runs of the GA for
objectives set to each of the extremes of variables 1, 2 and 3. Two
example plans from the training set are shown at left to represent
the objective defined by Φ, although these represent a much
larger group of 64 plans of varying arrangement and overall size.
At right the best solutions found are drawn with their distance to
the goal indicated.

Each set of evolved plans can be seen to indicate the features
common to the example plans: straight rows, small group size,
etc., indicating both that the objective has been defined and that
the GA was able to satisfy it. It is also evident that for each run
the features not included in Φ are irrelevant. In Figure 5, the top
row of plans contains only non-linear, convex groups of desks,
but these range in size from small clumps of three or four (first
plans at left) to large room like spaces of more than twenty (last
plans on right).

Some variation exists in the apparent accuracy to which the GA
meets the supposed objectives. Although these can only be judged
empirically, this accuracy may be graded by counting each plan
recognisably in the correct class as a value of 1, each one not as a
value of 0, and those undecided as 0.5. Over a trial of ten runs, the
statistical accuracy for each of the classification variables was
judged to be the following:

variable 1. convex groups or linear rows: 95%
variable 2. aligned or staggered groups: 70%
variable 3. small or large groups: 90%

This appears to match the ability of the MLP to learn the
distinction between the initial sets on which it was trained. The
accuracy of the classification as judged by cross validation on
these three variables was 100%, 92% and 93%, differing in value
from the above figures, but ranking the variables in the same
order in terms of clarity or distinctiveness in the feature space. As
indicated by the small distances to the objectives in Figure 5,
these inaccuracies in the aligned and staggered group plans are
due to the difficulty in initial MLP training to this variable, rather
than the GA optimisation. Of the three, this also is the most
difficult feature for the human eye to discern, and it is likely that
a different, perhaps larger, training set of example plans would be
needed to improve the results.

Figure 5. Results of the GA producing convex groups (top), or

linear rows (bottom). Sample plans representative of the
training sets are shown at left.

Figure 6. Results of the GA producing aligned (top), or

staggered groups (bottom).

Figure 7. Results of the GA producing small (top), or large
groups (bottom).

2018

4.2 Matching Plans in ClassPlan
The above used a single labelling of plan groups to implicitly
define an objective in a one dimensional space, but the same can
be extended to a greater number of dimensions. The space may be
created either by combining the dimensions of several training
sessions of the MLP, or by using a label of several dimensions for
each plan and training once. As before, the objective is
represented by a goal point within this space Φ.

A test of the method in optimising toward a multidimensional
objective was conducted by deriving goals from all five of the
variables represented by the ClassPlan set simultaneously. For
purposes of visual evaluation these objectives were set equal to a
particular known plan. Fitness would be a simple comparison
against the existing plan, with one crucial difference in that all
evaluation is performed in the learned feature space: a space only
of five dimensions rather than hundreds. All five variables were
expressed in the feature space, for a five dimensional
measurement of the objective function (6).

The optimisation was performed with targets set to match eight
different plans in ClassPlan. Again, the three local variables were
used to select these, and the selection of all permutations of the
polar targets –1 and +1 for each of these variables in combination
yielded the eight separate plans displayed in Figure 8 (left). The
GA was run three times for each objective, and the results are
displayed in Figure 8 (right), again with the distances in feature
space of the resulting solutions displayed above.

A visual analysis of the resulting plans confirms the similarity of
the matches to the targets chosen. The first variable, contrasting
convex groups with straight rows is easy to see in the examples,
and is clearly emulated in all 24 cases except one: an attempt to
match plan 81 which produces large convex groups rather than
short rows. The second variable contrasts aligned groups (plans 1,
4, 65, 68) with staggered (plans 17, 20, 81, 84). Although the
novel group arrangements introduce some subjectivity into the
validation, between 13 and 18 of the 24 results are members of
the appropriate class. There is again some subjectivity in the
judgement of the third variable of group length, as the ‘short’
example plans (1, 17, 65, 81) have two to three desks in a
‘typical’ line while the ‘long’ examples (4, 20, 68, 84) have five
or six. If one attempts to find the typical length of a row of desks
in any of the resulting plans and counts 2, 3 or 4 as ‘short’, and 5,
6 or 7 as ‘long’ then the number of plans that accurately meet
their target is between 18 and 23 of the total 24.

Unsurprisingly, the inclusion of more criteria in the objective
function results in a more difficult search than in section 4.1.
Evaluated by the same method the statistical accuracies over 24
runs are slightly lower:

variable 1. convex groups or linear rows: 96%
variable 2. aligned or staggered groups: 67%
variable 3. small or large groups: 83%

Again the varying ability of the GA to produce plans to fit each of
the classes correlates with the varying ability of the MLP to learn
each of the variables as indicated by the cross-validation in sec.
4.1.

Figure 8. Results of the GA searching for a match to a plan in

a multidimensional feature space Φ.

5. CONCLUSION
Rather than explicitly stating a measurement of fitness, this paper
proposed that an objective function can be derived implicitly from
a set of examples. A method has been developed to generate a
space Φ in which fitness can be measured as a distance to a goal.
Only the features relevant to the examples provided are expressed
in this space, and so for an example set of given variance, the
objective will have a corresponding variance. It has been shown
how the space can be refined for easer search, improving the
utility of the method for use in practice.

A GA was implemented with implicitly defined objective
functions for an office plan problem, and evolved plans show the
features suggested by the sample sets on which the mapping to Φ
was created. At no point were these features ever stated explicitly
as a goal, but only implied by the set of selected example plans.
The similarity of the results to the features selected in Section 4.1

2019

and to specific plans in 4.2 indicates both that the objective can be
learned, and that it is useful in GA optimisation.

Because the reduced dimensionality of the feature space in which
the fitness is measured only captures the relevant features, there
may be many points in the full search space that are equidistant
from any particular goal in Φ. Within this range there is a large
and varied set of optimal solutions, not unlike the Pareto optimal
set of a multiobjective problem. Increasing the dimensionality of
Φ but maintaining a specific point as the goal effectively adds
criteria to the objective, making it more specific. This is
evidenced by the results of Section 4.2, in which the three plans
shown for each objective when matching plans (Figure 8) in
general appear far more alike than those for a given run of the
single dimension GA in Section 4.1.

The classes chosen to define the objectives in Section 4.1 appear
obvious to the eye, but are not clearly evident in the graph
spectrum itself. The fact that they can be distinguished in this way
indicates that arbitrary classes may be used, including far more
subtle but relevant distinctions. The benefit of the method is that
it could be extended to more complex problems in which the
objectives are not evident to the user.

In many design situations where it is difficult to determine a
measurement of fitness, this would provide a potentially more
natural way for designers to work with setting objectives. These
are still set precisely, but are implicit, not explicit. Experience and
empirical observation of designs in the real world often indicates
examples that perform well or poorly for reasons too complex to
be fully evident even under close analysis, and such a definition
of objectives is equivalent to saying ‘make something like these’.
The method has been demonstrated for the example of office plan
layout, but applies to all domains of design.

6. ACKNOWLEDGMENTS
I would like to thank Alan Penn for helpful discussion and
particularly on the analysis of plans. This work is supported by
the Engineering and Physical Sciences Research Council, UK.

7. REFERENCES
[1] Bentley P: 1999, Evolutionary Design by Computers.

Morgan Kaufmann, San Francisco.
[2] Dalton R C, and Kirsan C: 2005, Small Graph Matching and

Building Genotypes. Environment and Planning B: Planning
and Design (forthcoming).

[3] Desyllas, J and Duxbury E: 2001, Axial Maps and Visibility
Graph Analysis, Proceedings, 3rd International Space Syntax
Symposium, Georgia Institute of Technology Atlanta.

[4] Duda, RO, Hart, PE and Stork DG: 2001, Pattern
classification. John Wiley & Sons, NY.

[5] Hanna S: 2007, Representation and Generation of Plans
Using Graph Spectra, Proceedings, 6th International Space
Syntax Symposium. (Forthcoming)

[6] Hanna S: 2007, Automated Representation of Style by
Feature Space Archetypes: Distinguishing Spatial Styles
from Generative Rules, International Journal of
Architectural Computing. (Forthcoming)

[7] Hillier B and Hanson J: 1984, The Social Logic of Space.
Cambridge University Press.

[8] Hillier B, Penn A, Hanson J, Grajewski T and Xu J: 1993,
Natural movement, Environment and Planning B: Planning
and Design, vol. 20 pp. 29-66.

[9] Hillier B and Shu S: 2001, Crime and urban layout: The need
for evidence, in Ballintyne S, Pease, K and McLaren V:
Secure Foundations: Key Issues in Crime Prevention and
Community Safety. IPPR, London.

[10] Jupp J, and Gero, JS: 2003, Towards computational analysis
of style in architectural design. in S Argamon (ed), IJCAI03
Workshop on Computational Approaches to Style Analysis
and Synthesis, IJCAI, Acapulco, pp 1-10

[11] Maher ML & Poon J: 1996, Modelling design exploration as
co-evolution, Microcomputers in Civil Engineering (Special
Issues on Evolutionary Systems in Design)

[12] Nehaniv CL and Dautenhahn K: 1999, Of hummingbirds and
helicopters: An algebraic framework for interdisciplinary
studies of imitation and its applications. In Learning Robots:
An Interdisciplinary Approach, J. Demiris and A. Birk, eds.,
World Scientific Press, in press.

[13] Peponis J, Hadjinikolaov E, Livieratos C and Fatouros DA:
1989, The spatial core of urban culture, Ekistics 56(334/335),
pp. 43-55.

[14] Robles-Kelly A, and Hancock E R: 2003, Edit Distance
From Graph Spectra. Proceedings of the ninth IEEE
International Conference on Computer Vision (ICCV 2003)

[15] Saunders R and Gero JS: 2001, Artificial creativity: A
synthetic approach to the study of creative behaviour, in JS
Gero and ML Maher (eds), Computational and Cognitive
Models of Creative Design V. Sydney, pp. 113-139.

[16] Spiliopoulou G and Penn A: 1999, Organisations as Multi-
Layered Networks, Proceedings, 2nd Intl. Space Syntax
Symposium, pp. 1-24.

[17] Steels L: 2000, The Emergence of Grammar in
Communicating Autonomous Robotic Agents, in Horn W
(ed), ECAI2000. IOS Press, Amsterdam. pp 764-769.

[18] Turner, A: 2005, An Algorithmic Definition of the Axial
Map, Environment and Planning B: Planning and Design,
32(3) 425-444.

[19] Turner A, Doxa M, O'Sullivan D, and Penn A: 2001, From
isovists to visibility graphs: a methodology for the analysis
of architectural space. Environment and Planning B:
Planning and Design, 28(1) 103-121.

[20] de Weck O: 2004 Multiobjective Optimization: History and
Promise”, The Third China-Japan-Korea Joint Symposium
on Optimization of Structural and Mechanical Systems,
Kanazawa, Japan.

[21] Zhu P and Wilson RC: 2005, A Study of Graph Spectra for
Comparing Graphs. British Machine Vision Conference
2005.

2020

