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Why Topology Matters

The spatial structure of a population will be called its

topology

Population topology has a marked influence on the

dynamical processes taking place in the population

To some extent, the dynamics can be controlled by

using the appropriate topology

Population topology can be mathematically

characterized using the tools of graph theory
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Main Population Topologies

Multiple Populations, also called island models (each
node of the graph is a population in itself)

Cellular Populations (each node of the graph is a

single individual)

There are many possible hybrid models, such as
islands of cellular populations, or islands that

themselves contain other islands etc.
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Island Population Topologies

Mesh and Ring Topologies. Each circle represents a panmictic

population.

Random Topology
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Cellular or Lattice Topologies

Each individual occupies a cell in a 1-D, 2-D or 3-D lattice,

or another graph structure

ring cellular structure grid cellular structure
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EAs in Structured Populations

Island Models

The whole population is subdivided into a number of

subpopulations

Subpopulations are loosely coupled: they evolve

independently for a while

A topological pattern of communication is established

among the islands

From time to time selected individuals are exchanged

between populations and replace local individuals
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Island Models

Island models have been often used as they are just a

small departure with respect to standard panmictic EAs

Empirically, they have been found to nearly always

outperform the panmictic population model

The most complete modeling and analysis has been

done by Cantú-Paz for GAs [3]

Spatial Evolutionary Algorithms – p.7/55

Island Models

A number of parameters must be considered:

The number of islands (subpopulations)

The size of the subpopulations

The communication topology

The number and type of migrating individuals

The frequency of migration

These parameters have been empirically investigated in

Fernández et al. [5], on standard and real-life problems. Details

of the test problems and results can be found there
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Multi-Population GP: Results

In general, multi-population GP is more efficient than standard

panmictic GP on those problems: better results with the same

computational effort

For a given total population size, there is a preferred interval for

subpopulation size which is problem-dependent

If the subpopulations are too small, island GP does not perform

well

The “optimal” number of individuals to exchange is about 10% of

the subpopulation size; the frequency of exchange should be

between 5 to 10 generations independent of the problem

The influence of inter-island communication topology is

comparatively less important
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Experimental Results: Ant Problem
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Experimental Results: Even-Parity-4
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Effectivity of Multi-Population EAs

Summarizing, and extending to other island EAs for which many

results exist:

Most empirical results tend to show that island EAs are

more efficient than panmictic EAs

The effectivity of multi-population EAs seems to depend on

the nature of the problem

Overall population diversity is better maintained in a

multi-population setting

Separable problems and problems with multiple solution

paths seem to be more suitable for the distributed approach
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EAs in Structured Populations

Cellular Models

Each individual occupies a cell in a regular lattice or a more

general graph

Genetic operators are local. Selection, mutation and

recombination take place only within a small neighborhood.

After selection and variation, each cell is replaced, e.g., by

the best individual in the neighborhood
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Selection Pressure in Lattice EAs

It is a good case study because:

The effects of topology are most easily seen in lattice

cellular EAs

Selection pressure is a fundamental aspect of EAs

Variation operators do not interfere with the dynamics

Mathematical analysis is possible in some cases
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Takeover Times

Takeover Time is the time it takes for a single best individual to

take over the whole population No variation operators: only

selection is active with a probability ps that depends on the

selection method. Long takeover times mean less intense

selection and viceversa for short TT.

Selection intensity is related to the explorative or exploitative

character of an EA: the stronger the selection the more

exploitative the EA
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Growth in Panmictic Populations

In mixing populations the best individual propagates under

selection following a Logistic Curve.
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Analytical and experimental results indicate that, among the

usual selection methods, (µ,λ), tournament, and linear ranking

induce a stronger selection pressure than fitness proportionate

selection
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The Origins of Logistic Growth

Logistic growth occurs in situations where the growth is exponential at

first but then it flattens out being limited by diminishing “resources”. In

our case, it means that, as time goes by, less and less individuals

remain to be “conquered”

Thus, the growth rate is not simply proportional to the current amount

N , but rather to a maximum possible “capacity” θ, minus the current

amount (Verhulst):

dN

dt
= αN(1 − N

θ
)

which has the solution:

N(t) =
θ

1 + ( (θ−N0

N0
)e−αt
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Growth Curves in Rings

In rings the best individual can only grow at a linear rate:
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The frontier of the growing region can only expand, at best, to

the next two individuals on the next time step
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Growth Curves in 2-D Lattices

In grids the best individual can only grow at most at a quadratic

rate:
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The diameter of the expanding region grows at a linear rate, and

thus the whole area, which is proportional to the population size,

grows at quadratic rate
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Growth Curves and Topology

The influence of the population structure is clearly seen:
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ring torus panmictic

The growth rate is much slower in rings than it is in 2-D grids,

which is in turn slower than the mixing population
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Mathematical Models I

The models are based on probabilistic difference equations

giving the expected value E[N(t)] of N(t), the number of

best individuals at time t (see [8] for the mathematical

details)

For rings with a neighborhood of three individuals, the

solution is:

E[N(t)] = 2pst + 1

where the actual probability ps should be inserted for

different selection methods

The equation can easily be checked for the deterministic

case ps = 1 in which N(t) is no longer an expectation (i.e. a

random variable)
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Comparing Theory and Experiments

As expected, for the ring case the agreement between theory

and experiment is excellent. The experimental curve (black) is

the average of 100 runs. Selection method: binary tournament.

Population size is 1024.
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Mathematical Models II

For the synchronous growth curve in a 2-D torus, assuming

a 5 cell (NWCES) neighborhood we get:




N(0) = 1

N(t) = N(t − 1) + 4p2

√
N(t−1)√

2
, for N(t) ≤ n

2

N(t) = N(t − 1) + 4p2

√
n − N(t − 1) , for N(t) > n

2

The approximation is based on the growth of a closed planar

shape that contains the region of interest (a 45 degrees

rotated square). p2 is the selection-dependent probability of

selecting the best individual when there are two copies of it

in the neighborhood [8]
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Comparing Theory and Experiments

For the torus the agreement between theory and experiment is

still very good, in spite of the approximations in the model. The

experimental curve (full) is the average of 100 runs. Selection is

by binary tournament. Population size is 1024.
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What About the Neighborhood?

What happens if the neighborhood’s size and/or shape

change?

It is easy to modify the model to take that into account (see

[8]). However, the effects had already been empirically

studied by Sarma and De Jong for 2-D grids [11,12]

Their conclusion: propagation times, and thus selection

pressure, are closely related to the neighborhood’s size.

Larger neighborhoods imply stronger selection pressure

Also: neighboorhoods having the same “linear extension”

such as L9 and C13 induce a similar selection pressure;

thus, neighborhood’s shape matters too
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Neighborhood Size and Shape

Sarma and De Jong were able to characterize the global

induced selection pressure by a single parameter: the ratio r

The ratio is, in essence, the radius of a circle centered on

the mean center (x̄, ȳ) of a neighborhood pattern of n points

Under this measure r(L9) = 1.49 and r(C13) = 1.47, which

explains why the selection pressure is similar

As the ratio→ size of the grid, selection pressure→
panmictic

Alba and Troya later extended the concept of ratio to take

into account the whole grid shape

Selection pressure decreases as the grid flattens

(2,4) ([2·8+4]�div�16, )�=�(1,4)[2·8+4]�mod�16
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The Time Dimension

Up to now, only “space” in the form of topological

population structures has entered into the picture

Time has been considered synchronous; i.e., all the
individuals act simultaneously at the ticks of a global

clock

But does this global synchronization make sense or is

it only a useful abstraction?
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Asynchronous Evolution

Synchronous evolution is simple and can be used in

artifi cial systems, where no physical limitation exists

Asynchronous evolution is more complex but it is more

faithful to Nature. No global clock. Signals can only

travel at fi nite speed in physical and biological systems

Since there can be many different sequential update

orders for a cellular system, asynchronous evolution

gives another degree of freedom to play with
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Asynchronous Evolution: the Models

Three asynchronous evolution models will be used: Line Sweep,

Uniform Choice, and Random Sweep

In Line sweep (LS), the n cells are updated sequentially

from left to right and line after line starting from the upper

left corner cell.

In Fixed Random Sweep (FRS), the next cell to be updated

is chosen with uniform probability without replacement; this

will produce a certain update sequence (cj
1, c

k
2 , . . . , c

m
n ),

where cp
q means that cell number p is updated at time q and

(j, k, . . . ,m) is a permutation of the n cells. The same

permutation is then used for all update cycles.
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Asynchronous Evolution: the Models

The New Random Sweep method (NRS) works like FRS,

except that a new random cell permutation is used for each

sweep through the array.

In uniform choice (UC), the next cell to be updated is

chosen at random with uniform probability and with

replacement. This corresponds to a binomial distribution for

the updating probability.

A Time Step is defined as updating n times sequentially, which

corresponds to updating all the n cells in the grid for LS, FRS

and NRS, and possibly less than n different cells in the uniform

choice method, since some cells might be updated more than

once
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Asynchronous Evolution: Rings

Takeover Times results for rings for various update methods
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Asynchronous Evolution: Torus

Takeover Times results for tori for various update methods
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Asynchronous Evolution: Results

As in the synchronous case, asynchronous evolution in lattices

produces a selection pressure that is lower than the panmictic

case. The ranking does not change, with selection being more

intense in mixing populations than in grids, which is in turn more

intense than rings

Selection intensity using asynchronous evolution is slightly

stronger than for the synchronous case for the same topological

parameters. Uniform choice is close to synchronous

In a given topology, different asynchronous update methods give

rise to different global induced selection pressures

Thus, selection intensity in cellular populations can be changed,

even dynamically, by using different cell update methods, different
grid or neighborhood ratios, or both
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What About “Real” Cellular EAs?

Typical benchmarks have been used, both continuous and

discrete (The problems and the experiments are described in [4])

massively multimodal deceptive problems (MMDP)

satisfiability (SAT) problems

multimodal problem generator (P-PEAKS)

maximum cut of a graph (MAXCUT)

scheduling problems (MTTP)

continuous functions such as: Ackley, Rastrigin etc.

Those cover most classes of problems found in practice and

should give an indication as to the observed tendencies

Many other problems have been studied, especially by Mühlenbein.

Gorges-Schleuter, Rudolph, and coworkers
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Summary of Results

Synchronous CEAs with various grid axes ratios have been

compared with asynchronous CEAs

Results broadly confirm the influence of selection pressure:

asynchronous CEAs converge faster than synchronous

ones for nearly all problems

On the other hand, synchronous CEAs with “flatter” ratios

show an increased hit rate for most problems

In general, although selection pressure plays a key role, it

appears that the particular fitness landscape, and the

operators used to traverse it are very important too
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Random and Irregular Structures

Let’s begin with the random graph population structure

A random graph with n vertices can be constructed by

taking all possible pairs of vertices and connecting each pair

with probability q, or not connecting it with probability 1 − q

A panmictic population can be seen as a completely

connected graph or, equivalently, as a random graph with

probability q = 1 of having an edge between any pair of

vertices; such a graph has thus 1
2n(n − 1) edges.
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Random Networks

In the completely connected graph (i.e. panmictic

population), the number of neighbors of any individual is

n − 1

The random graph case is difficult to solve, since the

number of neighbors (i.e. vertex degree) of a given vertex is

a binomially distributed random variable. However, the

mean degree is a constant equal to q(n − 1). We thus use

the mean-field hypothesis, taking for all individuals the same

average number of neighbors

We only consider connected RGs. Disconnected

components do not make sense here
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Using the Mean-Field Approximation

With the mean-field approximation, it turns out that both the

panmictic and random graph topologies obey the same growth

equation. The growth is logistic in form, and is given as a

discrete recurrence:




N(0) = 1

E[N(t)] = E[N(t − 1)] + (n − E[N(t − 1)])E[N(t−1)]
n ,
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Comparing Theory and Experiments
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Comparing Theory and Experiments

The agreement between theory (full curve) and experiment (light

curves) is very good for the random graph with q = 0.1:
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q = 0.05 q = 0.01

The fit is bad for small q. This is due to the mean-field approximation:

for n = 1024 the average number of neighbors is ∼ 50 for q = 0.05,

while it is ∼ 10 for q = 0.01. The σ is thus ∼ 7 and ∼ 3 respectively.

Thus, many nodes will have very few edges for q = 0.01, slowing down

the propagation
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What Is In-Between?

Regular Lattices ? Random Graphs

Spatial Evolutionary Algorithms – p.41/55

Some Graph Statistics

The average path length 〈L〉 of a graph G is the mean of all

the shortest paths from all vertices to all other vertices

The clustering coefficient C of G is (informally) the

likelihood, averaged over all nodes in G, that nodes that are

connected to a given node are also connected between

them. The higher this probability, the higher is C

The degree distribution function P (k) of G is the probability

that a given node has exactly k neighbors

The average degree 〈k〉 of G is the average number of

neighbors of each node
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Small-World Networks I

Small-world graphs are networks in which the average path

length is short (〈L〉 = O(logN), where N is the number of

vertices). Thus, one can travel from any vertex to any other

vertex in comparatively few steps, even in large graphs.

This is also the case for standard random graphs. However,

small worlds with the same number of vertices have a larger

clustering coefficient. In other words, while random graphs

are homogeneous in the average (C = q = 〈k〉/N ),
small-world networks have more local structure.
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Small-World Networks II

two important kinds of small-world networks are the

Watts-Strogatz model and the Scale-Free model

the latter is much more typical of real networks, while the

former is a mathematical convenience that can be used in

artificial systems, where there are no hard constraints on

the topology

The following are useful references to start with: [6],[7],[10]
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Small-World Networks III

The Model of Watts and Strogatz

One obtains a small-world graph by starting from a regular ring

and successively “rewiring” edges with a certain probability β

Even very low values of β around 10−2 are sufficient to keep a

high clustering coefficient C, while causing the mean path length

〈L〉 to tend to the low values typical of standard random graphs

These phenomena are due to the appearance of shortcuts i.e.,

edges (links) that join distant parts of the graph
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Small-World Networks IV

The Scale-Free Model

Scale-Free graphs are also small-world (high clustering, low average
path length) but they are characterized by a degree distribution

function P (k) of the power-law form:

P (k) = c k−γ ,

with c and γ positive constants, whereas random graphs and, to some

extent, the Watts-Strogatz small-world model have a binomial P (k)

This form has been found in many real-world networks such as the In-

ternet, the WWW, some biological networks, citation and collaboration

networks and several others
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Growth Curves on WS Small-Worlds
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Growth Curves in Scale-Free Graphs
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Left part: Growth curves for synchronous, and two asynchronous

update policies. Initial best individual uniformly distributed among the

nodes.

Right: Growth curve for synchronous evolution when the initial best

individual is placed on a highly connected node.
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Summary of Results on Small Worlds

The growth curves in Watts-Strogatz graphs are similar to

those of random graphs and panmictic populations. Thus,

just a few shortcuts allow very fast information flow through

the network

Scale-free graphs behave in the same manner when the

initial individual is placed randomly among the nodes. When

the initial individual is in a “hub” the takeover times are even

shorter

This suggests that information flow, and thus selection

pressure, can be controlled by choosing β in WS graphs, or

through the highly connected nodes in a SF graph
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Experimental Results I

How do these population graphs behave in practice?

Success rates for small-world (left) and scale-free (right) topology on

the MMDP problem. Each point is generated from 100 runs
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Experimental Results II

Success rates for small-world (left) and scale-free (right) topology on

the ECC problem. Each point is generated from 100 runs
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Experimental Results III

Success rates for small-world (left) and scale-free (right) topology on

the P-PEAKS problem. Each point is generated from 100 runs
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Summary of Results on Small Worlds

The results on static population graphs are somewhat mixed

In general, Watts–Strogatz small worlds behave better than

complete graph (panmictic) populations for low rewiring

probabilities

Watts–Strogatz graphs with small β give results similar to

rings

Scale-free structured populations do not seem to help

much: they converge too fast

Dynamically varying population topologies might be the

answer
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