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ABSTRACT
Ensemble techniques have proved to be very useful to boost
the performance of several types of machine learning meth-
ods. In this paper, we illustrate its usefulness in combi-
nation with GAssist, a Pittsburgh-style Learning Classifier
System. Two types of ensemble are tested. First bagging-
style consensus prediction. Second an ensemble intended
to deal more efficiently with ordinal classification problems.
Both methods improve the performance and behaviour of
GAssist in the tested domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing, Induction

General Terms
Algorithms,Experimentation,Performance

Keywords
Evolutionary Algorithms, Learning Classifier Systems, Rule
Induction, Ensemble techniques

1 Introduction
Ensemble learning, a family of techniques established for
more than a decade in the Machine Learning community
provides performance boost and robustness to the learning
process by integrating the collective predictions of a set of
models in some principled fashion [13]. This family of tech-
niques covers many different approaches, the two most rep-
resentative methods being Bagging [5] and Boosting [8].

This paper presents the empirical evaluation of two types
of ensemble techniques that use Learning Classifier Systems
(LCS) to generate the models that will be integrated. Specif-
ically we will use a recent LCS called GAssist [1] that belongs
to the Pittsburgh approach of LCS.

The first of these two approaches will consist in a simple
consensus voting of an ensemble of rule sets generated by
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running GAssist several times on the same dataset with dif-
ferent initial random seeds. This is conceptually similar to
Bagging, but its mechanics are even simpler.

The second type of ensemble is designed to solve problems
of ordinal classification [7]. That is, when the classes of the
problem have some intrinsic order. This approach divides
an N classes dataset into N-1 binary datasets structured
in a hierarchical way. The ensemble duty is to integrate the
predictions of these N-1 binary models into a final prediction
of the N classes domain.

The rest of the paper is structured as follows: First, sec-
tion 2 will describe some related work. Next, section 3 will
contain the main characteristics of GAssist, the Pittsburgh
LCS used in this paper. Section 4 will contain the descrip-
tion and empirical evaluation of the first type of ensemble
studied in this paper, the consensus voting ensemble, and
section 5 of the second type, the hierarchical ensemble for
ordinal classification. Finally, section 6 will describe the
conclusions and further work of the paper.

2 Related work
Usually, there are two questions that have to be addressed
when building and using an ensemble that integrates the
predictions of several models:

• What data is used to train each model?

• How are the individual model predictions integrated
to produce a final ensemble prediction?

In the case of Bagging [5], N views of the training set are
generated by a sampling with replacement procedure, and
each of the N models in the ensemble is trained with one
of these views. After that, the ensemble prediction process
follows a simple majority voting: the ensemble will predict
the most frequent class from the ones predicted by the N
members of the ensemble.

The aim of bagging is to generate models that comple-
ment each other. This is achieved implicitly by the sampling
process used to generate the models. On the other hand,
Boosting [8] achieves the same aim in an explicit way. This
method generates the models and the dataset in an itera-
tive way. The first of them uses the original training data,
and the later models focus on learning the examples that
were mis-classified by the previous models. This is achieved
by weighting the instances based on their mis-classification
rate on previous models. Finally, the ensemble prediction is
a weighted voting process, where the weight of a model is
based on its error over the training data used to generate it.



There are few examples of the use of ensembles in the
LCS community. Llorà et al. [11] studied several policies to
select the representative candidates from the final popula-
tion of a Pittsburgh LCS, but did not integrate individuals
from several populations. Also, Bull et al. [9] investigated
the use of an ensemble of whole LCS populations using an
island model. Their ensemble took place during the learning
process, not afterwards unlike the approach of this paper.

There are several methods reported in the literature to
perform ordinal classification by means of an ensemble. For
instance, the method proposed by Frank and Hall [7] takes
advantage of learning techniques that can produce a proba-
bility of an instances belonging to a certain class and divides
the learning process of an N class ordinal domain into N-1
binary domains in the following way:

1. This method needs models that can produce class
probability estimates

2. For a given domain D with ordered classes ranging
from 1 to k

3. k−1 binary domains Di .. Dk−1 are generated, where
the class definition for domain i will be defined by
the predicate D > i. That is, the subdomain D1 will
predict if the class of the examples is greater than 1,
D2 will predict if the class of the examples is greater
than 2, ...

4. Models for these k − 1 domains are generated

5. For each new unseen instances, the probability that
this instance belongs to each of the k classes is com-
puted as follows:

• P (D = 1) = 1− P (D > 1)

• P (D = i) = P (D > i− 1)− P (D > i), 1 < i < k

• P (D = k) = P (D > k − 1)

6. The ensemble predicts the class with higher probability

3 The GAssist Learning Classifier System
GAssist [1] is a Pittsburgh Genetic–Based Machine Learn-
ing system descendant of GABIL [6]. The system applies
a near-standard generational GA that evolves individuals
that represent complete problem solutions. An individual
consists of an ordered, variable–length rule set. Details of
all the components of the system and standard parameters
are described in [2].

4 Ensembles for consensus prediction
The evaluated ensemble technique follows these steps:

1. GAssist is run N times on the unmodified training
set, each time using a different seed to initialize the
pseudo-random numbers generator

2. From each of these N runs a rule set is extracted. This
rule set corresponds to the best individual of the pop-
ulation, evaluated using the training set

3. For each instance in the test set, the N members of the
ensemble produce a prediction. The majority class of
these predictions is used

This ensemble technique is very similar to Bagging, with
just one difference: all models (rule sets) are learned using
the same training data: the original training set.

Each rule set produced by GAssist is stored in text format
as its phenotype representation: the actual ordered predi-
cates in conjunctive normal form that constitute a rule set.
Moreover, when these rule sets are dumped to text format,
only the relevant attributes are expressed. This means that
the ensemble code will not make unnecessary calculations
for the match process of the irrelevant attributes. To illus-
trate the text format used to express the rules generated by
GAssist, figure 1 contains an example of a rule set for the
Wisconsin Breast Cancer domain generated by GAssist.

4.1 Empirical evaluation
In order to evaluate the performance of the ensemble method
described in this paper we have used a set of 25 datasets that
represent a broad range of domains in respect to number of
attributes, instances, type, etc. These problems were taken
from the University of California at Irvine (UCI) repository
[4]. The characteristics of the datasets are summarized in
[2]. The datasets are partitioned using the standard strat-
ified ten-fold cross-validation method. Three different sets
of 10-cv folds have been used. Also, the experiments were
repeated 15 times with different random seeds. This means
that the GAssist results for each dataset included 450 runs,
either by averaging the test accuracy of each of these 450
runs or by using the ensemble technique.

Student t-tests with a confidence interval of 95% were
used to determine wether significant differences between the
performance of the individual runs of GAssist and the en-
semble of these same runs can be measured. The input data
for the t-test will be the test accuracy obtained in each of
the 30 test sets that we have (3x10-cv). The ensemble code
produced one accuracy measure for each test set. The test
accuracy of the individual runs of GAssist (15 repetitions for
each data set) were computed by averaging these accuracies.
The parameters of the system are the ones defined in [2].

Table 1 contains the results of the experiments performed
to evaluate the ensemble technique studied in this paper.
The table contains, for each dataset, the average accuracy
of the 450 individual runs and the average accuracy of the
30 ensembles produced from the individual runs. We can
observe how, for all datasets, the ensemble produces higher
accuracy than the individual GAssist runs. The average
accuracy increase is 2.5%. Also, the accuracy difference was
significant in 10 of the 25 datasets, according to the t-tests.

5 Ensembles for ordinal classification
Our ensemble-based approach at ordinal classification is di-
vided in two parts: (1) decomposition of the original N
classes dataset into several binary sub-datasets and (2) inte-
gration of the models generated for each dataset to produce
a final N-classes prediction.

The generation of the binary datasets works as follows:

1. We have an original dataset with N ordinal classes

2. We select a certain cut-point between the classes with
the following criterion: we will select the cut-point that
produces the most balanced sets in terms of number
of instances at left and right of the cut-point

3. We transform the N classes dataset into a binary
dataset: instances belonging to classes below the cut-



Figure 1: Rule set generated by GAssist for the Wisconsin Breast Cancer dataset
1:Att Clump Thickness is [<9.4] and Att Cell Size Uniformity is [<4.6] and Att Cell Shape Uniformity is [<6.4] and Att Marginal Adhesion is

[<7.75] and Att Single Epi Cell Size is [<5.5][>7.75] and Att Bare Nuclei is [<5.5] and Att Normal Nucleoli is [<4][5.5,8.5] and Att Mitoses is

[<6.76][>7.12] → benign

2:Att Cell Size Uniformity is [<1.9] and Att Single Epi Cell Size is [<7.75] and Att Normal Nucleoli is [<4][5.5,8.5] → benign

3:Default rule → malignant

Table 1: Results of the experiments to evaluate the
consensus ensemble applied over GAssist runs. A •
symbol in a row means that the ensemble was able
to significantly outperform the GAssist individual
runs according to the t-tests

Dataset GAssist acc. Ensemble acc.

bal 79.0±4.0 82.5±3.8•
bpa 62.4±7.8 65.7±7.7
bre 70.5±7.9 73.0±7.6
cmc 54.4±3.9 55.7±3.6
col 93.3±4.3 96.2±3.2•
cr-a 85.1±4.1 86.0±3.7
gls 66.8±9.5 71.9±8.0•
h-c1 80.4±5.9 83.0±5.2•
h-h 95.7±3.4 96.7±2.7
h-s 80.2±7.6 82.0±6.9
hep 89.8±8.0 93.6±5.5•
ion 92.0±5.2 93.1±5.1
irs 95.3±5.6 95.8±5.6
lab 98.1±5.4 100.0±0.0•
lym 80.8±11.2 84.4±9.9
pim 74.7±4.8 75.6±4.0
prt 47.5±6.7 52.7±6.8•
son 76.6±9.3 84.0±7.5•
thy 92.0±5.7 93.8±5.4
vot 97.1±3.3 97.6±2.7

wbcd 96.1±2.5 96.2±2.3
wdbc 94.3±3.1 95.2±2.7
wine 93.4±5.5 96.3±3.9•
wpbc 75.3±8.3 80.4±7.6•
zoo 92.1±8.0 94.1±6.3
ave 82.5±13.7 85.0±12.9

point will be labelled as class 0. Instances belonging
to classes over the cut-point will be labelled as class 1

4. The steps 2 and 3 will be repeated recursively for the
instances to the left and to the right of the cut-point,
until we arrive to the trivial case: having a binary
dataset

This process will effectively convert a N classes ordinal
classification domain into N-1 binary classification domains
organized in a hierarchical way. The structure of this hierar-
chical ensemble is represented in figure 2. Unlike the Frank
and Hall approach [7], these N-1 datasets will not have the
same number instances as the original training set: The first
dataset, corresponding to the root of the hierarchy will have
the same number of examples as the original training set.
Its two immediate descendants will have the number of ex-
amples at the left and right of the cut point, etc.

The ensemble predictions will be performed as follows:

1. For each test instance, we will query the model at the
root of the hierarchy to determine if its class is lower
or higher than the first cut-point.

2. If the root model predicts class 0, the next step is to
predict this instance using the model generated for the
left branch of the root node

3. If the root model predicts class 1, the next step is to
predict this instance using the model generated for the
right branch of the root node

Figure 2: Representation of the hierarchical ensem-
ble for ordinal classification. Nodes (circles) with no
descendants are already binary problems

N>=5N<5

N<3 N>=3 N<7 N>=7

Root node Classes=[0..9]

N<2 N>=8

N=2 N=7

4. The process will continue until we reach a leaf node

This process will also be faster than the Frank and Hall
method, as only log2(k) models will be queried, instead of
all k−1 of them. Moreover, the model used at each node to
predict if a given instances is lower or higher than the cut
point is an ensemble itself, using the method described in
the previous sections.

5.1 Empirical evaluation of the hierarchical
ensemble

We will use only one domain to illustrate the performance
of this hierarchical ensemble. This domain belongs to the
bioinformatics field, and specifically to protein structure pre-
diction (PSP) [3]. Proteins are heterogeneous molecules that
have a complex 3D structure very difficult to determine ex-
perimentally and therefore needs to be predicted. Several
different features can be predicted from a proteins 3D struc-
ture. The domain used in this paper is called prediction
of average solvent accessibility [12]. This property is real-
valued and therefore we need some criterion to convert it
into an ordinal set of classes. We will use the equal fre-
quency discretization algorithm [10] for this task, dividing
the domain into 10 ordinal classes.

The hierarchical ensemble obtained an accuracy of
23.9±3.0, while a flat ensemble of GAssist models perform-
ing normal classification, without any specific knowledge of
the intrinsic class order, obtained an accuracy of 22.1±4.6.
For reference, please note that Solvent Accessibility predic-
tion accuracy for 10 classes with the kind of input informa-
tion used in this paper ranges from 20 to 24% [12].

The performance difference is not significant, but the be-
haviours of both approaches is quite different: Table 2 con-
tains the confusion matrix on one of the test folds for the hi-
erarchical classifier, while table 3 contains the confusion ma-
trix for the flat ensemble. The predictions of this domain are
usually fed back into another PSP prediction task. There-
fore it is important that, in the case of a mis-classification,



the wrong predicted class is close to the real class in the
intrinsic class order. The hierarchical classifier achieves this
objective much better that the flat ensemble, as most of the
predictions appear quite close to the diagonal. Numerically,
we can compute the behaviour difference as the average mis-
classification penalty (AMP), defining the misclassification
penalty as the distance in the intrinsic class order between
the real and predicted classes of each test instance. The hi-
erarchical ensemble obtained an AMP of 1.7±0.2, while the
flat ensemble obtained an AMP of 2.0±0.2. In this case,
the AMP difference between both systems was significant,
according to the t-tests with 95% confidence level.

Table 2: Confusion matrix of the hierarchical classi-
fier on a test set of the average solvent accessibility
domain. Each cell contains the percentage of in-
stances of the class in the row predicted as the class
in the column

Predicted class

R
e
a
l
c
la

ss

0 1 2 3 4 5 6 7 8 9
0 50.0% 0.0% 0.0% 33.3% 16.7% 0.0% 0.0% 0.0% 0.0% 0.0%
1 0.0% 11.1% 0.0% 55.6% 22.2% 0.0% 0.0% 0.0% 11.1% 0.0%
2 18.2% 0.0% 9.1% 36.4% 18.2% 0.0% 18.2% 0.0% 0.0% 0.0%
3 0.0% 10.0% 10.0% 30.0% 30.0% 0.0% 0.0% 10.0% 10.0% 0.0%
4 7.7% 0.0% 0.0% 7.7% 30.8% 23.1% 15.4% 15.4% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 25.0% 0.0% 50.0% 25.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 25.0% 0.0% 0.0% 37.5% 25.0% 12.5% 0.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 11.1% 22.2% 22.2% 44.4% 0.0%
8 0.0% 0.0% 0.0% 0.0% 0.0% 5.6% 11.1% 44.4% 27.8% 11.1%
9 0.0% 0.0% 0.0% 0.0% 0.0% 8.3% 0.0% 33.3% 25.0% 33.3%

Table 3: Confusion matrix of the flat ensemble on a
test set of the average solvent accessibility domain.
Each cell contains the percentage of instances of the
class in the row predicted as the class in the column

Predicted class

R
e
a
l
c
la

ss

0 1 2 3 4 5 6 7 8 9
0 83.3% 0.0% 0.0% 0.0% 0.0% 16.7% 0.0% 0.0% 0.0% 0.0%
1 77.8% 11.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 11.1%
2 54.5% 18.2% 0.0% 0.0% 0.0% 27.3% 0.0% 0.0% 0.0% 0.0%
3 50.0% 30.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0%
4 30.8% 7.7% 0.0% 0.0% 0.0% 30.8% 7.7% 0.0% 15.4% 7.7%
5 25.0% 0.0% 0.0% 0.0% 0.0% 25.0% 0.0% 0.0% 50.0% 0.0%
6 12.5% 12.5% 0.0% 0.0% 0.0% 12.5% 0.0% 0.0% 37.5% 25.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 11.1% 22.2% 66.7%
8 0.0% 0.0% 0.0% 0.0% 0.0% 11.1% 0.0% 0.0% 27.8% 61.1%
9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 16.7% 83.3%

6 Conclusions and further work
This paper has empirically studied the use of ensemble
techniques in combination with Learning Classifier Systems,
specifically using GAssist, a Pittsburgh approach LCS. Two
types of techniques are studied. The first kind of ensem-
ble performs a Bagging-style consensus prediction, while the
second one is an hierarchical ensemble intended to deal with
ordinal classification domains.

These methods are not really new contributions, just vari-
ations of already existing techniques, but the experiments
reported in the paper illustrate that they are very useful
in combination with GAssist. The first one boots signifi-
cantly the performance of GAssist on several domains, while
the other one helps GAssist minimize the importance of the
mis-classifications, which is an issue of concern in ordinal
domains.

For future work, it would be interesting to determine how
can we tweak GAssist to provide the correct models to the
ensemble in order to maximize the accuracy of the consen-

sus prediction. For the hierarchical ensemble, a possible
future line is to study other policies to partition the or-
dinal domain into several binary sub-domains, such as the
ones described in the related work section. Finally, checking
the accuracy-computational cost tradeoff of these ensemble
techniques would be very useful.
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