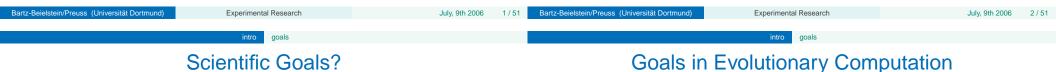
Overview



- Why is astronomy considered scientific—and astrology not?
- And what about experimental research in EC?
- Figure: Nostradamus

- (RG-1) Investigation. Specifying optimization problems, analyzing algorithms. Important parameters; what should be optimized?
- (RG-2) Comparison. Comparing the performance of heuristics
- (RG-3) *Conjecture.* Good: demonstrate performance. Better: explain and understand performance
- (RG-4) *Quality.* Robustness (includes insensitivity to exogenous factors, minimization of the variability) [Mon01]

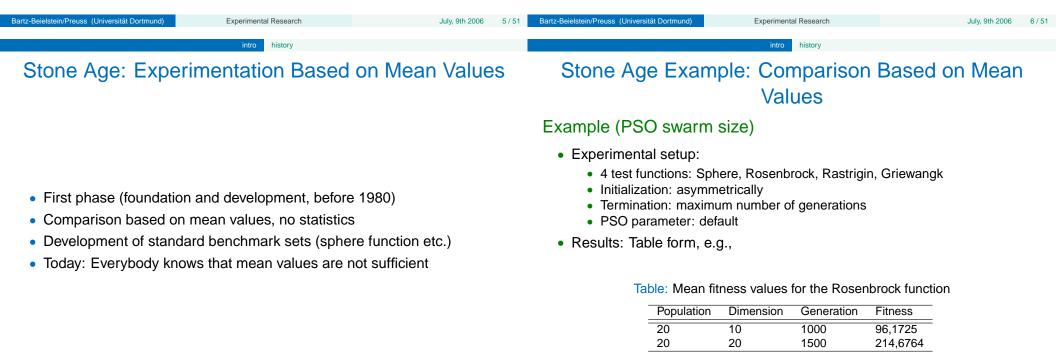
Goals in Evolutionary Computation

A Totally Subjective History of Experimentation in Evolutionary Computation

histor

- Given: Hard real world optimization problems, e.g., chemical engineering, airfoil optimization, bioinformatics
- Many theoretical results are too abstract, do not match with reality
- Real programs, not algorithms
- · Develop problem specific algorithms, experimentation is necessary
- Experimentation requires statistics

- Palaeolithic
- Yesterday
- Today
- Tomorrow



 Conclusion: "Under all the testing cases, the PSO always converges very guickly"

Yesterday: Mean Values and Simple Statistics

histor

Yesterday: Mean Values and Simple Statistics

history

Example (GAs are better than other algorithms (on average))

- Second phase (move to mainstream, 1980-2000)
- Statistical methods introduced, mean values, standard deviations, tutorials
- *t* test, *p* value, ...
- Comparisons mainly on standard benchmark sets
- Questionable assumptions (NFL)

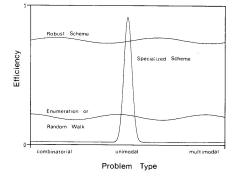
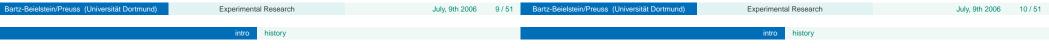


Figure: [Gol89]

Theorem (NFL)

There is no algorithm that is better than another over all possible instances of optimization problems



Today: Based on Correct Statistics

Example (Good practice)

- Third phase (Correct statistics, since 2000)
 - Statistical tools for EC
 - Conferences, tutorials, workshops, e.g., Workshop On Empirical Methods for the Analysis of Algorithms (EMAA)
 - (http://www.imada.sdu.dk/~marco/EMAA)
 - New disciplines such as algorithm engineering
- But: There are three kinds of lies: lies, damned lies, and statistics (Mark Twain or Benjamin Disraeli), why should we care?
- Because it is the only tool we can rely on (at the moment, i.e., 2006)

Test	SGA		t-value	Bent			
fanctions	(sti. day.)	0.04 24.04		KiA muan best (std. ásy.)	between SGA to the best FDGA	algorithm	
ń	8060%e+000 1.553%e+000	8.5689±+000 1.667 k±+000	8.6545±+000 1.5069±+000	8.2722a+000 1.5728a+000	-6.76 *	SGA	
f2	7.8000a-001 4.5833a+000	4.2479±4000 1.3211±4000	3.5444e+000 2.0873e+000	3.5093±+000 1.4978±+000	-4.00 ⁺	SGA	
fz	6.4957e+000 1.8003e+000	92728:+000 1.8037e+000	8.660%+000 1.8614c+000	8.637%+000 1.9866+000	-5.65 *	SGA	
ĥ.	1.3506±+002 3.3349±+002	92200±4002 2.8070±4002	8.2073a+002 2.5999a+002	8.2272c+002 2.4858c+002	-11.69 *	SGA	
á,	2.7476e-002 3.0828e-002	6.8234e-002 5.4773e-002	8.2052e-002 5.2042e-002	6.2478e-002 5.599 le-002	-3.87 *	SGA	
fa -	2.0791e-003 9.1846e-004	2.7050a-005 3.5287e-006	2.5915e-005 3.3219e-006	2.5830e-005 27375e-006	15.81	FDGA	
ß	2.0791e-003 9.1846e-004	4333%-011 7.5496-012	4.0195e-011 8.0494e-012	4.0062e-011 8.3297e-012	1.91 *	FDGA	
á.	7.1211e+001 7.1211e+001	5.0154c+000 4.1123c+000	5.1774e+000 3.7574e+000	4.0649±+001 4.1068±+001	3.13 +	FDGA	
,é	1.4856e-001 6.2373e-002	5.1283e-002 4.1936e-003	4.6518e-002 1.6727e-002	4.6506e-002 1.2852e-002	11.33 *	FDGA	
/ z	9.2123e-002 6.1055e-002	7.2324e-002 2.1381e-002	6.4803e-002 2.1804e-002	6.4846e-002 2.4023e-002	2.94 *	FDGA	

be value of t with 49 degree of free dom is significant at $n=0.05\,$ by a one tailed test

Figure: [CAF04]

Today: Based on Correct Statistics

histor

Today: Based on Correct Statistics

histor

Example (Good practice?)

- Authors used
 - Pre-defined number of evaluations set to 200,000
 - 50 runs for each algorithm
 - Population sizes 20 and 200
 - Crossover rate 0.1 in algorithm *A*, but 1.0 in *B*
 - A outperforms B significantly in f₆ to f₁₀

- We need tools to
 - Determine adequate number of function evaluations to avoid floor or ceiling effects
 - Determine the correct number of repeats
 - Determine suitable parameter settings for comparison
 - Determine suitable parameter settings to get working algorithms
 - Draw meaningful conclusions

- We claim: Fundamental ideas from statistics are misunderstood!
- For example: What is the *p* value?

Definition (p value)

The p value is the probability that the null hypothesis is true

Definition (p value)

The *p* value is the probability that the null hypothesis is true. No!

Definition (p value)

The *p* value is p = P{ result from test statistic, or greater | null model is true }

 ⇒ The *p* value is not related to any probability whether the null hypothesis is true or false

Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006	13/51	Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006	14 / 51
	intro history				intro history		

Tomorrow: Correct Statistics and Correct Conclusions

· Adequate statistical methods, but wrong scientific conclusions

Scientific inquiry or problem

- Tomorrow:
 - Consider scientific
 meaning
 - Severe testing as a basic concept
 - First Symposium on Philosophy, History, and Methodology of Error, June 2006

Statistical inquiry: Testing hypotheses

- **Tomorrow: Correct Statistics and Correct Conclusions**
 - Generally: Statistical tools to decide whether *a* is better than *b* are necessary
 - Today: Sequential parameter optimization (SPO)
 - Heuristic, but implementable approach
 - Extension of classical approaches from statistical design of experiments (DOE)
 - Other (better) approaches possible
 - SPO uses plots of the observed significance

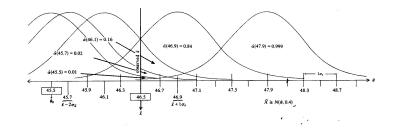
observed significance observed significance **Tests and Significance** Plots of the Observed Significance 0.014 0.014 -δ=0 0.012 0.012 Observed significance level 0.01 0.01 Plots of the observed significance level based on [May83] <u>≩</u> 0.008 ≥ 0.008 • Rejection of the null hypothesis $H: \theta = \theta_0$ by a test T^+ based on an $\alpha(\overline{\mathbf{x}},\theta) = \hat{\alpha}(\theta) = P(\overline{\mathbf{X}} > \overline{\mathbf{x}}|\theta)$ ا₀₀₀₀ ق 0.006 هُ observed average \overline{x} 0.004 0.004 • Observed average $\overline{x} = 51.73$ • Alternative hypothesis $J: \theta > \theta_0$ 0.002 0.002 -10 -100 150 50 100 0 5 Difference Definition (Observed significance level) The observed significance level is defined as Rejection of the null hypothesis • Interpretation: Frequency of $H: \theta = \theta_0 = 0$ $\alpha(\overline{\mathbf{x}},\theta) = \hat{\alpha}(\theta) = P(\overline{\mathbf{X}} > \overline{\mathbf{x}}|\theta)$ (1) erroneously rejecting H("there is a difference in by a test T^+ in favor of an alternameans as large as θ_0 or tive larger") with such an \overline{x} $J: \theta > \theta_0$ Then $\hat{\alpha}(\theta) = 0.0530$

Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006	17 / 51	Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006	18 / 51		
	comparison observed significance				comparison observed significance				
Small α Values				Largest Scientifically Unimportant Values					

- Rejecting *H* with a T^+ test with a small size α indicates that $J: \theta > \theta_0$
- If any and all positive discrepancies from θ_0 are scientifically important \Rightarrow small size α ensures that construing such a rejection as indicating a scientifically important θ would rarely be erroneous
- Problems if some θ values in excess of θ_0 are not considered scientifically important
- Small size α does not prevent a T^+ rejection of H from often being misconstrued when relating it to the scientific claim
- \Rightarrow Small α values alone are not sufficient

Largest Scientifically Unimportant Values

- [May83] defines θ_{un} the largest scientifically unimportant θ value in excess of θ_0
- But what if we do not know θ_{un} ?
- Discriminate between legitimate and illegitimate construals of statistical results by considering the values of $\hat{\alpha}(\theta')$ for several θ' values



OSL Plots

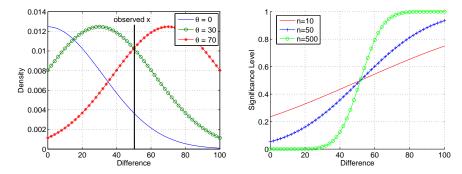


Figure: Plots of the observed difference. *Left*: This is similar to Fig. 4.3 in [May83]. Based on n = 50 experiments, a difference $\overline{x} = 51.3$ has been observed, $\hat{\alpha}(\theta)$ is the area to the right of the observed difference \overline{x} . *Right*: The $\hat{\alpha}(\theta)$ value is plotted for different *n* values.

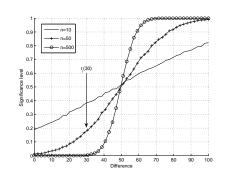
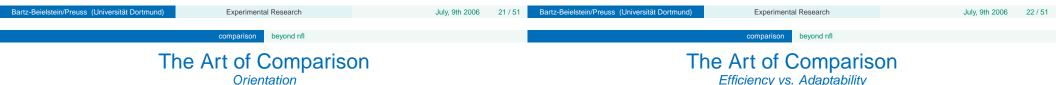


Figure: Same situation as above, bootstrap approach

- Bootstrap procedure ⇒ no assumptions on the underlying distribution necessary
- Summary:
 - *p* value is not sufficient
 - OSL plots one tool to derive meta-statistical rules
 - Other tools needed



The NFL¹ told us things we already suspected:

- We cannot hope for the one-beats-all algorithm (solving the general nonlinear programming problem)
- Efficiency of an algorithm heavily depends on the problem(s) to solve and the exogenous conditions (termination etc.)

In consequence, this means:

- The posed question is of extreme importance for the relevance of obtained results
- The focus of comparisons has to change from:

Which algorithm is better?

to

What exactly is the algorithm good for?

Most existing experimental studies focus on the efficiency of optimization algorithms, but:

- · Adaptability to a problem is not measured, although
- It is known as one of the important advantages of EAs

Interesting, previously neglected aspects:

- Interplay between adaptability and efficiency?
- How much effort does adaptation to a problem take for different algorithms?
- What is the problem spectrum an algorithm performs well on?
- Systematic investigation may reveal inner logic of algorithm parts (operators, parameters, etc.)

¹no free lunch theorem

Similarities and Differences to Existing Approaches

similaritie

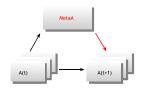
spo

Designs

basics

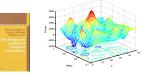
 Agriculture, industry: Design of Experiments (DoE)

• Evolutionary algorithms: Meta-algorithms

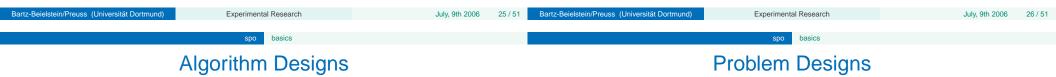


 Algorithm engineering: Rosenberg Study (ANOVA)

 Statistics: Design and Analysis of Computer Experiments (DACE)



- Sequential Parameter Optimization based on
 - Design of Experiments (DOE)
 - Design and Analysis of Computer Experiments (DACE)
- Optimization run = experiment
- Parameters = design variables or factors
- Endogenous factors: modified during the algorithm run
- Exogenous factors: kept constant during the algorithm run
 - Problem specific
 - Algorithm specific



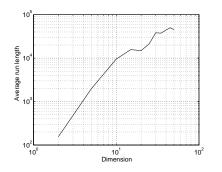
Example (Algorithm design)

Particle swarm optimization. Set of exogenous strategy parameters

- Swarm size s
- Cognitive parameter c₁
- Social parameter c2
- Starting value of the inertia weight wmax
- Final value of the inertia weight w_{scale}
- Percentage of iterations for which w_{max} is reduced
- Maximum value of the step size vmax

Example (Problem design)

Sphere function $\sum_{i=1}^{d} x_i^2$ and a set of *d*-dimensional starting points



- Tuning (efficiency):
 - Given one problem instance
 ⇒ determine improved
 algorithm parameters
- Robustness (effectivity):
 - Given one algorithm ⇒ test several problem instances

Experimental Research

Statistical Model Building and Prediction

Design and Analysis of Computer Experiments (DACE)

SPO Overview

overview

- Pre-experimental planning
- Scientific thesis
- Statistical hypothesis
- Experimental design: Problem, constraints, start-/termination criteria, performance measure, algorithm parameters
- Experiments
- Statistical model and prediction (DACE). Evaluation and visualization
- Solution good enough?
 - Yes: Goto step 1
 - No: Improve the design (optimization). Goto step 1
- Acceptance/rejection of the statistical hypothesis
- Objective interpretation of the results from the previous step

- Response Y: Regression model and random process
- Model:

$$Y(x) = \sum_{h} \beta_{h} f_{h}(x) + Z(x)$$

- $Z(\cdot)$ correlated random variable
- Stochastic process.
- DACE stochastic process model
- Until now: DACE for deterministic functions, e.g. [SWN03]
- New: DACE for stochastic functions

Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006 29 / 51	Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006 34	0/51
	spo models			spo heuristic		

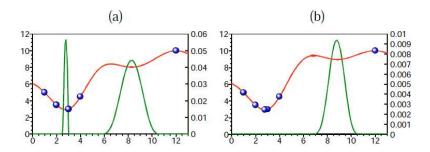


Figure: Axis labels left: function value, right: expected improvement. Source: [JSW98]

- (a) Expected improvement: 5 sample points
- (b) Another sample point x = 2.8 was added

Heuristic for Stochastically Disturbed Function Values

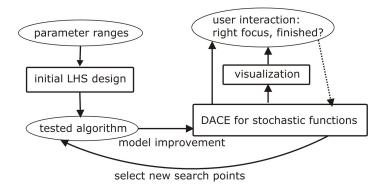
- Latin hypercube sampling (LHS) design: Maximum spread of starting points, small number of evaluations
- · Sequential enhancement, guided by DACE model
- Expected improvement: Compromise between optimization (min Y) and model exactness (min MSE)
- Budget-concept: Best search point are re-evaluated
- Fairness: Evaluate new candidates as often as the best one

Table: SPO. Algorithm design of the best search points

Y	S	<i>c</i> ₁	<i>c</i> ₂	Wmax	W _{scale}	Witer	V _{max}	Conf.	n
0.055	32	1.8	2.1	0.8	0.4	0.5	9.6	41	2
0.063	24	1.4	2.5	0.9	0.4	0.7	481.9	67	4
0.066	32	1.8	2.1	0.8	0.4	0.5	9.6	41	4
0.058	32	1.8	2.1	0.8	0.4	0.5	9.6	41	8

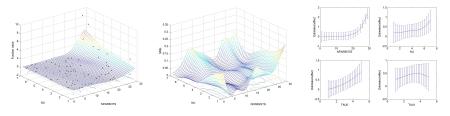
Data Flow and User Interaction

SPO in Action



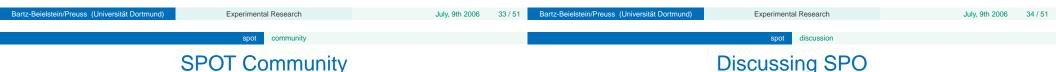
- · User provides parameter ranges and tested algorithm
- Results from an LHS design are used to build model
- Model is improved incrementally with new search points
- User decides if parameter/model quality is sufficient to stop

- Sequential Parameter Optimization Toolbox (SPOT)
- Introduced in [BB06]

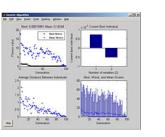


• Software can be downloaded from http://lsll-www.cs.uni-dortmund.de/people/tom/

ExperimentalResearchPrograms.html



- Provide SPOT interfaces for important optimization algorithms
- Simple and open specification
- Currently available (April 2006) for the following products:



Program	Language	
Evolution Strategy	JAVA, MATLAB	http://www.springer.com/
		3-540-32026-1
Genetic Algorithm and Direct	MATLAB	http://www.mathworks.com/
Search Toolbox		products/gads
Particle Swarm Optimization Tool-	MATLAB	http://psotoolbox.
box		sourceforge.net

- SPO is not the final solution—it is one possible (but not necessarily the best) solution
- Goal: continue a discussion in EC, transfer results from statistics and the philosophy of science to computer science

What is the Meaning of Parameters? Are Parameters "Bad"?

parametrized performance parametrized algorithms

Possible Alternatives?

Cons:

- Multitude of parameters dismays potential users
- It is often not trivial to understand parameter-problem or parameter-parameter interactions
 - \Rightarrow Parameters complicate evaluating algorithm performances

But:

- Parameters are simple handles to modify (adapt) algorithms
- Many of the most successful EAs have lots of parameters
- New theoretical approaches: Parametrized algorithms / parametrized complexity, ("two-dimensional" complexity theory)

Parameterless EAs:

- Easy to apply, but what about performance and robustness?
- Where did the parameters go?

Usually a mix of:

- Default values, sacrificing top performance for good robustness
- Heuristic rules, applicable to *many* but not *all* situations Probably not working well for completely new applications
- (Self-)Adaptation techniques, cannot learn too many parameter values at a time, and not necessarily reduce the number of parameters

 \Rightarrow We can reduce number of parameters, but usually at the cost of either performance or robustness

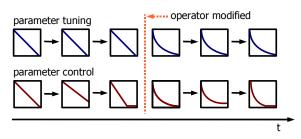
Deveneter	Control or Doromon		T .					
pa	arametrized performance parameter tuning		parametrized performance parameter tuning					
Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006		Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research	July, 9th 2006	38 / 51	

Parameter Control or Parameter Tuning?

The time factor:

- Parameter control: during algorithm run
- Parameter tuning: before an algorithm is run

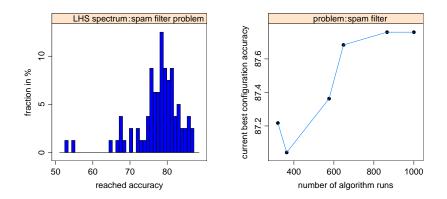
But: Recurring tasks, restarts, or adaptation (to a problem) blur this distinction



And: How to find meta-parameter values for parameter control? \Rightarrow Parameter control *and* parameter tuning

What do Tuning Methods (e.g. SPO) Deliver?

- A best configuration from {*perf*(*alg*(*arg*^{exo}_t))|1 ≤ t ≤ T} for T tested configurations
- A spectrum of configurations, each containing a set of single run results
- A progression of current best tuning results



How do Tuning Results Help? ... or Hint to new Questions

parameter tuning

parametrized performance

What we get:

- A near optimal configuration, permitting top performance comparison
- An estimation of how good any (manually) found configuration is
- A (rough) idea how hard it is to get even better

No excuse: A first impression may be attained by simply doing an LHS

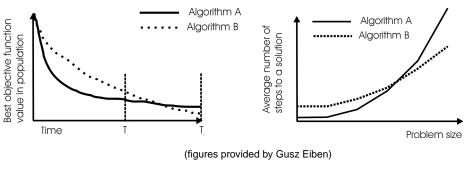
Yet unsolved problems:

- How much amount to put into tuning (fixed budget, until stagnation)?
- Where shall we be on the spectrum when we compare?
- Can we compare spectra (⇒ adaptability)?

"Traditional" Measuring in EC Simple Measures

- MBF: mean best fitness
- AES: average evaluations to solution
- SR: success rates, SR(t) \Rightarrow run-length distributions (RLD)
- best-of-n: best fitness of n runs

But, even with all measures given: Which algorithm is better?



Bartz-Beielstein/Preuss (Universität Dortmund)	Experimental Research		July, 9th 2006	41 / 51	Bartz-Beielstein/Preuss (Universität Dortmund) Experimental Research		July, 9th 2006	42 / 51	
parametrized performance performance measuring					parametrized performance performance measuring				
Aggregated Measures					Choose	e the Appropriate M	leasure		

Aggregated Measures

Especially Useful for Restart Strategies

Success Performances:

• SP1 [HK04] for equal expected lengths of successful and unsuccessful runs $\mathbb{E}(T^s) = \mathbb{E}(T^{us})$:

$$SP1 = \frac{\mathbb{E}(T_A^s)}{p_s}$$
(2)

 SP2 [AH05] for different expected lengths, unsuccessful runs are stopped at FEmax:

$$SP2 = \frac{1 - p_s}{p_s} FE_{max} + \mathbb{E}(T_A^s)$$
(3)

Probably still more aggregated measures needed (parameter tuning depends on the applied measure)

- Design problem: Only best-of-n fitness values are of interest
- Recurring problem or problem class: Mean values hint to quality on a number of instances
- Cheap (scientific) evaluation functions: exploring limit behavior is tempting, but is not always related to real-world situations

In real-world optimization, 10⁴ evaluations is a lot, sometimes only 10³ or less is possible:

- We are relieved from choosing termination criteria
- Substitute models may help (Algorithm based validation)
- We encourage more research on short runs

Selecting a performance measure is a very important step

Current "State of the Art"

reporting experiments

report&visualize

Suggested Report Structure

Around 40 years of empirical tradition in EC, but:

- No standard scheme for reporting experiments
- Instead: one ("Experiments") or two ("Experimental Setup" and "Results") sections in papers, providing a bunch of largely unordered information
- Affects readability and impairs reproducibility

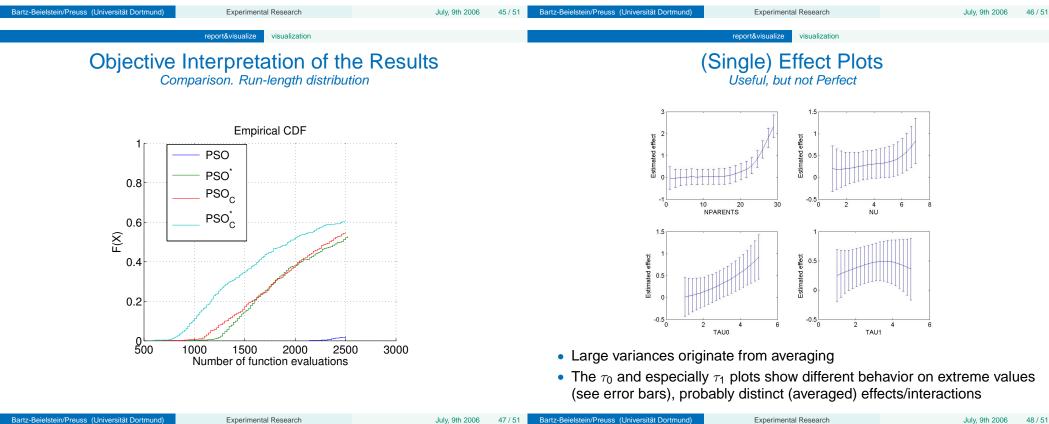
Other sciences have more structured ways to report experiments, although usually not presented in full in papers. Why?

- Natural sciences: Long tradition, setup often relatively fast, experiment itself takes time
- Computer science: Short tradition, setup (implementation) takes time, experiment itself relatively fast

 \Rightarrow We suggest a 7-part reporting scheme

- ER-1: Focus/Title the matter dealt with
- ER-2: Pre-experimental planning first-possibly explorative-program runs, leading to task and setup
- ER-3: Task main question and scientific and derived statistical hypotheses to test
- ER-4: Setup problem and algorithm designs, sufficient to replicate an experiment
- ER-5: Experimentation/Visualization raw or produced (filtered) data and basic visualizations
- ER-6: Observations exceptions from the expected, or unusual patterns noticed, plus additional visualizations, no subjective assessment
- ER-7: Discussion test results and necessarily subjective interpretations for data and especially observations

This scheme is well suited to report 12-step SPO experiments



July, 9th 2006

report&visualize visualization

One-Parameter Effect Investigation Effect Split Plots: Effect Strengths

visualization

• Sample set partitioned into 3 subsets (here of equal size)

report&visualize

- Enables detecting more important parameters visually
- Nonlinear progression 1–2–3 hints to interactions or multimodality

	pmErr		ms]	msErr		chunk_size
3		3	1	3		3	■ 2 (0) (1) (0) (1) (1)
3=worst group		2		2		2	
1 orst		1		1		1	
≥.	<u>' </u>			-			
ů ů	0.0 0.2 0.4 0.6 0.8 1.0)	0 1 2 3 4 5		0 1 2 3 4 5		0 100200300400500
group, ა	dim_pop		nr_gen]	рс		pm
st gro	N	3	H	3		3	
1=best		2	H 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		2	
1		1		1		1	
	50 100 150 200)	50 10015020025030	0 (0.0 0.2 0.4 0.6 0.8 1.0) (0.0 0.2 0.4 0.6 0.8 1.0

Experimental Research

Updates

ExperimentalResearchSlides.html

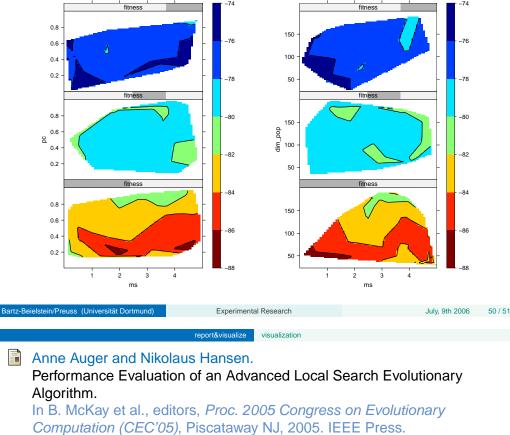
for updates, software, etc.

http://ls11-www.cs.uni-dortmund.de/people/tom/

Please check

Two-Parameter Effect Investigation

Interaction Split Plots: Detect Leveled Effects



Thomas Bartz-Beielstein.

Experimental Research in Evolutionary Computation—The New Experimentalism. Springer, Berlin, Heidelberg, New York, 2006.

Kit Yan Chan, Emin Aydin, and Terry Fogarty.

An empirical study on the performance of factorial design based crossover on parametrical problems.

In *Proceedings of the 2004 IEEE Congress on Evolutionary Computation*, pages 620–627, Portland, Oregon, 20-23 June 2004. IEEE Press.

David E. Goldberg.

Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading MA, 1989.

Nikolaus Hansen and Stefan Kern.

Bartz-Beielstein/Preuss (Universität Dortmund

July, 9th 2006

49/5

1 / 51 Bartz-Beielstein/Preuss (Universität Dortmund)

visualize visualize visualization Evaluating the cma evolution strategy on multimodal test functions. In X. Yao, H.-P. Schwefel, et al., editors, *Parallel Problem Solving from Nature – PPSN VIII, Proc. Eighth Int'l Conf., Birmingham*, pages 282–291, Berlin, 2004. Springer.

- D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13:455–492, 1998.
- D. G. Mayo.

An objective theory of statistical testing. *Synthese*, 57:297–340, 1983.

- D. C. Montgomery. Design and Analysis of Experiments. Wiley, New York NY, 5th edition, 2001.
- T. J. Santner, B. J. Williams, and W. I. Notz. *The Design and Analysis of Computer Experiments.* Springer, Berlin, Heidelberg, New York, 2003.

Bartz-Beielstein/Preuss (Universität Dortmund) Experimental Research

July, 9th 2006 51 / 51