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Problem statement I: Optimizing functions over discrete
spaces

Search space: A complete solution x consists of n
components: x = x0, x1, . . . , xn−1

Evaluation: A static fitness function for complete solutions
f (x) is given

Goal: Find a complete solution that satifies a property based
on f
Typically: find a complete solution that maximizes f

Examples of components:
Partial neural networks
E.g. a set of neurons, connections, and their weights
Bits
Note: if the components are bits, we have a regular GA
problem
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Methods for problems of type I

Genetic Algorithms
Individuals x are complete solutions
Evaluation is independent of other individuals → the search
process is stable
Difficulty: how can good combinations of components be
found?

Cooperative Coevolution
Individuals xi are components, i.e. partial specifications
To evaluate an individual, the individual is combined with
other individuals to form a complete solution
Thus, evaluation of an individual is dependent on other
evolving individuals → the search process may be unstable
Example of a cooperative coevolution method:
given n − 1 components, what is the best choice for
component i?

Optimize components in parallel
Optimize components sequentially
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Problem statement II: Test-based problems

Search space: A set S of complete solutions.

Evaluation: A second search space T of tests is given.
The quality of a solution s ∈ S is determined by its
performance against all tests t ∈ T .

Goal: Find a solution s ∈ S that maximizes a performance
measure based on outcomes against t ∈ T

Example: Chess: find a first-player strategy that has a
maximum expected outcome against a randomly chosen
opponent t.
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Methods for problems of type II

Evaluate solutions against all tests
Generally infeasible

Evaluate solutions against a random sample of tests
Sample may not be representative
Finding high quality opponents may be a difficult search
problem in itself

Coevolve the set of tests
Secondary search process may identify high quality opponents
Potential for open-ended progress, as both solutions and tests
improve
Evaluation function develops as part of the search process
(cf. natural evolution)
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Constructing Reliable Coevolution Methods

Problem with ’naive’ coevolutionary setups:
Without special arrangements, dynamic evaluation constitutes
a moving target
Thus, no reason to assume the search process will converge
towards desired solutions

[Ficici, 2004]: importance of selecting a solution concept

Solution concept: divides the search space into solutions and
non-solutions

Example: in a standard GA problem, the solution concept
specifies all (and only) maximum-fitness individuals to be
solutions.
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Methodology for coevolution

Step I: given an informal problem specification, select or
define a solution concept that specifies which objects qualify
as solutions

Step II: Select or design a coevolutionary algorithm that
respects the chosen solution concept
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Solution Concepts for Cooperative Coevolution

Maximize fitness: find individuals x ∈ X that maximizes
fitness f (x).

Maximize robustness: find individuals x such that each
component xi still forms an appropriate choice when the
remaining components are varied.
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Solution Concepts: Simultaneous Maximization of All
Outcomes

Maximize the outcome over all possible tests simultaneously:

SC = {s ∈ S |∀s ′ ∈ S : ∀t ∈ T : G (s,T ) ≥ G (s ′,T )}

For many problems, a single solution that simultaneously
maximizes the outcomes of all tests does not exist

Thus, limited application scope

Monotonic progress: guaranteed by Rosin’s Covering
competitive algorithm [Rosin, 1997].
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Solution Concepts: Pareto-Optimal Set

Pareto-coevolution
[Ficici and Pollack, 2000, Watson and Pollack, 2000]: Opponents
may be viewed as objectives.
Pareto-dominance:
Solution s1 dominates s2 if:
s1 & s2 ≡
∀t ∈ T : G (s1, t) ≥ G (s2, t) ∧ ∃t ∈ T : G (s1, t) > G (s2, t)
Set of all non-dominated individuals: non-dominated set

SC = {s ∈ S |!s ′ ∈ S : s ′ & s}

Represents all different ways to trade off the different
objectives

Minimal assumptions

May be very large
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Solution Concepts: Pareto-Optimal Equivalence Set

Pareto-optimal set: may contain many individuals solving the same
set of tests.
Pareto-Optimal Equivalence set: remove such duplicate solutions.
For each combination of tests that can be solved, the
Pareto-Optimal Equivalence Set contains at least one candidate
solution that solves it. Since multiple such sets may exist, we S4 is
the collection of all such sets:
SC = {sc ⊆ S |∀T ′ ⊆ T :
∃s ∈ S : solves(s,T ′) =⇒ ∃s ′ ∈ sc : solves(s ′,T ′)}

Equivalently: set that for each member of the Pareto-front
contains an equivalent candidate

Monotonic progress: guaranteed by the Incremental
Pareto-Coevolution Archive (IPCA) [De Jong, 2004a]
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Solution Concepts: Nash Equilibrium (I)

Players are distributions over the spaces of solutions and tests.
Nash equilibrium: no player can profitably deviate given the
strategies of the other players.
Mixed-strategy Nash equilibrium:
n classes of individuals: I1, I2, . . . In
E.g. I1 = S and I2 = T . Let I = ×j∈N Ij , with N = {1, 2, . . . , n}.
∆(Ii ): the set of probability distributions over Ii
Ω = ×j∈N∆(Ij).
Mixed strategy profile α ∈ Ω: probability distribution for each class
of individuals.
Expected outcome for the i th class of individuals in a mixed
strategy profile:
E (Gi (α)) =

∑

a∈I

Π
j∈N

αj(aj)Gi (a), where Gi (a) returns the outcome

for the i th individual.
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Solution Concepts: Nash Equilibrium (II)

A mixed-strategy α∗ is a Nash-equilibrium if:
SC = {α∗ ∈ Ω|∀i : ∀αi ∈ ∆(Ii ) : E (Gi (α∗)) ≥
E (Gi (α∗1, ..,α∗i−1,αi ,α∗i+1, ..,α∗N))))

General, game-theoretic solution concept

Can specify a relatively small set of individuals

But: there can be (infinitely) many Nash equilibria, part of
which may be dominated

Finding a Nash equilibrium does not guarantee that the
highest possible outcomes.

Monotonic progress: guaranteed by Ficici’s Nash Memory
[Ficici and Pollack, 2003]
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Solution Concepts: Maximization of Expected Outcome

Maximize the expected score against a randomly selected
opponent:

SC = {s ∈ S |∀s ′ ∈ S : E (G (s, t)) ≥ E (G (s ′, t))

where E is the expectation operator and t is randomly drawn from
T .

Appropriate for many problems, e.g. identifying the best chess
player.

Equivalent to maximizing the sum of an individual’s outcomes
over all tests, or to a uniform linear weighting of the
objectives.

Assumes all tests are equally important

Monotonic progress: guaranteed by the MaxSolve algorithm
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Pareto-coevolution: informativeness

Ficici [Ficici and Pollack, 2001]: a test t is informative if it
assigns different outcomes to solutions s, s ′:
G (s, t) > G (s ′, t).

By using an informative set of tests, accurate evaluation is
achieved [Bucci and Pollack, 2002].

Pareto-coevolution: solution s dominates s ′ if and only if:
∃t ∈ T : G (s, t) > G (s ′, t) and !t ∈ T : G (s ′, t) > G (s, t).

Thus, the only required information to determine dominance
between s and s ′ is whether a test exists that makes a
distinction between them.

Therefore, given a set of n solutions, a set TS of at most
n2 − n tests is guaranteed to exist such that evaluation using
TS as objectives is equivalent to using all tests T as
objectives [De Jong and Pollack, 2004].



Introduction Foundational Concepts Analyzing CEAs Representation in Coevolution Conclusion

Underlying Objectives

The set of all tests specifies a complete set of objectives

However, for many practical problems, similar tests may test
on similar aspects.

Example: two devices that test whether a bridge can stand
forces greater than 8.000 and 10.000 kg respectively.

Such similar tests can be combined onto a single objective,
thus reducing the dimensionality of the evaluation space

The underlying objectives
[Bucci et al., 2004, De Jong and Pollack, 2004] of a problem
are a minimal set of objectives that provide evaluation
equivalent to the set of all tests T .
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Coevolutionary pathologies revisited

Overspecialization: solutions improve on a subset of the
underlying objectives

Disengagement: for one or more underlying objectives, tests
are too far apart from solutions to provide a gradient, and
thus insufficiently informative

Intransitivity: by viewing opponents as objectives, rather than
as other solutions, any intransitive relations are transformed
into transitive ones
[Bucci and Pollack, 2003a, De Jong, 2004b].
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Introduction to Evolutionary Game Theory

Evolutionary Game Theoretic (EGT):
Tracking population state through time
Dynamical systems model
Discrete time system (map)
Interested in properties of limit behaviors

Model assumptions & properties
Population(s): single population, two-population
Payoff Properties: reward symmetry, role symmetry
Populations: infinite populations, finite populations
Interactions: typically complete mixing
Variation: typically none
Selection: typically proportionate selection
Updating: parallel update

Mean of all pair-wise
interactions
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Modeling the CCEA

Populations are ratios of genotypes
Given n distinct genotypes in a population,
"x ∈ Rn, xi ∈ [0, 1] ∧

∑n
i=1 xi = 1

Fitness modeled using a payoff matrix
Treat A a the payoff matrix for a stage game
aij is the reward player 1 gets when playing strategy i against
player 2’s j strategy
Strategies in game correspond with evolving individuals

Replicator equations generate the next system state:
Fitness: The fitness of all strategies in a population is assessed
(typically by playing all possible strategies for the other player)
Selection: The population state vector is updated using a
selection method of some sort (typically a proportionate
selection)

For example:

"x = 〈0.2 0.1 0.7〉
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Terminology

Pure Strategy — A single strategy available to a player in a game

Polymorphic (mixed) Strategy — A distribution of pure strategies

Evolutionary Stable Strategy (ESS) — a strategy that, if adopted by a
population, cannot be invaded by any alternative strategy

Nash Equilibrium — a strategy set of players in a game with the
property that, if all players are playing one of the
strategies, no individual player has anything to gain by
deviating from their strategy

Fixed Point (f.p.) — A point that maps to itself, "x = f ("x)

Stable Fixed Point — A fixed point with the property that all points
near it stay near it

Basin of Attraction (BOA) — Set of initial conditions that will
eventually map to some limit behavior (f.p., cycle, etc.)
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Single Population, Test-based Coevolution [Ficici and Pollack, 2000]

One population, but two players

Player 1 represents candidate solutions to the problem

Player 2 represents tests to challenge the solution

Individuals serve both as strategies for players 1 & 2 (role symmetry)

Fitness: F("x) "u = A"x
Selection: S(F("x),"x) x ′i = ui

!u·!x · xi

Population may represent polymorphic solutions

Simple CEA cannot recognize such solutions

CEA can be lead astray by search constrained attractive Nash eq.

Different dynamics can result from two-population algorithms
operating on same payoff matrix

Different dynamics can result if different selection methods are used
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Two-Population, Compositional Coevolution [Wiegand et al., 2003]

Two population, two players

Player 1 represents candidate for the 1st component of the solution

Player 2 represents candidate for the 2nd component of the solution

f (i , j), whether evaluating for player 1 or 2 (reward symmetry)

Fitness:
Fx("x ,"y)
Fy ("x ,"y)

"u = A"y
"w = AT"x

Selection:
S(Fx("x ,"y),"x)
S(Fy ("x ,"y),"y)

x ′i = ui
!u·!x · xi

y ′j =
wj

!w ·!y · yj

Nash equilibria are stable, attracting fixed points

Non-optimal stable f.p. can attract many, most, or all trajectories

Validation studies suggest that the size of BOAs associated with
basis vector f.p. increase as cumulative column/row increase
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Applicability of EGT on Finite Population Systems

Not Applicable
[Fogel et al., 1995]:

Pick a simple, two-strategy
problem (e.g., Hawk-Dove)

Pick a simple, finite
population CEA

Does the real CEA converge
to the EGT-predicted ESS?

Conclusion: No. Even for
very large populations,
quantization problems and
stochastic noise force the
system to deviate from
predictions

Applicable [Ficici et al., 2000]:

Be careful to model the algorithm properly
(if you implement truncation selection, model

truncation selection)

Use the correct predictions (e.g., predictions

for model adjusted for no self-play)

There are modest adjustments to
implementation that provide better
predictive correlation (e.g., Baker’s SUS

rather than proportionate selection)

Conclusion: Yes. Properly modeled, EGT
can be predictive
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Finite vs. Infinite Population Models [Liekens et al., 2004]

Some initial observations:

Infinite populations simplifies
analysis (populations represented

simply, models are deterministic)

Finite populations complicates
things (use Markov methods,

consider all possible populations &

compute fixed-point distributions)

Prevailing wisdom: predictions
of large population models
approximate predictions of
infinite model

Reality: Drift can be a powerful
factor of finite populations

Finite models behave differently:

Construct infinite population model
using traditional methods (Vose, 1999)

Construct finite population-genetics
based Markov model (Fischer, 1930)

Include proportionate selection &
bit-flip mutation in both models

Consider three simple 2× 2 games:
Neutral game, Hawk-Dove, &
Prisoner’s Dilemma (two pop.)

Analysis by model iteration

Conclusion: In all cases, small pop.
sizes translate to very different
behavior from the infinite models
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Coevolutionary Convergence [Schmitt, 2003]

Markov process with certain algorithmic constraints:

Fully-positive mutation matrix

Bounded mutation and crossover rate annealing schedule
(power-law scaling, with logarithmic exponent)

Power-law scaled proportionate selection

∃ strategy set with strictly maximal fitness (i.e., is strictly superior
as measured by the other population)

Conclusions:

A wide variety of (properly scaled versions of) commonly used
operators are included in this analysis

Populations in such CEAs converge asymptotically to a global
optima

Very large populations allow for slow annealing schedules
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Decomposing Solutions for Representation

Separability ∼ problem’s true
decomposition

r inseparable pieces

Each piece of length s

n := rs

Function is a linear sum of
subfunctions on r pieces

Representing candidate solutions

Problem decomposition (piece)

Representational decomposition
(component)

Two kinds of representational bias
1 Decompositional bias
2 Linkage bias

Poor decomposition can increase cross-population epistasis. E.g.,:

components x1x2 · · · xl x(2−1)·(l+1) · · · x2·l · · · x(k−2)·(l+1) · · · x(k−1)·l x(k−1)·(l+1) · · · xn

pieces x1x2 · · · xs · · · x(r−1)·(s+1) · · · xn
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Empirical Analysis of Repr. Bias [Wiegand et al., 2002a]

Traditional View:

High CP epistasis → poor
coevolutionary performance

Low CP epistasis → good
coevolutionary performance

Compensate by using more
complicated interaction methods

Thought Exercise:

Problem separability aligns
perfectly with representational
decomposition

Select any collaborator, or just an
arbitrary fixed value

Understanding Repr. Bias:

Construct problems with different
non-linear properties

Use a mask to adjust linkage &
decompositional bias

Consider a variety of collaboration
methods

Conclusion: It isn’t the existence
of cross-population epistasis that
makes things hard, but the type

Observation: Coevolution is unnecessary!

This is a bad example of
coevolutionary success
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Partitioning & Focusing [Jansen and Wiegand, 2004]

Two key aspects of CCEAs:

Partitioning (separability is important)

Focusing (increased exploration is
important)

Consider 2 simple algorithms:

(1+1) EA

CC (1+1) EA

Asymptotic run time analysis:

Randomized algorithm analysis

Det. expected # evals to max

Bound probabilities

Consider problems w/ different
properties:

Separable across pop. boundaries

Inseparable across pop. boundaries

Conclusions:

Separability insufficient for CCEA
advantage

Separability unnecessary for CCEA
advantage

Inseparability insufficient for EA
advantage

Problem must require both
partitioning & focusing
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Empirical Studies of Methods of Interactions

Methods of Interaction:

Evaluation in coevolution requires interaction

Many ways to select competitors / partners

More interactions per eval → more information, less efficiency

Less interactions per eval → less information, more efficiency

Some Example Studies:

[Angeline and Pollack, 1993] Empirical study of different topologies
of competitive tournaments

[Bull, 1997] Broad empirical survey study of performance of partner
selection

[Wiegand et al., 2001] Empirical study of certain properties of
collaborator selection

[Bull, 2001] Formalism for understanding partner selection

[Panait and Luke, 2002] Broad empirical survey study of
performance of competitive evaluations
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Conceptualizing the Information Content of Problems

Coevolutionary Problems:

Coevolutionary problems involve certain structures

E.g., underlying objectives, dimensions, etc.

Formalisms for Studying Problem Structure:

[Rosin and Belew, 1997] teaching set — set of individuals capable of
defeating all possible nonoptimal opponent

[Ficici and Pollack, 2001] distinction— If learner x performs better
than learner y with respect to teacher j , we say that teacher j
distinguishes the learner pair (x , y) in favor of x

[Bucci and Pollack, 2003b] maximally informative test set — the set
of tests having neither incomparable elements nor equal elements

[De Jong and Pollack, 2003] complete evaluation set — set of
individuals capable to detecting all selectable differences between
learners
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Problem Classes for Analysis

Constructing Problem Classes:

Tunable: A range of problem instances can be generated straightforwardly

Demonstrative: Illustrate certain problem properties

Simple: Preferably, analytically tractable in some way

Challenging: Possible to generate instances difficult for coevolution

Some Example Problem Classes:

[Kauffman and Johnsen, 1992] Probabilistic, coupled landscapes: NKC

[Watson and Pollack, 2001] Minimal substrate: Numbers games

[Wiegand et al., 2002b] Tunable miscoordination: MaxOfTwoQuadratics

[Popovici and De Jong, 2006] Tunable best response: ridge / plateau functions
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Measuring Coevolution

Diagnosing CEA Behavior:

Red Queen dynamics & poor solution concept formulation make it
hard to discern coevolutionary progress

Coevolution generates many pathological behaviors

Some Example Measures:

[Cliff and Miller, 1995] Current individual vs. ancestral opponent

[Pollack and Ficici, 1998] Order statistics and measured entropy

[Stanley and Miikkulainen, 2002a] Dominance tournament

[Bader-Natal and Pollack, 2004] All of generation visualization
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Understanding Performance

Best Response:

Best-responses are a problem property

Trajectories of best individuals through
the search space (algorithm property)
tend to approximate the best responses

Accuracy of approximation depends on
CEA parameter settings

High accuracy bad when ∃ multiple
nash equilibria (intersections of
best-responses) of different values

Random Walk Theory:

Consider a simple CEA

On variations of the numbers game

Compare behavior to random walk

Issues Analyzed:

Competitions
[Popovici and De Jong, 2004]

Collaboration methods in
compositional coevolution
[Popovici and De Jong, 2005a]

Population sizes & elitism in
compositional coevolution
[Popovici and De Jong, 2005b]

Issues Analyzed:

Intransitivity
[Funes and Pujals, 2005]
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Choosing Opponents Is Not the Only Problem

How can new solutions be continually created that maintain
existing capabilities?

Mutations that lead to innovations could simultaneously lead
to losses

What kind of process ensures elaboration over alteration?
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Alteration vs. Elaboration
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Encoding Affects Performance

Fixed length genomes limit progress

Dominant strategies that utilize the entire genome must alter
and thereby sacrifice prior functionality

If new genes can be added, dominant strategies can be
elaborated, maintaining existing capabilities

→ Complexification is an important process for the encoding
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Example Domain: Robot Duel

Robot with higher energy wins by colliding with opponent
Moving costs energy
Collecting food replenishes energy
Complex task: When to forage/save energy, avoid/pursue?
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Robot Neural Networks
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Set of Strategies Not Fixed or Known

Progress should continue indefinitely

Solutions should elaborate

Should not require estimating task complexity

→ Use a method that complexifies
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Complexifying Method: NeuroEvolution of Augmenting
Topologies (NEAT)

NEAT evolves increasingly complex neural network for control
[Stanley and Miikkulainen, 2004]
Mutations occasionally add new structure
Speciation protects innovative structures
Successful elaborations survive
→ The populaton complexifies
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Dominance Tournament Progress Measure
[Stanley and Miikkulainen, 2002b]

The first dominant strategy d1 is the generation champion of
the first generation;
dominant strategy dj , where j > 1, is a generation champion
such that for all i < j , dj is superior to (wins the 288 game
comparison with) di .
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Evolution of Complexity
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As dominance increases so does complexity on average

Networks with strictly superior strategies are more complex
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Comparing Performance

Coevolution Type Ave. Highest Average Equivalent
Dom. Level Performance Generation

(out of 500)

Complexifying 15.2 91.4% 343
Fixed-Topology 12.0 40.4% 24
10 Hidden Node
Fixed-Topology 13.0 80.3% 159
5 Hidden Node
Fixed-Topology 14.0 82.4% 193
Best Network
Simplifying 23.2 57.3% 56
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Coevolution in Practice

Evaluation is expensive
Choosing opponents/teammates must involve sampling
Even under theoretically-founded schemes

Solution space is unknown/undefined
Representation must be open-ended
Genomes need to complexify

Is coevolution ready for real-world applications?
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Some Final Remarks

It is important to know what we’re solving
Invest time in formalizing the solution concept of the problem
Try to apply a CEA appropriate for that concept

Theory is progressing — many tools are now available:
Evolutionary game theory & dynamical systems analysis
Markov modeling & Markov chain analysis
Randomized run-time analysis
Order theory & information theoretic approaches
A variety of useful problem classes
Dynamics analysis (e.g., best-response)

Practical applications of coevolution may require special
considerations

Representation is critical
Expanding the search space enables continual elaboration
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