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ABSTRACT

This paper details the incorporation of user design preference
into an algorithm designed for the multi-objective optimization
of large-span roof trusses. Several mechanisms are considered
to embed preference into the optimization procedures of an
implicit redundant representation (IRR) genetic algorithm (GA).
A prediction of user preference was included in both the
selection and ranking procedures of the GA. The inclusion of
user preference encourages topological exploration while
preserving structurally optimal designs.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and
Engineering -- engineering.

General Terms
Design, Human Factors.
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1. INTRODUCTION

Previous research efforts have identified the implicit redundant
representation (IRR) genetic algorithm (GA) as a useful tool for
the conceptual design of large-span roof trusses [3]. The IRR
GA provides flexible encoding of design variables within a set-
length chromosome [5]. This flexibility allows for design
alternatives to naturally evolve within a sparsely defined search
space [4]. The current research effort extends the application of
the IRR GA to the multi-objective optimization of large-span
roof trusses by including the preferences of a human designer
within the optimization criteria.

In addition to meeting structural criteria, potential truss designs
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must also satisfy larger considerations of practicality, economic
feasibility, and conformance to the architectural program. Much
of this information is readily apparent to a human designer based
upon visual inspection of the design alternatives, but
formulating such constraints in a manner accessible to the IRR
GA is mathematically intractable. Teaching the IRR GA to
recognize these "intuitive" constraints could substantially
increase the suitability of design alternatives suggested for a
given application.

This paper details the incorporation of user preference into the
roof truss optimization algorithm developed in [3]. Section 2
discusses how and where the IRR GA accounts for user
preference, while section 3 considers the effect of preference
inclusion on the conceptual design process.

2. MECHANISMS FOR PREFERENCE
INCORPORATION

2.1 Preference Identification

The first stages of this research effort developed a mechanism to
model user design preference. The preference model results
from user evaluations of 100 unique, stable truss designs
evolved during the first generation of the IRR GA. These
designs are grouped according to visual similarities, as
quantified by nine discrete, geometrical measures of truss
appearance. These measures include top chord and bottom
chord flatness, number of joints, and average joint connectivity.
Once analyzed for consistency, user group selections provide
training information for a back-propagation neural network.

In succeeding generations of the IRR GA, the trained neural
network predicts whether a user will prefer a newly generated
topology. This prediction relies upon the neural network's
ability to recognize preference patterns among the measures of
truss appearance.

In the C++ coding, each individual in the IRR GA pools is
described by several class attributes, one of which is the
"preferred" attribute. This attribute records predictions made by
the neural network. The algorithm assigns a preferred value of
"1" if the network predicts that the user will like a new design
and a value of "2" if the user will not.

2.2 Description of the Algorithm

The IRR GA implementation used in this research was
developed in [3]. To optimize designs from a structural
standpoint, the algorithm seeks to minimize truss weight and



mid-span deflection while accounting for kinematic stability,
constructability limits on length, and allowable member stresses.
Relevant details about the algorithm will be summarized here.

Maintaining population diversity proved to be a difficult
challenge. As the major goal of this research is to provide
engineers with a wide range of equally viable design
alternatives, several techniques were implemented to help
promote this objective.

Based on the Strength Pareto Evolutionary Algorithm described
in [1], Paik [3] saved top-ranked individuals in external pools.
These pools ensured that previously discovered Pareto solutions
remained in all generations. A second set of external pools
recorded all stable, unique topologies discovered by the IRR
GA, regardless of performance.

Also based upon the Strength Pareto Evolutionary Algorithm,
the strength of each individual, in terms of the number of
solutions it dominated, was calculated. This strength was
combined with a fitness-sharing measure, as outlined in [2], and
a composite measure of constraint violations to create a "total
fitness" measure. The total fitness measure served as a tie-
breaker during the selection process.

In the current formulation, all constraints are treated as separate
objectives. One function, dominate(), is used to compare
solution-pairs based upon weight, deflection, and the degree of
constraint violation. This function serves to determine solution
dominance in both the ranking and tournament selection
procedures.

When a clearly dominant solution does not emerge from this
comparison, alternate fitness measures are used.  During
ranking, this measure is a composite fitness function.
Tournament selection relies upon a total fitness value to break
dominance ties, as mentioned above. In addition to forming a
strength calculation for use in the total fitness measure, ranking
also serves to identify Pareto optimal solutions and sort the
external pools so that low-ranking solutions are replaced with
more highly performing individuals.

2.3 Preference Locations and Trials

Based upon the fitness assessment procedures described in the
previous section, the following three locations were identified
for potential inclusion of user preference:

1) The dominate() function, which compares objective values
for two individuals.

2) The composite fitness function, which provides additional
information during ranking.

3) The composite penalty function, which forms part of the total
fitness measurement to provide additional information during
tournament selection.

Five different mechanisms explored the effect of user preference
on the IRR GA by placing the preferred attribute into one or
more of the above locations. A series of trials, with base
geometries varying in either span length or parametric choices,
incorporated each mechanism. User preferences remained
constant throughout all simulations. This consistency was
accomplished by saving a file of potential designs during an
initial run and reusing it during the preference input process,
rather than asking the user to evaluate new designs for each trial.

The mechanisms were compared based upon their ability to

successfully promote user preferences without degrading the
structural performance of ranking individuals. This comparison
accounted for whether the average value of the preferred
attribute among top ranking individuals decreased over time.
The number of final-generation topologies suggested by the IRR
GA created a method for evaluating whether a mechanism
enhanced the conceptual design process. Similarities were also
drawn between the final-generation topologies and user
selections to indicate how well each mechanism guided the IRR
GA to more desirable design alternatives. Lastly, plots of
weight vs. deflection illustrated the first-rank Pareto front
solutions and provided information about structural behavior.

After considering the above criteria, the most effective
formulation proved to be one that included preference in both
the dominate() function and in the composite penalty function.
This mechanism optimized the preferred attribute and reflected
user preferences. Pareto fronts for all mechanisms illustrated
that preference incorporation did not reduce the structural
performance of top-ranked individuals and created more diverse
design populations. These effects are discussed more fully in
the next section.

3. EFFECT OF PREFERENCE
INCORPORATION

The overall effect of including a user's design preferences in the
IRR GA optimization process was to increase exploration within
the feasible region. This exploration manifested itself in both
the number and diversity of final-generation topologies
suggested by the GA as well as in the creation of substantially
fuller Pareto fronts. Figures 1 through 3 illustrate the qualitative
effects of user preference on the Pareto fronts discovered by the
IRR GA.

In Figure 1, the Pareto front consists of multiple curves.
Regions of dense exploration give rise to several solutions, but
gaps appear in the overall curve. These gaps indicate regions of
the tradeoff curve not represented by the population of solutions
obtained by the IRR GA. Since the solutions lying along the
Pareto front directly correlate to the number of design
alternatives presented to the user, a more complete Pareto front
is clearly desirable for conceptual design.

When truss designs are optimized according to both structural
and preference criteria, the final generation Pareto fronts
resemble those shown in Figures 2 and 3. In Figure 2, the user's
preferences coincided with the structurally optimal designs
independently discovered by the IRR GA. Therefore, the user's
input does not substantially change the appearance of the
suggested alternatives. Instead, the user's preferences lead to a
more fully explored Pareto front. The disconnected regions
meet to form a more continuous curve.

Although the Pareto fronts are remarkably similar in Figures 1
and 2, it should be noted that the design topologies lying along
these fronts may not match up exactly. Typically, simulations
that accounted for user preference generated a larger number of
unique topologies than simulations that considered only
structural criteria. Therefore, although design alternative forms
may not vary when user preference and structural criteria are in
agreement, the number of design alternatives usually increases
and thus enhances the conceptual design process.
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Figure 1. Example Pareto front obtained using only
structural optimization criteria.
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Figure 2. Example Pareto front obtained using structural
and preference criteria. Design preferences align with those
existing already in the structural optima.

The "conventional" structural designs proposed by the IRR GA,
however, may not agree with the architectural program for a
given truss system. A user may indicate a preference for more
unusual truss designs to achieve a topologically unique form. In
that instance, two Pareto "fronts" may emerge among top-ranked
solutions, as shown in Figure 3.

The two curves shown in Figure 3 are contained within a single
Pareto front for this population. The dual-curve effect occurs
because the front is plotted in only two-dimensions, illustrating
values for the weight and deflection objectives only. The third
objective, user preference, is plotted indirectly and manifests
itself by creating a second curve.

The first curve of Figure 3 represents the expected tradeoff
curve. The solutions lying along this curve closely resemble

those discovered in the scenarios represented by Figures 1 and 2.
These solutions are the most strongly performing from a
structural perspective. However, the user has indicated a
preference for unusual truss designs, and the truss alternatives
along the left-most curve of Figure 3 are unlikely to satisfy this
criterion.
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Figure 3. Example Pareto front(s) obtained using structural
and preference criteria. Design preferences diverge with
those that exist in the structural optima.

The second curve illustrated in Figure 3 forms in an effort to
better reflect the user's preferences. Since "conventional" truss
designs are inadequate, the IRR GA must generate new forms to
address this need. These new designs may sacrifice structural
performance to better satisfy user preference. Over time, this
second "front" will draw closer to the first, and often the two
fronts become integrated. The most structurally optimal of the
new designs will remain in the united front.

As the proceeding figures illustrate, incorporating user
preferences into the IRR GA significantly increased exploration.
This result may be better comprehended by considering the
architecture developed in [3]. The IRR GA is extremely useful
in undefined search spaces because of the flexibility with which
it encodes design variables. However, this flexibility proved to
be a deficit in a multi-criteria environment with a small feasible
region [3]. Preserving unique truss topologies and encouraging
the discovery of more led to a sub-process architecture to
separately analyze each group of similar designs [3]. These
multiple processes corresponded to high computation costs and a
slow run time.

When the feasibility region was further narrowed by addition of
the preference criterion, fewer sub-processes were required, thus
reducing the computational effort to complete the simulations.
Contrary to expectations, narrowing the feasible region had a
beneficial effect on exploration. Instead of investing resources
to "fine-tune" undesirable topologies, the smaller number of sub-
processes focused on designs interesting to the user and
provided locations for new truss forms to develop.



4. CONCLUSIONS

This work describes the effects of user preference on the multi-
objective optimization of large span roof trusses. The
optimization process was accomplished using an implicit
redundant representation genetic algorithm. A prediction of user
preference was included in both the selection and ranking
procedures of the GA.

Overall, preference implementation enabled the IRR GA to
identify designs more likely to be acceptable to the user while
simultaneously improving the algorithm's ability to discover
additional design alternatives. Pareto fronts from analyses with
and without user preferences reveal that this improved
exploration did not detract from the optimization of the
structural criteria. In instances where user preferences aligned
with structural optima, the IRR GA still received the benefit of
added exploration. When user preferences promoted non-
optimal designs, the IRR GA strove to incorporate these
preferences while retaining the most structurally efficient
individuals.

The ability to reflect user preference is of primary importance
for the IRR GA, or any other automated optimization algorithm,
to successfully aid in conceptual design. By incorporating the
human designer into the optimization process, it is possible to
generate large span roofing systems that satisfy structural
criteria and meet demands specific to individual design domains.
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