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TwoTwo--PhasePhase NozzleNozzle Design Design 
(Experimental)(Experimental)

...evolves...

Experimental design optimisation: Optimise
efficieny.

Final design: 32% improvement in efficiency.



2

5

Daniel Dannett: Biology = Engineering

Background IBackground I

6

Background IIBackground II

Phenotypic evolution ... and genotypic
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f: Objective function, can be

Multimodal, with many local optima

Discontinuous

Stochastically perturbed

High-dimensional

Varying over time.

M ⊆ M1 × M2 ×...× Mn can be heterogenous.

Constraints can be defined over

OptimizationOptimization ProblemProblem
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OptimizationOptimization AlgorithmsAlgorithms

Direct optimization algorithm: 
Evolutionary Algorithms

First order optimization algorithm: 

e.g, gradient method

Second order optimization algorithm: 

e.g., Newton method
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Business Business IssuesIssues

Supply Chain Optimization

Scheduling & Timetabling

Product Development, R&D

Management Decision Making, e.g., project
portfolio optimization

Optimization of Marketing Strategies; Channel
allocation

Multicriteria Optimization (cost / quality)

... And many others
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Optimum Optimum trackingtracking of an ESof an ES

Dynamic function

30-dimensional

3D-projection
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EvolutionaryEvolutionary AlgorithmAlgorithm ApplicationsApplications

Principles
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General General AspectsAspects

Evaluation

EA-Optimizer

Business 
Process Model

Simulation

215
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UnifyingUnifying EvolutionaryEvolutionary AlgorithmAlgorithm

t := 0;

initialize(P(t));

evaluate(P(t));

while not terminate do

P‘(t) := mating_selection(P(t));

P‘‘(t) := variation(P‘(t));

evaluate(P‘‘(t));

P(t+1) := environmental_selection(P‘‘(t) u Q);

t := t+1;

od
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EvolutionaryEvolutionary AlgorithmAlgorithm TaxonomyTaxonomy

Evolution StrategiesEvolution Strategies

Genetic AlgorithmsGenetic Algorithms

Genetic ProgrammingGenetic ProgrammingEvolutionary ProgrammingEvolutionary Programming

Classifier SystemsClassifier Systems

Many mixed forms; agent-based systems, 
swarm systems, A-life systems, ...
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GeneticGenetic AlgorithmsAlgorithms vs. Evolution vs. Evolution 
StrategiesStrategies

Genetic Algorithm
Binary representation

Fixed mutation rate pm (= 1/n)

Fixed crossover rate pc

Probabilistic selection

Identical population size

No self-adaptation

Evolution Strategies
Real-valued representation

Normally distributed mutations

Fixed recombination rate (= 1)

Deterministic selection

Creation of offspring surplus

Self-adaptation of strategy

parameters:

Variance(s), Covariances
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GeneticGenetic AlgorithmsAlgorithms: Mutation: Mutation

Mutation by bit inversion with probability pm.

pm identical for all bits. 

pm small (e.g., pm = 1/n).

0 1 1 1 0 1 0 1 0 0 0 0 0 01

0 1 1 1 0 0 0 1 0 1 0 0 0 01
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GeneticGenetic AlgorithmsAlgorithms: : CrossoverCrossover

Crossover applied with probability pc.

pc identical for all individuals. 

k-point crossover: k points chosen randomly.

Example: 2-point crossover.
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GeneticGenetic AlgorithmsAlgorithms: : SelectionSelection

Fitness proportional:

f fitness

λ population size

Tournament selection:

Randomly select q << λ individuals.

Copy best of these q into next generation.

Repeat λ times.

q is the tournament size (often: q = 2).
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Evolution Evolution StrategiesStrategies

An instance of evolutionary algorithms
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Advantages of Evolution Advantages of Evolution StrategiesStrategies

Self-Adaptation of strategy parameters.

Direct, global optimizers ! 

Extremely good in solution quality.

Very small number of function evaluations.

Dynamical optimization problems. 

Design optimization problems.

Discrete or mixed-integer problems.

Experimental design optimisation.

Combination with Meta-Modeling techniques.
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Evolution Evolution StrategiesStrategies

Real-valued / discrete / mixed-integer search
spaces.

Emphasis on mutation: n-dimensional, 
normally distributed, expectation zero.

Different recombination operators.

Deterministic selection:  (µ,λ) , (µ+λ)

Self-adaptation of strategy parameters.

Creation of offspring surplus, i.e., λ >> µ.
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MutationMutation

Creation of a new solution:

σ-adaptation by means of

1/5-success rule.

Self-adaptation.

More complex / powerful strategies:

Individual step sizes σi.

Covariances.

Convergence speed:

⇒ Ca. 10 ⋅ n down to 5 ⋅ n is possible.
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SelfSelf--AdaptationAdaptation

Motivation: General search algorithm

Geometric convergence: Arbitrarily slow, if s wrongly controlled !

No deterministic / adaptive scheme for arbitrary functions exists.

Self-adaptation: On-line evolution of strategy parameters.

Various schemes: 

Schwefel one σ, n σ, covariances; Rechenberg MSA.

Ostermeier, Hansen: Derandomized, Covariance Matrix Adaptation.

EP variants (meta EP, Rmeta EP).

Bäck: Application to p in GAs.

Step size

Direction
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SelfSelf--AdaptationAdaptation

Learning while searching: Intelligent Method.

Different algorithmic approaches, e.g:

Pure self-adaptation:

Mutational step size control MSC:

Derandomized step size adaptation

Covariance adaptation
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SelfSelf--AdaptiveAdaptive MutationMutation

n = 2, nσ = 1, nα = 0

n = 2, nσ = 2, nα = 0

n = 2, nσ = 2, nα = 1

26

SelfSelf--AdaptationAdaptation: : DynamicDynamic SphereSphere

Optimum σ:

Transition time 
proportionate to n.

Optimum σ learned by
self-adaptation.
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SelectionSelection

(µ,λ)
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PossiblePossible SelectionSelection OperatorsOperators

(1+1)-strategy: one parent, one offspring 1/5-rule !

(1,λ)-strategies: one parent, λ offspring.

Example: (1,10)-strategy.

Derandomized / self-adaptive / mutative step size control.

(µ,λ)-strategies: µ>1 parents, λ>µ offspring

Example: (2,15)-strategy.

Includes recombination.

Can overcome local optima.

(µ+λ)-strategies: elitist strategies.
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ExamplesExamples I: I: 
InflatableInflatable KneeKnee BolsterBolster OptimizationOptimization

Support plate

FEM #4

Initial position of knee bag model deployed knee bag (unit only)

Volume of 14L

Load distribution

plate

Tether

Support

plate

Vent hole

Load distribution

plate FEM #3

Tether FEM #5

Knee bag

FEM #2

Straps are defined in knee bag(FEM #2)

Low Cost ES: 0.677
GA (Ford): 0.72
Hooke Jeeves DoE: 0.88

Low Cost ES: 0.677
GA (Ford): 0.72
Hooke Jeeves DoE: 0.88
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IKB: IKB: PreviousPrevious DesignsDesigns

7,2896850681539,042305,900Constrained10

6,9515498557338,298292,354Unconstrained9

8,7584704470741,460384,389Unconstrained5

12,3933504493544,880576,324Unconstrained4

P CombinedRight foot loadLeft foot loadCGHICCharacteristics# Variables
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IKB: Problem StatementIKB: Problem Statement

Objective: Min Ptotal Subject to: Left Femur load <= 7000

Right Femur load <= 7000

7,28913.27613.693P combined (Quality)

68505766900Right foot loadNCAP_FMRL_50

68156079760Left foot loadNCAP_FMLL_50

39,0447.13347CGNCAP_CG_50

305,9555.711590HICNCAP_HIC_50

DescriptionPerformance Response

200030003000Load of load limiter (N)emr

1,511DB strap length ratiodstraprat

-0,00300DB firing time dbfire

111DB low output mass inflow ratioDmassratl

1,111DB high output mass inflow ratioDmassratf

2,511DB venting area ratiorcdexd

1,511KB mass inflow ratiomassrat

211KB venting area ratiorcdex

-0,0100IKB center offset ydz

0,0100IKB center offset xdx

GA (Yan Fu)Base Design 2Base Design 1DescriptionDesign Variable
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IKB IKB ResultsResults I: I: HookeHooke--JeevesJeeves
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IKB IKB ResultsResults II: (1+1)II: (1+1)--ESES
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Quality: 7.142     Simulations: 122Quality: 7.142     Simulations: 122
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OpticalOptical CoatingsCoatings: : 
Design Design OptimizationOptimization

Nonlinear mixed-integer problem, variable dimensionality.

Minimize deviation from desired reflection behaviour.

Excellent synthesis method; robust and reliable results.
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DielectricDielectric Filter Design ProblemFilter Design Problem

Client:

Corning, Inc.,              
Corning, NY

Dielectric filter design.

n=40 layers assumed.

Layer thicknesses xi in [0.01, 
10.0].

Quality function: Sum of quadratic
penalty terms.

Penalty terms = 0 iff constraints
satisfied.
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ResultsResults: : OverviewOverview of Runsof Runs

Factor 2 in quality.

Factor 10 in effort.

Reliable, repeatable
results.

Benchmark
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Problem Problem TopologyTopology Analysis: Analysis: 
An An AttemptAttempt

Grid evaluation for 2 variables.

Close to the optimum (from vector of quality 0.0199).

Global view (left),          vs.          Local view (right).

38

FE mesh of 1/3 geometry: 98.610 nodes, 357.300 tetrahedrons, 92.830 radiation
surfaces

large problem:

run time varies: 16 h 30 min to 32 h (SGI, Origin, R12000, 400 MHz)

at each run: 38,3 GB of view factors (49 positions) are treated!

ExamplesExamples II: II: 
BridgmanBridgman CastingCasting ProcessProcess

18 Speed Variables 
(continuous) for
Casting Schedule

Turbine
Blade
after Casting

39

ExamplesExamples II: II: 
BridgmanBridgman CastingCasting ProcessProcess

Quality Comparison of the Initial and Optimized Configurations

Initial (DoE) GCM(Commercial 

Gradient Based Method) Evolution Strategy

Global Quality

Turbine Blade

after Casting
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ExamplesExamples IV: IV: 
TrafficTraffic Light Light ControlControl

Client:

Dutch Ministry of Traffic

Rotterdam, NL

Generates green times for

next switching schedule.

Minimization of total delay / 

number of stops.

Better results (3 – 5%) / 

higher flexibility than with

traditional controllers.

Dynamic optimization, 

depending on actual traffic

(measured by control loops).
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ExamplesExamples V: V: 
Elevator Elevator ControlControl

Client: 

Fujitec Co. Ltd., Osaka, Japan

Minimization of passenger

waiting times.

Better results (3 – 5%) / 

higher flexibility than with

traditional controllers.

Dynamic optimization, 

depending on actual traffic.
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ExamplesExamples VI: VI: 
Metal Metal StampingStamping ProcessProcess

Client: 

AutoForm Engineering GmbH,

Dortmund

Minimization of defects in the

produced parts.

Optimization on geometric

parameters and forces.

Fast algorithm; finds very

good results.
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ExamplesExamples VII: VII: 
NetworkNetwork RoutingRouting

Client: 

SIEMENS AG, München

Minimization of end-to-end-

blockings under service

constraints.

Optimization of routing

tables for existing, hard-

wired networks.

10%-1000% improvement.
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ExamplesExamples VIII: VIII: 
NuclearNuclear ReactorReactor RefuelingRefueling

Client: 

SIEMENS AG, München

Minimization of total costs.

Creates new fuel assembly

reload patterns.

Clear improvements (1%-

5%) of existing expert

solutions.

Huge cost saving.
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Advantages of Evolution Advantages of Evolution StrategiesStrategies

Self-Adaptation of strategy parameters.

Direct, global optimizers ! 

Extremely good in solution quality.

Very small number of function evaluations.

Dynamical optimization problems. 

Design optimization problems.

Discrete or mixed-integer problems.

Experimental design optimisation.

Combination with Meta-Modeling techniques.
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Multi Multi CriteriaCriteria OptimizationOptimization (1)(1)

Most Problems: More than one aspect to optimise.

Conflicting Criteria !

Classical optimization techniques map multiple criteria
to one single value, e.g. by weighted sum:

But: How can optimal weights be determined?

Evolution Strategies can directly use the concept of 
Pareto Dominance
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Multi Multi CriteriaCriteria OptimizationOptimization (2)(2)

Multi Criteria Optimization does not mean:

Decide on „What is a good compromise“ before optimization (e.g. by
choosing weighting factors).

Find one single optimal solution.

Multi Criteria Optimization means:
Decide on a compromise after optimization.

Find a set of multiple compromise solutions.

Evolutionary Multi Criteria Optimization means:

Use the population structure to represent the set of multiple 
compromise solutions.

Use the concept of Pareto Dominance
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Multi Multi CriteriaCriteria OptimizationOptimization (3)(3)

Weighted Sum
Solution

Alternative 
Solution

Theoretical Pareto
Set

C
ri
te

ri
o

n
2

Criterion 1
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ParetoPareto DominanceDominance

If all fi(a) are better than fi (b), then a dominates b.

If all fi (b) are better than fi (a), then b dominates a.

If there are i and j, such that

fi (a) is better than fi (b), but

fj (b) is better than fj(a), then

a and b do not dominate each other
(„are equal“, „are incomparable“)

Assume two design solutions a and b with

F(a) = (f1(a),...,fk(a)) and F(b) = (f1(b),...,fk(b))
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ParetoPareto DominanceDominance (2)(2)
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Cheap to buy, but
expensive to run

Cheap to run, but

expensive to buy

Cheap to run, and

expensive to buy

Two Criteria Example: 
The economic car

1. Minimize initial costs
2. Minimize long term costs

⇒⇒⇒⇒ Never choose the red car!
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MultipointMultipoint AirfoilAirfoil OptimizationOptimization (1)(1)

High Lift!

Low Drag!

Start

Cruise
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MultipointMultipoint AirfoilAirfoil OptimizationOptimization (2)(2)

Pareto set after 1000 Simulations Three compromise wing designs

Find pressure profiles that are a compromise between two given
target pressure distributions under two given flow conditions! 
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MultipointMultipoint AirfoilAirfoil OptimizationOptimization (3)(3)

Pressure profile
at high lift flow conditions

Pressure profile at 
low drag flow conditions

Find pressure profiles that are a compromise between two given
target pressure distributions under two given flow conditions! 
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NoisyNoisy Fitness Fitness FunctionsFunctions: : 
ThresholdingThresholding

Fitness evaluation is disturbed by noise, e.g.: stochastic
distribution of passengers within an elevator system.

Traffic control problems in general.

Probability of generating a real improvement is very small.

Introduce explicit barrier into the (1+1)-ES to distinguish real 
improvements from overvalued individuals:

Only accept offspring if it outperforms the parent

by at least a value of τ (threshold).
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FindingFinding thethe Optimal Optimal ThresholdThreshold

For Gaussian noise

General optimal threshold:

For the sphere model
(where R is the distance to the optimum):
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InfluenceInfluence of of ThresholdingThresholding (I)(I)

solid lines:

opt. threshold

dashed lines:

crosses:

data measured in ES-

runs (sphere)

noise strength (from top to 

bottom)

normalized mutation strength σ*
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noise strength (from top to 

bottom)

normalized threshold τ*
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InfluenceInfluence of of ThresholdingThresholding (II)(II)
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ApplicationsApplications: : elevatorelevator controlcontrol

Simulation of an elevator
group controller takes a 
long time

Instead use artificial
problem tightly related to 

the real-world problem: 
S-Ring
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ApplicationApplication in Elevator Controller: in Elevator Controller: 
SS--RingRing

distance to optimum R:  0 = greedy, 100 = optimum

Q
u
a

lit
y

g
a

in
q

Only thresholding
leads to a positive 
quality gain
(τ = 0.3)

A too large 
threshold value
does not permit any
progress
(τ = 1.0)


