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ABSTRACT
We present an initial study regarding how the parameters
m0 and r0 influence the performance of XCS with computed
prediction, XCSF.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance.

Keywords
LCS, XCS.

1. MOTIVATIONS
The evolution of classifier conditions in XCSF [6], and

generally in XCS with real interval conditions, depends on
six parameters: r0, which controls the generality of newly
created classifiers, m0, which controls how much classifier
conditions can be modified through mutation, the probabil-
ity χ, which determines how frequently offspring classifiers
are recombined, the probability µ, which determines how
frequently offspring classifiers are mutated, θGA and θAS ,
which determine how frequently GA-subsumption and ac-
tion set subsumption are applied.

The two parameters r0 and m0 determine the generality
of the initial populations and how the hypotheses space can
be explored toward more specific or more general solutions.
A previous study [5] has analyzed the influence of the same
two parameters for the real valued XCS on the real-valued
6-multiplexer. Their results show that, (i) m0 does not in-
fluence the performance much while a decreasing value of
r0 leads to a degradation of the performance; in terms of
generalization achieved (ii) the increase of both parameters
leads to higher generality and lowering population size.
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In this paper, we perform a similar analysis on XCS with
computed prediction (XCSF), using linear and quadratic ap-
proximators, on three test problems taken from [3]. To limit
the influence of the parameter update process on XCSF per-
formance [4], we apply a version of XCSF with recursive least
square update (as introduced in [4]).

2. DESIGN OF EXPERIMENTS
All the experiments discussed in this chapter are per-

formed following the standard design used in the litera-
ture [6]. In each experiment XCSF has to learn to approx-
imate a target function f(x); each experiment consists of a
number of problems that XCSF must solve. For each prob-
lem, an example 〈x, f(x)〉 of the target function f(x) is ran-
domly selected; x is input to XCSF, which computes the
approximated value f̂(x) as the expected payoff of the only
available dummy action; the action is virtually performed
(the action has no actual effect), and XCSF receives a re-
ward equal to f(x). XCSF learns to approximate the target
function f(x) by evolving a mapping from the inputs to the
payoff of the only available action. Each problem is either
a learning problem or a test problem. In learning problems,
the genetic algorithm is enabled; during test problems it is
turned off. Classifier parameters are always updated. The
covering operator is always enabled, but operates only if
needed. Learning problems and test problems alternate.

The performance of XCSF is measured as the accuracy
of the evolved approximation f̂(x) with respect to the tar-
get function f(x). For this purpose we measure the mean

absolute error (MAE) defined as:

MAE =
1

n

X

x

|f(x) − f̂i(x)|

where n is the number of points for which the error is
measured (in the experiments considered here, n = 1000).
In particular we use the expected values of MAE, namely,
MAE computed as the average MAE over the performed
experiments. All the statistics reported are averages over
50 experiments. All the experiments reported have been
conducted on xcslib [2].

3. EXPERIMENTS
To analyze the influence of r0 and m0 on XCSF perfor-

mance, we applied XCSF with linear and quadratic approx-
imators to the learning of three functions: fs(x), fabs(x),



and fs4(x) [3], defined as,

fs(x) = sin (2πx)

fabs(x) = | sin (2πx) + | cos (2πx)||

fs4(x) = sin (2πx) + sin (4πx) + sin (6πx) + sin (8πx)

where x ∈ [0, 1]. In all the experiments the parameters of
XCSF were set as follows: N = 800, β = 0.2, δ = 0.2, γ
= 0.7, θGA = 50, χ = 0.8, µ = 0.04, ǫ0 = 0.01, ν = 5, α
= 0.1, θdel = 50, θsub = 50, GA subsumption is on, initial
population is empty. The values of r0 and m0 vary between
0.1 and 1.0 with a step of 0.1. XCSF is applied for 50000
learning problems.

In the first experiment we applied XCSF to approximate
the simple sine function fs(x). Figure 1 reports, for all the
combinations of r0 and m0, the prediction error of the solu-
tions evolved by XCSF with linear (1a) and quadratic (1b)
approximators. Even a simple problem like the learning of
fs(x) can evidence an influence of r0 and m0 over XCSF
performance, which will be more evident in the functions
considered later. In fs(x), XCSF can generally evolve ac-
curate solutions in that almost every configuration reach
a prediction error below the required threshold ǫ0 = 0.01.
The performance of XCSF with linear prediction is worst for
large values of r0 and small values of m0, i.e., when the ini-
tial populations consists of very general individuals covering
large portions of the problem domain (since r0 is large), but
only small changes to classifier conditions are allowed (since
m0 is small). This behavior is easily explained. Having large
values of r0 and small values of m0 means that XCSF starts
from a very general population and only small changes are
allowed through the evolutionary process. The predictive
performance of XCSF depends on how well computed pre-
diction can approximate the target function. When classifier
conditions cover small portions of the problem space, the lin-
ear and quadratic approximators perform almost the same
since, in the fs(x), high order polynomials do not provide a
significant advantage if they are applied to small portion of
the problem domain. When classifier conditions cover large
portions of the problem space, classifier accuracy heavily
relies on the classifier capability to approximate the target
function over such large portions of the domain. Accord-
ingly, XCSF with quadratic approximators performs better
than XCSF with linear approximators because quadratic ap-
proximators can fit the sine function over large portions of
the domain whereas linear approximators can provide accu-
rate approximations solely when they are applied on certain
sections of the domain. When both r0 and m0 are large,
population is initially very general but the evolutionary pro-
cess is allow to make bigger changes so as to evolve classifier
conditions that allow accurate piecewise linear approxima-
tion of the target function. Accordingly, XCSF with linear
approximation can evolve accurate solutions.

In the second experiment, we applied the two versions of
XCSF to fabs(x) [7]. Figure 2 reports, for all the combina-
tions of r0 and m0, the performance of XCSF with linear
(2a) and quadratic (2b) approximators. Figure 2 confirms
the previous results: XCSF with linear approximators per-
forms worse than XCSF with quadratic approximators (co-
herently to the results in [3]). However, in this problem, the
two versions show a qualitatively similar behavior. They
both cannot evolve accurate solutions (solutions with an av-
erage error below the threshold ǫ0) for large values of r0 and
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Figure 3: XCSF with linear and quadratic approxi-
mators on fabs(x) when (a) r0 = 1.0 and m0 = 1.0, (b)
r0 = 0.1 and m0 = 1.0, and (c) r0 = 1.0 and m0 = 0.1.
Curves are averages over 50 runs.

small value m0. In addition, for large values of m0, they
both show a decrease in their performance when the value
of r0 is increased from 0.1 to 1.0. This behavior was slightly
visible in the experiments for XCSF with linear approxima-
tion (Figure 1a) but becomes more evident in this problem.
To show the difference in XCSF performance for different
combinations of r0 and m0, in Figure 3 we report the per-
formance of XCSF when (a) r0 = 1.0 and m0 = 1.0, (b)
r0 = 0.1 and m0 = 1.0, and (c) r0 = 1.0 and m0 = 0.1. As
can be noted, the smallest value of r0, 0.1, corresponds to
the best learning curves and to the smallest prediction error.

We repeated the same type of experiment on the function
fs4(x). Figure 4 reports, for all the combinations of r0 and
m0, the performance of XCSF with linear (4a) and quadratic
(4b) approximators. The behavior is similar to the previous
two experiments: (i) the combination of large values of r0

with small values of m0 still appears the more critical; (ii)
when large values of m0 are used, XCSF performance de-
creases when r0 is increased from 0.1 to 1.0.

4. DISCUSSION
We applied XCSF with linear and quadratic approxima-

tion to simple functions of one variable using several combi-
nations of the two parameters r0 and m0. The initial results
we have presented show an interesting relation between the
performance of XCSF and the two parameters, r0 and m0,
which control the generality of the classifiers in the pop-
ulation. XCSF performs best when both r0 and m0 are
small, i.e., when the initial population contains classifiers
that cover small portions of the problem domain and mu-
tation is allowed to make small modifications to classifier
conditions. In fact, this is the typical setting that have been
used in XCSF in most of the experiments reported in the
XCSF literature.1 When r0 is small and m0 is increased
from 0.1 to 1.0, XCSF performance slowly worsens. Con-

1Note that in [1] where r0 = 0.5 and m0 = 0.5 the average
generality of the classifiers in the initial population is 0.06,
which in a one dimensional domain would correspond to a
rather small value of r0, i.e., 0.12.
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Figure 1: XCSF with (a) linear and (b) quadratic approximators on fs(x): mean absolute error (MAE) for
different combinations of r0 and m0 computed over 50 runs.
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Figure 2: XCSF with (a) linear and (b) quadratic approximators on fabs(x): mean absolute error (MAE) for
different combinations of r0 and m0 computed over 50 runs.
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Figure 4: XCSF with (a) linear and (b) quadratic approximators on fs4(x): mean absolute error (MAE) for
different combinations of r0 and m0 computed over 50 runs.
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Figure 5: XCSF with (a) linear and (b) quadratic approximators on fabs(x): number of classifiers in the
evolved populations for different combinations of r0 and m0 computed over 50 runs.

versely, when m0 is small and r0 is increased from 0.1 to 1.0,
XCSF performance is dramatically impaired. Finally, when
m0 is large and r0 is increased from 0.1 to 1.0, XCSF perfor-
mance worsens. The overall behavior is depicted in Figure 6
where over the parameter space we report as arrows the di-
rections that cause a decrease of XCSF performance: bigger
arrows indicate larger decreases. As the generality of classi-
fiers in the population is high, the role of the approximator
employed becomes more relevant. In fact, the improvements
due to the use of quadratic approximators are bigger when
r0 is large.

Finally, it is interesting to compare our analysis on XCSF
to the similar one reported in [5] for XCS. The results in [5]
show that r0 should be set high enough to avoid serious de-
crease in XCS performance whereas no particular require-
ment was noted for m0. In the case of XCS with computed
prediction, large values of r0 imply that the classifier predic-
tion has to approximate larger sections of the payoff surface.
But when applied on larger problem subspaces, approxima-
tors tend to converge slower and, in addition, they must
be powerful enough to provide an accurate approximation
of the payoff surface on such large problem subspaces. Ac-
cordingly, in XCSF large values of r0 correspond to a dra-
matic decrease in XCSF performance. Such a decrease can
however be limited if m0 is large enough or when a more
powerful approximator is used. Current research includes
the extension of this analysis to functions involving more
input variables and multistep problems.
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