
1

Genetic Programming

Theory

Riccardo Poli

Department of Computer Science

University of Essex

July 2006 R. Poli - University of Essex 2

Overview

�Search space characterisation

�Program search spaces

�Recursive structure

�Limiting fitness distributions

�Halting probability

�GP search characterisation

�Schema Theory

�Lessons and implications

�Conclusions

Introduction

July 2006 R. Poli - University of Essex 4

Understanding GP Search Behaviour

with Empirical Studies

�We can perform many GP runs with a small

set of problems and a small set of parameters

�We record the variations of certain numerical

descriptors.

�Then, we hypothesize explanations about the

behaviour of the system that are compatible

with (and could explain) the empirical

observations.

2

July 2006 R. Poli - University of Essex 5

�GP is a complex adaptive system with zillions
of degrees of freedom.

�So, any small number of descriptors can
capture only a fraction of the complexities of
such a system.

�Choosing which problems, parameter settings
and descriptors to use is an art form.

�Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies

July 2006 R. Poli - University of Essex 6

Example: Bloat

� Bloat = growth without (significant) return in
terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness

July 2006 R. Poli - University of Essex 7

Why do we need mathematical theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space

Characterisation

3

July 2006 R. Poli - University of Essex 9

GP search spaces

� Representation

mov R1 R2 add R1 2 jump 1
mov R1 R2

add R1 72

jump 1

opcode opcode opcode

July 2006 R. Poli - University of Essex 10

Grammar

GP primitives

July 2006 R. Poli - University of Essex 11

Recursive nature of search space

= Set of trees of depth at most d

= Primitive Set

Union Cartesian product

July 2006 R. Poli - University of Essex 12

Example

= {x, y, (√x), (√y), (+ x x), (+ x x), (+ x y), (+ y x),
(+ y y), (+ x x), (× x x), (× x y), (× y x), (× y y) }

4

July 2006 R. Poli - University of Essex 13 July 2006 R. Poli - University of Essex 14

How many programs in the search

space?

= Number of trees of depth at
most d

July 2006 R. Poli - University of Essex 15

Example

July 2006 R. Poli - University of Essex 16

Logarithmic scale Superexponential

5

July 2006 R. Poli - University of Essex 17

Doubly logarithmic scale

Exponentials

Courtesy Bill Langdon

July 2006 R. Poli - University of Essex 18

GP cannot possibly work!

� The GP search space is immense, and so any

search algorithm can only explore a tiny

fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly work?

Not necessarily.

� We need to know the ratio between the size

of solution space and the size of search space

July 2006 R. Poli - University of Essex 19

{d0,d1,NAND} search space

Courtesy Bill Langdon

Proportion of 2-input logic functions
implemented using NAND primitives

July 2006 R. Poli - University of Essex 20

Sextic polynomial

Courtesy Bill Langdon

6

July 2006 R. Poli - University of Essex 21

Artificial Ant

Courtesy Bill Langdon

July 2006 R. Poli - University of Essex 22

Limiting distribution

� Empirically is has been shown that as program
length grows the distribution of functionality
reaches a limit

� So, beyond a certain length, the proportion of
programs which solve a problem is constant

� Since there are exponentially many more long
programs than short ones, in GP

size of the solution space

= constant

size of the search space

� Proofs?

July 2006 R. Poli - University of Essex 23

Linear model of computer

Courtesy Bill Langdon

July 2006 R. Poli - University of Essex 24

� Input and output registers are part of memory.

� Memory is initially zero (except input registers).

� Linear GP program is a sequence of instructions.

� CPU fetches operands from memory, performs

operation and writes answer into memory

(overwriting previous contents).

� When a program stops, the final answer can be

read from the output register.

7

July 2006 R. Poli - University of Essex 25

States, inputs and outputs

� Assume n bits of memory of which k are

input bits and h are output bits

� There are 2n states.

� At each time step the machine is in a state, s

� By setting the inputs (and zeroing the rest)

we can place the machine in 2k different

initial states s1 ... s2k out of the 2n available

July 2006 R. Poli - University of Essex 26

Instructions

� Each instruction changes the state of the machine

from a state s to a new s′, so instructions are maps

from binary strings to binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

July 2006 R. Poli - University of Essex 27

Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can be

described as a mapping from initial states si to

corresponding final states s′i

July 2006 R. Poli - University of Essex 28

� For example,

AND m0 m1 � m0

NOP

OR m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100

8

July 2006 R. Poli - University of Essex 29

Does the behaviour tend to a limiting

distribution?

11011000
Identity function
(no instruction
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0 OR m0 m1 � m0

July 2006 R. Poli - University of Essex 30

11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C

July 2006 R. Poli - University of Essex 31

11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B

July 2006 R. Poli - University of Essex 32

11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C

9

July 2006 R. Poli - University of Essex 33

Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C

July 2006 R. Poli - University of Essex 34

Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour

C

Behaviour

B

Behaviour

A

Program

length

July 2006 R. Poli - University of Essex 35

Yes….

� …for this primitive set the distribution tends

to a limit where only behaviour C has non-

zero probability.

� Programs in this search space tend to copy

the initial value of m1 into m0.

July 2006 R. Poli - University of Essex 36

Behaviour vs. functionality

� If the number of input bits k is smaller than n,

since we zero the remaining bits, only 2k

different initial states s1 ... s2k out of the 2n

available are possible.

� So the behaviour of a program can be

described as a mapping from the input states

si to corresponding final states s′i

(not necessarily distinct)

10

July 2006 R. Poli - University of Essex 37

� Often there are more memory bits than output bits

� So, many final states s′i are indistinguishable from
the output viewpoint.

� Therefore, the functionality of a program is a truth
table with k inputs and h outputs.

� So, functionality is a coarse-grained version of
behaviour

� The limiting distribution for functionality can be
derived from the limiting distribution for
behaviour.

July 2006 R. Poli - University of Essex 38

Example

� Two primitives: AND m0 m1 � m0 and OR
m0 m1 � m0

� Inputs: m0 and m1

� Output: m1

� Behaviours B =

C =

and Identity =

are indistinguishable

11011100

11001100

11011000

July 2006 R. Poli - University of Essex 39

Distribution of functionality

15/161/164

10∞

7/81/83

¾¼2

½½1

100

Functionality

B/C/Identity

Functionality

A

Program

length

July 2006 R. Poli - University of Essex 40

Markov chain proofs of limiting

distribution

� Using Markov chain theory Bill Langdon has
proven that a limiting distributions of functionality
exists for a large variety of CPUs

� These include:

� Cyclic. Increment, decrement and NOP.

� Bit flip. Flip biti and NOP.

� Any non-reversible

� Any reversible

� CCNOT (Toffoli gate).

� The “average” computer

� AND, NAND, OR, NOR

11

July 2006 R. Poli - University of Essex 41

� There are extensions of the proofs from linear

to tree-based GP.

� See Foundations of Genetic Programming

book for an introduction to the proof

techniques.

July 2006 R. Poli - University of Essex 42

So what?

� Generally instructions ``lose information''.

Unless inputs are protected, almost all long

programs are constants.

� Write protecting inputs makes linear GP

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or

theoretical.

July 2006 R. Poli - University of Essex 43

Implication of

|solution space|/|search space|=constant

� GP can win if

� the constant is not too small or

� there is structure in the search space to guide the

search or

� the search operators are biased towards searching

solution-rich areas of the search space

or any combination of the above.

July 2006 R. Poli - University of Essex 44

What about Turing complete GP?

�Memory and loops make linear GP Turing

complete, but what is the effect search space

and fitness?

�Does the distribution of functionality of

Turing complete programs tend to a limit as

programs get bigger?

12

July 2006 R. Poli - University of Essex 45

T7 Minimal Turing Complete CPU

� 7 instructions

� Arithmetic unit is ADD. From + all other
operations can be obtained. E.g.

� Boolean logic

� SUB, by adding complement

� Multiply, by repeated addition (subroutines)

� Conditional (Branch if oVerflow flag Set)

� Move data in memory

� Save and restore Program Counter (i.e. Jump)

� Stop if reach end of program

July 2006 R. Poli - University of Essex 46

T7 Architecture

July 2006 R. Poli - University of Essex 47

Experiments

� There are too many programs to test them all.

Instead we gather statistics on random samples.

� Chose set of program lengths 30 to 16777215

� Generate 1000 programs of each length

� Run them from random start point with random

input

� Program terminates if it obeys the last instruction

and this is not a jump

� How many stop?

July 2006 R. Poli - University of Essex 48

Almost all T7 Programs Loop

13

49

Model of Random Programs

� Before any repeated instructions;

� random sequence of instructions and

� random contents of memory.

� 1 in 7 instructions is a jump to a random

location

50

Model of Random Programs

� T7 instruction set chosen to have little bias.

� I.e. every state is ≈equally likely.

� Overflow flag set half the time.

� So 50% of conditional jumps BVS are active.

� (1+0.5)/7 instructions takes program counter
to a random location.

� Implies for long programs, lengths of
continuous instructions (i.e. without jumps)
follows a geometric distribution with mean
7/1.5=4.67

July 2006 R. Poli - University of Essex 51

Program segment = random code

ending with a random jump

W. B. Langdon, Essex 52

Forming Loops:Segments model

� Segments model assumes whole program is
broken into N=L/4.67 segments of equal
length of continuous instructions.

� Last instruction of each is a random jump.

� By the end of each segment, memory is re-
randomised.

� Jump to any part of a segment, part of which
has already been run, will form a loop.

� Jump to any part of the last segment will halt
the program.

14

53

Probability of Halting

� i segments run so far. Chance next segment

will

� Form first loop = i/N

� Halt program = 1/N

� (so 1-(i+1)/N continues)

� Chance of halting immediately after segment i

= 1/N × (1-2/N) (1-3/N) (1-4/N) … (1-i/N)

� Total halting probability given by adding these

gives ≈ sqrt(π/2N) = O(N-½)

54

Proportion of programs without loops

falls as 1/sqrt(length)

Segments model over,

but gives 1/√x scaling.

W. B. Langdon, Essex 55

Average run time (non-looping)

� Segments model allows us to compute a bound

for runtime

� Expected run time grows as O(N½)

Run time on terminating programs

Run time of non-looping

programs fits

O(√L) segment model

prediction.

Max run time limited

by small,12 bytes,

memory becoming

non-random

15

July 2006 R. Poli - University of Essex 57

Markov model: States

� State 0 = no instructions executed, yet

� State i = i instructions but no loops have been

executed

� Sink state = at least one loop was executed

� Halt state = the last instruction has been

successfully executed and PC has gone

beyond it.

July 2006 R. Poli - University of Essex 58

Event diagram for program execution 1/2

July 2006 R. Poli - University of Essex 59

Event diagram for program execution 2/2

July 2006 R. Poli - University of Essex 60

p1 = probability of being the last

instruction

� Program execution starts from a random
position

� Memory is randomly initialised and, so, any
jumps land at random locations

� Then, the probability of being at the last
instruction in a program is independent of
how may (new) instructions have been
executed so far.

� So,

16

July 2006 R. Poli - University of Essex 61

p2 = probability of instruction causing

a jump

� We assume that we have two types of jumps

� unconditional jumps (prob. puj, where PC is given
a value retrieved from memory or from a register

� conditional jumps (prob. pcj)

� Flag bit (which causes conditional jumps) is
set with probability pf

� The total probability that the current
instruction will cause a jump is

July 2006 R. Poli - University of Essex 62

p3= probability of new instruction after

jump

� Program counter after a jump is a random

number between 1 and L

� So, the probability of finding a new

instruction is

July 2006 R. Poli - University of Essex 63

p4 = probability of new instruction

after non-jump

� The more jumps we have executed the more

the map of visited instructions will be

fragmented.

� So, we should expect p4 to decrease as a

function of the number of jumps/fragments.

� Expected number of fragments (jumps) in a

program having reached state i

July 2006 R. Poli - University of Essex 64

� Each block will be preceded by at least one

unvisited instruction

� So, the probability of a previously executed

instruction after a non-jump is

and

17

July 2006 R. Poli - University of Essex 65

� A more precise model considers the

probability of blocks being contiguous.

� Expected number of actual blocks

hence

July 2006 R. Poli - University of Essex 66

Markov Model: state transition

probabilities

� These are obtained by adding up “paths” in

the program execution event diagram

E.g. looping probability

July 2006 R. Poli - University of Essex 67

Less than L-1 instructions visited

July 2006 R. Poli - University of Essex 68

L-1 instructions visited

18

July 2006 R. Poli - University of Essex 69

Transition matrix

� For example, for T7 and L = 7 we obtain

0 instructions
1 instructions
2 instructions
3 instructions
4 instructions
5 instructions
6 instructions
loop
halt

0
 i

n
st

ru
c
ti

o
n

s

1
 i

n
st

ru
c
ti

o
n

s

2
 i

n
st

ru
c
ti

o
n

s

3
 i

n
st

ru
c
ti

o
n

s

4
 i

n
st

ru
c
ti

o
n

s

5
 i

n
st

ru
c
ti

o
n

s

6
 i

n
st

ru
c
ti

o
n

s

lo
o

p

h
a

lt

July 2006 R. Poli - University of Essex 70

Computing future state probabilities

� The distribution of future states can be

computed bytaking appropriate powers of the

Markov matrix M

July 2006 R. Poli - University of Essex 71

Examples

For T7, L=7 and i=3

For T7, L=7 and i=L

prob. halting in
3 instructions

prob. looping in
3 instructions

total halting
probability

July 2006 R. Poli - University of Essex 72

Efficiency

� Computing halting probabilities requires a

potentially exponentially explosive

computation to perform (ML)

� We reordered calculations to obtain very

efficient models which allow us to compute

� halting probabilities and

� expected number of instructions executed by

halting programs

for L = 10,000,000 or more (see paper for details)

19

July 2006 R. Poli - University of Essex 73

A good model?

Halting probability

July 2006 R. Poli - University of Essex 74

Instructions executed by halting programs

July 2006 R. Poli - University of Essex 75

Improved model accounting for

memory correlation

July 2006 R. Poli - University of Essex 76

Number of halting programs

rises exponentially with length

10100 000 000

Doubly logarithmic scale

T7 CPU

20

July 2006 R. Poli - University of Essex 77

Turing complete GP cannot possibly

work?

� Only halting programs can be solutions to

problems, so

|solution space|/|search space| < p(halt)

� In T7, p(halt) � 0, so,

|solution space|/|search space| � 0

� Since the search space is immense, GP with

T7 seems to have no hope of finding

solutions.

July 2006 R. Poli - University of Essex 78

What can we do?

� Control p(halt)

� Size population appropriately

� Design fitness functions which promote

termination

� Repair

�

� Any mix of the above

July 2006 R. Poli - University of Essex 79

Controlling p(halt)

� Modify the probability of using jumps

T7 CPU

Markov chain predictions

July 2006 R. Poli - University of Essex 80

Population sizing

� Programs that do not terminate are given zero
fitness

� So the effective population size in the initial
generation is

Popsize × p(halt)

� For evolution to work we must have at least
some halting individuals. So, we must choose

Popsize >> 1 / p(halt)

for the particular program length of interest.

21

July 2006 R. Poli - University of Essex 81

Limiting distribution of functionality

for halting programs?

� Non-looping programs halt

� The distribution of instructions in non-

looping programs is the same as with a

primitive set without jumps

July 2006 R. Poli - University of Essex 82

Limiting distribution of functionality

for halting programs?

� So, as the number of instructions executed
grows, the distribution of functionality of
non-looping programs approaches a limit.

� Number of instructions executed, not
program length, tells us how close the
distribution is to the limit

� E.g. for T7, very long programs have a tiny
subset of their instructions executed (e.g.,
1,000 instructions in programs of L =
1,000,000).

GP Search

Characterisation

July 2006 R. Poli - University of Essex 84

GA and GP search

� GAs and GP search like this:

� How can we understand (characterise, study and

predict) this search? Visualisation is not a solution

� Understanding = science � better systems

22

July 2006 R. Poli - University of Essex 85

Microscopic Dynamical System Models

� We represent the population as a point in a
multidimensional space, and we study the
trajectory of this point

� This leads to exact models with huge numbers of
parameters (microscopic models).

July 2006 R. Poli - University of Essex 86

Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using macroscopic

quantities

� Model how and why the individuals in the

population move from one subspace to

another (schema theorems).

July 2006 R. Poli - University of Essex 87

Example

� The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor

� A schema theorem models mathematically how
and why m(H,t) varies from one generation to
the next.

July 2006 R. Poli - University of Essex 88

Schema Theorist’s Questions

�Q1: How should the search space be divided?

I.e. what is the right schema definition?

�E.g. how about

23

July 2006 R. Poli - University of Essex 89

�There isn't a right schema definition:

different definitions might be suitable for

different purposes, algorithms, etc.

�Good definitions should:

�have a simple syntactic representation (concise

notation)

�make the calculations doable.

July 2006 R. Poli - University of Essex 90

�Q2: What are the right quantities one should

use to describe schemata?

�We want quantities that lead to simple exact

or reasonably accurate mathematical

formulations.

�Also, we want macroscopic quantities

(something equivalent to pressure, volume,

mass, temperature, entropy, etc. in physics).

July 2006 R. Poli - University of Essex 91

Traditionally, the following quantities have

been used:

�number of individuals in a schema,

�average fitness of the individuals in the

schema and in the population,

�size of the search space,

�size of the schema,

�“fragility” w.r.t. crossover and mutation, etc.

July 2006 R. Poli - University of Essex 92

�Q3: What is the right schema theorem?

�EAs are non-deterministic, so exact predictions
of the future state of the search cannot be made.

�However, the expected behaviour of an
algorithm can be predicted using probability.

�Depending on the search space, on the schema
definition and on the macroscopic quantities
chosen, many different schema theorems have
been obtained. They have different explanatory
and predictive power.

24

July 2006 R. Poli - University of Essex 93

Exact Schema Theorems

� The selection/crossover/mutation process is a

Bernoulli trial: a newly created individual

either samples or does not sample a schema H.

� So, m(H,t+1) is a binomial stochastic variable.

� Given the success probability of each trial

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t)

July 2006 R. Poli - University of Essex 94

Pessimistic Schema Theorems

� Finding an exact formulation for

α(H,t) can be very difficult

� Initially researchers have come up

only with lower bounds which led to

“pessimistic” schema theorems, i.e.

E[m(H,t+1)] ≥ M αmin(H,t)

July 2006 R. Poli - University of Essex 95

GA Schema Theory

July 2006 R. Poli - University of Essex 96

Holland’s GA Schemata

� In GAs operating on binary strings, syntactically

a schema is a string of symbols from the

alphabet {0,1,*}, like *10*1.

�* is interpreted as a “don't care'' symbol, so that,

semantically, a schema represents a set of bit

strings.

�E.g. *10*1 = {01001, 01011, 11001, 11011}

25

July 2006 R. Poli - University of Essex 97

Holland’s Schema Theorem

� Holland's schema theory is approximate. It
provides a lower bound for α(H,t) or,
equivalently, for E[m(H,t+1)].

� For one-point crossover and point mutation:

×

−
×−−≥ σα

1

)(
1)1)(,(),()(

N

HL
pptHptH c

HO

m

July 2006 R. Poli - University of Essex 98

� m(H,t) is number of individuals in the schema H
at generation t,

� M is the population size,

� p(H,t) is the selection probability for strings in H
at generation t,

� pm is the mutation probability,

� O(H) is the schema order, i.e. number of defining
bits,

� pc is the crossover probability,

� L(H) is the defining length, i.e. distance between
the furthest defining bits in H,

� N is the bitstring length.

July 2006 R. Poli - University of Essex 99

� Idea:

� Features:

� The theorem includes an expected value

� It provides a lower bound

� So, it is difficult to make accurate predictions

July 2006 R. Poli - University of Essex 100

�The factor σ differs in the different

formulation of the schema theorem:

− σ=1-m(H,t)/M in (Holland, 1975),

− σ=1 in (Goldberg, 1989),

− σ=1-p(H,t) in (Whitley, 1994).

� In 1997 Stephens and collaborators produced

an exact formulation for α(H,t): an “exact''

schema theorem.

26

July 2006 R. Poli - University of Essex 101

�Let us assume that only reproduction and

(one-offspring) crossover are performed.

�Creation probability tree for a schema H:

How can we get an exact schema

theorem?

reproduction crossover

offspring in H offspring not in H offspring in H offspring not in H

pr pc=1-pr

selection picks an
individual in H

parent selection and XO
point choice produce

an individual in H

July 2006 R. Poli - University of Essex 102

[]),(cloningforinindividualanSelectingPr tHpH =

�Adding “paths” to success produces

where

[]

×+

×=

H
p

HptH

c

r

 matchesoffspringthethatsuchare

pointscrossovertheand parentsThe
Pr

cloningforselectedisinindividual AnPr),(α

July 2006 R. Poli - University of Essex 103

� The process of crossover point selection is
independent from the actual primitives in a parent.

� The probability of choosing a particular crossover
depends only on the actual size of the parent.

� E.g., the probability of choosing any crossover
point in

1 1 0 1 0 1

is identical to the probability of choosing any
crossover point in

0 0 0 1 1 0

July 2006 R. Poli - University of Essex 104

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a pair of
individuals which, when

crossed over at point i
produce an individual in H

selection picks an
individual in H

chosen
XO

point 1

chosen
XO point

N-1

….

offspring in H offspring not in H offspring in H offspring not in H

27

July 2006 R. Poli - University of Essex 105

×

=

∑

Hi

i

H

i

in offspringan produce point at over crossed

 if such that parents Selecting
Pr

point

 crossover Choosing
Pr

 matches offspring the thatsuch are

pointscrossover theand parentsThe
Pr

 points
crossoverallFor

July 2006 R. Poli - University of Essex 106

�Let us assume that crossover points are

selected with uniform probability:

1-bits ofNumber

1

point

crossover Choosing
Pr =

i

July 2006 R. Poli - University of Essex 107

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a first parent which,
when crossed over at point i, gives

the offspring the right material to
create an individual in H

chosen
XO

point 1

chosen
XO point

N-1

….

offspring not in H offspring not in H

selection picks an
individual in H

selection picks a second parent which,
when crossed over at point i, gives

the offspring the remaining material
to create an individual in H

offspring in H offspring not in H offspring in H offspring not in H

chosen 1st

parent
chosen 1st

parent

….

July 2006 R. Poli - University of Essex 108

×

=

 material necessary remaining theprovides point at

over crossed if such that parent second a Selecting
Pr

in offspringan create tomaterial necessary theprovides

 point at over crossed if such that parent first a Selecting
Pr

in offspringan produce point at over crossed

 if such that parents Selecting
Pr

i

H

i

Hi

28

July 2006 R. Poli - University of Essex 109

Stephens and Waelbroeck's Exact

GA Schema Theory (1997)
�For a binary GA with one point crossover

applied with probability pxo (and assuming

pm=0)

July 2006 R. Poli - University of Essex 110

=

=

 material necessary remaining theprovides point at

over crossed if such that parent second a Selecting
Pr

)),,(Pr(

in offspringan create tomaterial necessary theprovides

 point at over crossed if such that parent first a Selecting
Pr

)),,(Pr(

i

tiHR

H

i

tiHL

� L(H,i) is obtained by replacing the elements of H to
the right of position i with “don't care” symbols

� R(H,i) is obtained by replacing the elements of H to
the left of position i+1 with “don't care” symbols

July 2006 R. Poli - University of Essex 111

�For example, if H=1*111, then L(H,1)=1****,

R(H,1)=**111, L(H,3)=1*1**, R(H,3)=***11.

�For the schema *11, the theorem gives:

since p(***,t)=1.

July 2006 R. Poli - University of Essex 112

� In terms of sets:

� Note that the L and R building blocks are not
necessarily all fitter than average, short or low-order.

29

July 2006 R. Poli - University of Essex 113

Why should GPers be interested in

GA theory?

�Bit strings and vectors of floating point
parameters are graphs. E.g.

�So, evolutionary algorithms operating on fixed-
length linear representations actually evolve
graphs with a fixed linear topology.

�Different types of EAs use nodes from different
primitive sets. E.g. in binary GAs P={0,1}.

July 2006 R. Poli - University of Essex 114

�GP, too, evolves special types of graphs,
namely trees, but this time the topology is not
necessarily fixed.

�Since linear graphs are special types of trees,
in general fixed-length linear EAs are special
cases of some corresponding GP system (more
on this later).

�So, in principle GA theory can be generalised
to GP.

July 2006 R. Poli - University of Essex 115

Exact Schema Theory

for GP with

Subtree Crossover

July 2006 R. Poli - University of Essex 116

GP Schemata

� Syntactically, a GP schema is a tree with some
“don’t care” nodes (“=”) that represent exactly
one primitive.

� Semantically, a schema is the set of all programs
that match size, shape and defining nodes of such
a tree.

� For example, (= x (+ y =)) represents the set
of programs

{(+ x (+ y x)), (+ x (+ y y)), (* x (+ y x)), ...}

30

July 2006 R. Poli - University of Essex 117

�We can start like in the GA case:

How can we get an exact schema

theorem for GP with subtree crossover?

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

selection picks a pair of
individuals which, when

crossed over at point i
produce an individual in H

selection picks an
individual in H

chosen
XO

point 1

chosen
XO point

N-1

….

offspring in H offspring not in H offspring in H offspring not in H

July 2006 R. Poli - University of Essex 118

[]

[]

×+

×−=

×+

×=

+

=

H
p

tHpp

H
p

Hp

H

HtH

c

c

c

r

matchesoffspringthethatsuchare

pointscrossover theand parentsThe
Pr

),()1(

matchesoffspringthethatsuchare

pointscrossover theand parentsThe
Pr

cloningfor selectedisinindividualAnPr

]crossoverby producedis matching offspring AnPr[

onreproducti viaobtained is in individual AnPr),(α

July 2006 R. Poli - University of Essex 119

� The process of crossover point selection is
independent from the actual primitives in the parent
tree.

� The probability of choosing a particular crossover
point depends only on the actual size and shape of
the parent.

� For example, the probability of choosing any
crossover point in the program

(+ x (+ y x))

is identical to the probability of choosing any
crossover point in

(AND D1 (OR D1 D2))

July 2006 R. Poli - University of Essex 120

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

1st parent has
shape 1 ….

selection picks an
individual in H

offspring in H offspring not in H

chosen XO point
1 in 1st parent

1st parent has
shape S

2nd parent has
shape 1

….
2nd parent has

shape S
2nd parent has

shape 1 ….
2nd parent has

shape S

…. ….
….

chosen XO point
N in 1st parent

chosen XO point
1 in 2nd parent ….

chosen XO point
N in 2nd parent

offspring in H offspring not in H

…. ….

31

July 2006 R. Poli - University of Essex 121

×

=

∑ ∑

Hji

lk

lkji

H

lk
lk

ji

in offspringan produce and pointsat over crossed

 ifsuch that , and shapes with parents Selecting
Pr

andshapesinand

pointscrossover Choosing
Pr

matchesoffspringthethatsuch are

pointscrossover theand parentsThe
Pr

,shapesparent
ofpairsallFor

andshapes
in,points

crossoverallFor

July 2006 R. Poli - University of Essex 122

�Let us assume that crossover points are

selected with uniform probability:

lklkji shapeinNodes

1

shapeinNodes

1

andshapesinand

pointscrossover Choosing
Pr ×=

July 2006 R. Poli - University of Essex 123

�The offspring has the right shape and

primitives to match the schema of interest if

and only if, after the excision of the chosen

subtree, the first parent has shape and

primitives compatible with the schema, and

the subtree to be inserted has shape and

primitives compatible with the schema.

July 2006 R. Poli - University of Essex 124

×

=

 iHj

 l

 iHi

 k

Hji

lk

 w.r.t. ofpart lower thematches point crossover .part w.r.t

lower its that such shape hparent wit donating-subtreea Selecting
Pr

 w.r.t. ofpart upper thematches point crossover .part w.r.t

upper its that such shape hparent wit donating-roota Selecting
Pr

 in offspring an produce and pointsat over crossed

 if that such , and shapes withparents Selecting
Pr

�Computing these two probabilities requires the
introduction of a new concept: the variable arity
hyperschema

32

July 2006 R. Poli - University of Essex 125

Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree

with internal nodes from F ∪ {=, # } and

leaves from T ∪ { =, # }.

� = is a “don't care” symbols which stands for

exactly one node, # terminal stands for any

valid subtree, while the # function stands for

exactly one node of arity not smaller than the

number of subtrees connected to it.

July 2006 R. Poli - University of Essex 126

� For example, (# x (+ = #))

July 2006 R. Poli - University of Essex 127

Upper and lower building blocks

� VA hyperschemata can express which parents can produce
instances of a schema of interest H

� If one crosses over at point j any individual matching
L(H,i,j) and at point i any individual matching U(H,i), the
resulting offspring is always an instance of H

July 2006 R. Poli - University of Essex 128

� U(H, i) is the VA hyperschema obtained from H by

replacing the subtree below crossover point i with

a # node.

� L(H, I, j) is the VA hyperschema obtained by:

� rooting at coordinate j in an empty reference system the

subschema of H below crossover point i,

� then by labelling all the nodes on the path between node

j and the root node with # function nodes, and

� labelling the arguments of those nodes which are to the

left of such a path with # terminal nodes

33

July 2006 R. Poli - University of Essex 129

�For example,

July 2006 R. Poli - University of Essex 130

Exact GP Schema Theorem for Subtree

Crossover (2001)

� Schema theorem for standard GP crossover

July 2006 R. Poli - University of Essex 131 July 2006 R. Poli - University of Essex 132

Exact Schema Theories for Different

Operators and their Relations

34

July 2006 R. Poli - University of Essex 133

So what?

� A model is as good as the predictions and the

understanding it can produce

� So, what can we learn from schema

theorems?

July 2006 R. Poli - University of Essex 134

Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …

July 2006 R. Poli - University of Essex 135

Mutation Bias

July 2006 R. Poli - University of Essex 136

Selection Bias

35

July 2006 R. Poli - University of Essex 137

Crossover Bias

July 2006 R. Poli - University of Essex 138

So where is evolution going?

July 2006 R. Poli - University of Essex 139

Geringer’s manifold for linear GP

� A fixed-point distribution for the proportion of

a linear, variable-length schema h1 h2 …hN

under a GP homologous crossover for an

infinite population on a flat fitness landscape is

� This is a unique global attractor for the system.

July 2006 R. Poli - University of Essex 140

� A fixed-point distribution for program length

under GP subtree crossover for an infinite

population on a flat fitness landscape is a

Gamma distribution:

36

July 2006 R. Poli - University of Essex 141

� For example the fixed-point length distribution

for µ = 10 is

July 2006 R. Poli - University of Essex 142

Unequal Search Space Sampling

� The average probability that each program of

length x will be sampled by standard

crossover is

� For a flat landscape, standard GP will sample

a particular short program much more often

than it will sample a particular long one.

July 2006 R. Poli - University of Essex 143

Allele Diffusion

� A fixed-point distribution for the proportion

of a linear, variable-length schema h1 h2 …hN

under GP subtree crossover for an infinite

population initialised at the fixed-point length

distribution is

with

July 2006 R. Poli - University of Essex 144

� Crossover attempts to push the population
towards distributions of primitives where
each primitive is equally likely to be found in
any position in any individual.

� The primitives in a particular individual tend
not just to be swapped with those of other
individuals in the population, but also to
diffuse within the representation of each
individual.

� Experiments fully confirm the theory.

37

July 2006 R. Poli - University of Essex 145

Size Evolution

�The mean size of the programs at
generation t is

µ(t) = ∑l N(Gl) Φ(Gl,t)

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t

July 2006 R. Poli - University of Essex 146

� E.g., for the population:

x, (+ x y), (- y x), (+ (+ x y) 3)

July 2006 R. Poli - University of Essex 147

� In a GP system with symmetric subtree
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where

p(Gl,t) = probability of selecting a program of
shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the population

Size Evolution under Subtree XO

July 2006 R. Poli - University of Essex 148

Conditions for Growth

�Growth can happen only if

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0

38

July 2006 R. Poli - University of Essex 149

Bloat Prevention

� To prevent growth one needs

� To increase the selection probability for

below-average-size programs

� To decrease the selection probability for

above-average-size programs

July 2006 R. Poli - University of Essex 150

The Tarpeian method to control bloat

� Tarpeian fitness-wrapper

� The Tarpeian method drastically decreases
the selection probability of longer-than-
average programs creating a sort of fitness
hole that discourages growth

July 2006 R. Poli - University of Essex 151

Hot Air Balloon Metaphor

Conclusions

39

July 2006 R. Poli - University of Essex 153

Theory

� In the last few years the theory of GP has seen
a formidable development.

� Today we understand a lot more about the
nature of the GP search space and the
distribution of fitness in it.

� Also, schema theories explain and predict the
syntactic behaviour of GAs and GP.

� We know much more as to where evolution is
going, why and how.

July 2006 R. Poli - University of Essex 154

� Different operators lead to different schema

theorems, but we have started integrating

them into a single coherent theory.

� The theory of GP is more general than the

corresponding GA theory � unification by

inclusion

July 2006 R. Poli - University of Essex 155

� Theory primarily provides explanations,

but many recipes for practice have also

been derived (initialisation, sizing,

parameters, primitives, …)

� So, theory can helping design competent

algorithms

� Theory is hard and slow: empirical studies

are important to direct theory and to

corroborate it.

