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Overview

What is ant colony optimization (ACO)? A technique for optimization whose

inspiration is the foraging behaviour of real ant colonies.

Different topics of the tutorial: Part I

I Swarm intelligence: Origins and inspiration of ACO

I The ACO metaheuristic:

? How does it work?

? Application examples:

• Traveling salesman problem

• Assembly line balancing
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Overview

Different topics of the tutorial: Part II

I Hybridization with other optimization techniques

I Negative search bias: When ACO algorithms may fail

I Ant colony optimization for continuous optimization
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Swarm intelligence

Swarm intelligence

The origins of ant colony optimization
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Swarm intelligence

Inspiration: Collective behaviour of social insects, flocks of birds, or fish schools

c© Soren Breitling c© SuperStock, Inc.
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Swarm intelligence

Properties of social societies:

I Consist of a set of simple entities

I Distributedness: No global control

I Self-organization by:

? Direct communication: visual, or chemical contact

? Indirect communication: Stigmergy (Grassé, 1959)

E1 E2 En−1 En

R1 R2 Rn−1

Result: Complex tasks can be accomplished in cooperation
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Swarm intelligence

Examples of social insects:

I Ants

I Termites

I Some wasps and bees

Some facts:

I About 2% of all insects are social

I About 50% of all social insects are ants

I The total weight of ants is about the total weight of humans

I Ants colonize the world since 100.000.000 years, humans only since 50.000

years
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Swarm intelligence

Natural examples

I Nest building behaviour of wasps

I Agricultural behaviour of leaf-cutter ants

I Nest building behaviour of weaver ants

I Cemetary building behaviour of ants

I Foraging behaviour of ants
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Swarm intelligence

c© Dominique Snyers (http://www-iasc.enst-bretagne.fr/PROJECTS/SWARM/nest.html)
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Swarm intelligence

c© Dominique Snyers (http://www-iasc.enst-bretagne.fr/PROJECTS/SWARM/nest.html)
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Swarm intelligence

c© Dominique Snyers (http://www-iasc.enst-bretagne.fr/PROJECTS/SWARM/nest.html)

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

Swarm intelligence

Natural examples

I Nest building behaviour of wasps

I Agricultural behaviour of leaf-cutter ants

I Nest building behaviour of weaver ants

I Cemetary building behaviour of ants

I Foraging behaviour of ants
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Swarm intelligence

c© Alex Wild (http://www.myrmecos.net)
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Swarm intelligence

c© Alex Wild (http://www.myrmecos.net)
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Swarm intelligence

c© Alex Wild (http://www.myrmecos.net)
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Swarm intelligence

Natural examples

I Nest building behaviour of wasps

I Agricultural behaviour of leaf-cutter ants

I Nest building behaviour of weaver ants

I Cemetary building behaviour of ants

I Foraging behaviour of ants
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Swarm intelligence

c© La Fourmiliere (http://super.canard.wc.free.fr/fourmiliere/a-accueil.html)
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Swarm intelligence

c© La Fourmiliere (http://super.canard.wc.free.fr/fourmiliere/a-accueil.html)
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Swarm intelligence

c© Alex Wild (http://www.myrmecos.net)
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Swarm intelligence

Natural examples

I Nest building behaviour of wasps

I Agricultural behaviour of leaf-cutter ants

I Nest building behaviour of weaver ants

I Cemetary building behaviour of ants

I Foraging behaviour of ants
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Swarm intelligence

c© by the National Academy of Sciences (PNAS)
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Swarm intelligence

Natural examples

I Nest building behaviour of wasps

I Agricultural behaviour of leaf-cutter ants

I Nest building behaviour of weaver ants

I Cemetary building behaviour of ants

I Foraging behaviour of ants
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Swarm intelligence

Communication strategies:

I Direct communication: For example, recruitment

I Indirect communication: via chemical pheromone trails

c© Alex Wild (http://www.myrmecos.net) c© Christian Blum
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Swarm intelligence

Communication strategies:

I Direct communication: For example, recruitment

I Indirect communication: via chemical pheromone trails

Basic behaviour:
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Swarm intelligence

c© Alex Wild (http://www.myrmecos.net)
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Swarm intelligence

Nest Food

Nest Food
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Swarm intelligence

Nest Food

Nest Food
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

I Simulation of the foraging behaviour

I The ACO metaheuristic

I Example: traveling salesman problem (TSP)

I Example: assembly line balancing

I A closer look at algorithm components
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The ant colony optimization metaheuristic

Technical simulation:

a b
Nest Foode1, l1 = 1

e2, l2 = 2

1. We introduce artificial pheromone parameters:

T1 for e1 and T2 for e2

2. W initialize the phermomone values:

τ1 = τ2 = c > 0
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The ant colony optimization metaheuristic

Algorithm:

Iterate:

1. Place na ants in node a.

2. Each of the na ants traverses from a to b either

I via e1 with probability p1 = τ1

τ1+τ2
,

I or via e2 with probability p2 = 1 − p1.

3. Evaporate the artificial pheromone: i = 1, 2

τi ← (1 − ρ)τi , ρ ∈ (0, 1]

4. Each ant leaves pheromone on its traversed edge ei:

τi ← τi +
1

li
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The ant colony optimization metaheuristic

Simulation results:
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Colony size: 10 ants Colony size 100 ants

Observation: Optimization capability is due to co-operation
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The ant colony optimization metaheuristic

Main differences between model and reality:

Real ants Simulated ants

Ants’ movement asynchronous synchronized

Pheromone laying while moving after the trip

Solution evaluation implicitly explicit quality measure

Problem: In combinatorial optimization we want to find good solutions
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

I Simulation of the foraging behaviour

I The ACO metaheuristic

I Example: traveling salesman problem (TSP)

I Example: assembly line balancing

I A closer look at algorithm components
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The ant colony optimization metaheuristic

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values
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The ant colony optimization metaheuristic

input: An instance P of a combinatorial problem P.

InitializePheromoneValues(T )

while termination conditions not met do

Siter ← ∅
for j = 1, . . . , na do

s ← ConstructSolution(T )

s ← LocalSearch(s) — optional —

Siter ← Siter ∪ {s}
end for

ApplyPheromoneUpdate(T )

end while

output: The best solution found
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The ant colony optimization metaheuristic

Definition: Metaheuristic

A metaheuristic is a general strategy for tackling CO problems,

which is

I not problem-specific

I approximate and usually non-deterministic

I a high-level concept to guide the search process

Goal: Efficiently explore the search space in order to find good

solutions in a reasonable amount of computation time.
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The ant colony optimization metaheuristic

Metaheuristics

Population-based Trajectory methods

ECACO GRASP ILS TS SA

Decreasing use of constructive elements Decreasing use of constructive elements
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The ant colony optimization metaheuristic

Metaheuristics:

I Simulated Annealing (SA) [Kirkpatrick, 1983]

I Tabu Search (TS) [Glover, 1986]

I Genetic and Evolutionary Computation (EC) [Goldberg, 1989]

I Ant Colony Optimization (ACO) [Dorigo, 1992]

I Greedy Randomized Adaptive Search Procedure (GRASP) [Resende, 1995]

I Guided Local Search (GLS) [Voudouris, 1997]

I Iterated Local Search (ILS) [Stützle, 1999]

I Variable Neighborhood Search (VNS) [Mladenović, 1999]

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

I Simulation of the foraging behaviour

I The ACO metaheuristic

I Example: traveling salesman problem (TSP)

I Example: assembly line balancing

I A closer look at algorithm components
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The ant colony optimization metaheuristic

Example: Traveling salesman problem (TSP) . Given a completely connected,

undirected graph G = (V, E) with edge-weights.

3 4

1 2
2

2

2 2
1 5

Goal:
Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.
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The ant colony optimization metaheuristic

TSP in terms of a combinatorial optimization problem P = (S, f):

I S consists of all possible Hamiltonian cycles in G.

I Objetive function f : S 7→ IR+: s ∈ S is defined as the sum of the edge-weights

of the edges that are in s.

3 4

1 2
2

2

2 2
1 5

obj. function value: 8

3 4

1 2
2

2

2 2
1 5

obj. function value: 10

3 4

1 2
2

2

2 2
1 5

obj. function value: 10
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The ant colony optimization metaheuristic

Preliminary step: Definition of the

I solution components

I pheromone model

example instance solution components pheromone model

3 4

1 2
2

2

2

2
51

3 4

1 2
c1,2

c2,4

c3,4

c1,3
c2,3c1,4

3 4

1 2
T1,2

T2,4

T3,4

T1,3
T2,3T1,4
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The ant colony optimization metaheuristic

Tour construction:

Step 1 Step 2 Finished

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

p(ci,j) =
τi,j

τ1,2 + τ1,3 + τ1,4
p(ci,j) =

τi,j

τ2,3 + τ2,4
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The ant colony optimization metaheuristic

Pheromone update: For example with the Ant System (AS) update rule

Pheromone evaporation Reinforcement

τi,j ← (1 − ρ) · τi,j τi,j ← τi,j + ρ · ∑

{s∈Siter|ci,j∈s}

F (s)

where

I evaporation rate ρ ∈ (0, 1]

I Siter is the set of solutions generated in the current iteration

I quality function F : S 7→ IR+. We use F (·) = 1
f(·)
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The ant colony optimization metaheuristic

Pheromone update: For example with the Ant System (AS) update rule

start p evaporation solution s1 solution s2

3 4

1 2
2

2

2

2
1 5

3 4

1 2
2

2

2

2
1 5

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

I Simulation of the foraging behaviour

I The ACO metaheuristic

I Example: traveling salesman problem (TSP)

I Example: assembly line balancing

I A closer look at algorithm components
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The ant colony optimization metaheuristic

Assembly line balancing

c© BMW c© J. Bautista & NISSAN

Specific problem: Simple assembly line balancing (SALB) [Bautista,Pereira,2004]
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The ant colony optimization metaheuristic

cycle time C = x seconds

Tasks: Each task i has a time requirement ti

1 2

3

4

5

6

7

8

11 17

9

5

8

12

10

3
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The ant colony optimization metaheuristic

Additionally given: The maximum number UB of possible work stations

Goal: Minimize the number of work stations needed!

1st step of applying ACO: Solution components and pheromone model

1. Solution components: We consider each possible assignment of

I a task i

I to a work station j

to be a solution component ci,j

2. Pheromone model: We assign to each solution component ci,j a pheromone

trail parameter Ti,j with value τi,j
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The ant colony optimization metaheuristic

Solution construction: Work stations are filled with tasks one after the other

At each iteration:

I j∗: The current work station to be filled

I T : The set of tasks

1. that are not yet assigned to a work station

2. whose predecessors are all assigned to work stations

3. whose time requirement is such that it fits into j∗

If T is empty: Open a new work station

If all tasks assigned: Stop solution construction
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The ant colony optimization metaheuristic

Assumption: Cycle time C = 30 seconds

Example situation 1:

1 2 1 2
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Example situation 2:
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The ant colony optimization metaheuristic

At each iteration: How to choose a task from T?

p(ci,j∗) =
τi,j∗

∑

k∈T τk,j∗
∀ i ∈ T

Disadvantage in this case:

τi,1 τi,2 τi,3 τi,4 τi,5 τi,6 τi,7 τi,8
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The ant colony optimization metaheuristic

Possible solution: The summation rule [Merkle et al., 2000]

p(ci,j∗) =

(

∑j∗

h=1
τi,h

)

∑

k∈T

(

∑j∗

h=1
τk,h

) ∀ i ∈ T

Graphical example: Current work station: 6

τi,1 τi,2 τi,3 τi,4 τi,5 τi,6 τi,7 τi,8

∑
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The ant colony optimization metaheuristic

Pheromone update: For example with the iteration-best (IB) update rule

Pheromone evaporation Reinforcement

τi,j ← (1 − ρ) · τi,j τi,j ← τi,j + ρ · F (sib) ∀ ci,j ∈ sib

where

I evaporation rate ρ ∈ (0, 1]

I sib is the best solution constructed in the current iteration

I quality function F : S 7→ IR+. We use F (·) = 1
f(·)
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

I Simulation of the foraging behaviour

I The ACO metaheuristic

I Example: traveling salesman problem (TSP)

I Example: assembly line balancing

I A closer look at algorithm components
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The ant colony optimization metaheuristic

Definition of solution components and pheromone model

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values
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The ant colony optimization metaheuristic

CO problem
discrete opt.

problem

solution

components

pheromone

model

derivation in a

structured way
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The ant colony optimization metaheuristic

Definition: Discrete optimization problem

The formulation of a CO problem as a discrete optimization

problem P = (S, Ω, f) consists of:

I a search (or solution) space S defined over

? a finite set of n discrete decision variables Xi (i = 1, . . . , n);

? and a set Ω of constraints among the variables;

I an objective function f : S → IR+ to be minimized.

If the set of constraints Ω is empty, P is an unconstrained

problem model , otherwise a constrained problem model.
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The ant colony optimization metaheuristic

Deriving the generic solution components:

⇒For each combination of Xi

and vj
i ∈ Di = {v1

i , . . . , v
|Di|
i } generic solution component ci,j ∈ C

Deriving the pheromone model:

⇒For each ci,j ∈ C pheromone trail parameter Ti,j ∈ T
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The ant colony optimization metaheuristic

Solution construction: A closer look

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values
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The ant colony optimization metaheuristic

A general constructive heuristic:

I sp = 〈〉
I Determine N(sp)

I while N(sp) 6= ∅
? c ← ChooseFrom(N(sp))

? sp ← extend sp by adding solution component c

? Determine N(sp)

I end while

Problem: How to implement function ChooseFrom(N(sp))?
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The ant colony optimization metaheuristic

Possibilities for implementing ChooseFrom(N(sp)):

I Greedy algorithms:

c∗ = argmaxci,j∈N(sp)η(ci,j) ,

where η : C 7→ IR+ is a Greedy function

Examples for Greedy functions:

I TSP: Inverse distance between nodes (i.e., cities)

I SALB: ti/C
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The ant colony optimization metaheuristic

Possibilities for implementing ChooseFrom(N(sp)):

I Ant colony optimization:

p(ci,j | sp) =
[τi,j ]

α · [η(ci,j)]
β

∑

ck,l∈N(sp)

[τk,l]
α · [η(ck,l)]

β
, ∀ ci,j ∈ N(sp) ,

where α and β are positive values

Note: α and β balance between pheromone information and Greedy function

Observations:

I ACO can be applied if a constructive heuristic exists!

I ACO can be seen as an iterative, adaptive Greedy algorithm

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

The ant colony optimization metaheuristic

Pheromone update: A closer look
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The ant colony optimization metaheuristic

A general update rule:

τi,j ← (1 − ρ) · τi,j + ρ ·
∑

{s∈Supd|ci,j∈s}

ws · F (s) ,

where

I evaporation rate ρ ∈ (0, 1]

I Supd is the set of solutions used for the update

I quality function F : S 7→ IR+. We use F (·) = 1
f(·)

I ws is the weight of solution s

Question: Which solutions should be used for updating?
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The ant colony optimization metaheuristic

ACO update variants:

AS-update Supd ← Siter

weights: ws = 1 ∀ s ∈ Supd

elitist AS-update Supd ← Siter ∪ {sbs} (sbs is best found solution)

weights: ws = 1 ∀ s ∈ Siter, wsbs
= e ≥ 1

rank-based AS-update Supd ← best m − 1 solutions of Siter ∪ {sbs} (ranked)

weights: ws = m − r for solutions from Siter, wsbs
= m

IB-update: Supd ← argmax{F (s) | s ∈ Siter}
weight 1

BS-update: Supd ← {sbs}
weight 1
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The ant colony optimization metaheuristic

Successful ACO variant:

I MAX–MIN Ant System(MMAS) [Stützle, Hoos, 2000]

Characteristic properties:

I Use of a pheromone lower bound τmin > 0

I Application of restarts (by re-initializing the phermone values)

I Mix of IB-update and BS-update depending on a convergence measure
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The ant colony optimization metaheuristic

Successful ACO variant:

I Ant Colony System(ACS) [Gambardella, Dorigo, 1996]

Characteristic properties:

I Deterministic construction steps with probability q

c = argmaxci,j∈N(sp)[τi,j ]
α · [η(ci,j)]

β

I Evaporation of pheromone during the construction of solution s:

τi,j ← γτi,j + (1 − γ)c ,∀ ci,j ∈ s ,

where c > 0 is the initial pheromone value, and γ ∈ (0, 1]

I Use of the BS-update (evaporation only for used solution components)
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The ant colony optimization metaheuristic

Successful ACO variant:

I The hyper-cube framework (HCF) for ACO [Blum, Dorigo, 2004]

Charactersitic properties:

Limits the pheromone values to the interval [0, 1] by using the folling update:

τi,j ← (1 − ρ) · τi,j + ρ ·
∑

{s∈Supd|ci,j∈s}

F (s)
∑

s′∈Supd
F (s′)
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The ant colony optimization metaheuristic

Rewriting the HCF update in vector form:

~τ ← ~τ + ρ · (~m − ~τ) ,

where ~m is a |C|-dimensional vector with

~m =
∑

s∈Supd

γs · ~s and γs =
F (s)

∑

s′∈Supd
F (s′)

.
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The ant colony optimization metaheuristic

Example: Problem with 3 solutions, 2 ants per iteration

(0, 0, 1)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(1, 0, 1)

(1, 1, 0)

solution of ant 1

solution of ant 2

~τ
~m
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Hy

Hybridization with other
optimization techniques
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The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

I Example 1: Hybridization with beam search [Blum, 2004]

I Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]

I Example 3: ACO and multi-level techniques [Korošec et al., 2004]

I Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]

Important concept for 1, 2: ACO can be seen as a tree search method!
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The ant colony optimization metaheuristic

ACO as a tree search algorithm: 1st construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

τ1,2 · η(c1,2) τ1,3 · η(c1,3)
τ1,4 · η(c1,4)
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The ant colony optimization metaheuristic

ACO as a tree search algorithm: 2nd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

τ4,2 · η(c4,2) τ4,3 · η(c4,3)
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The ant colony optimization metaheuristic

ACO as a tree search algorithm: 3rd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2
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The ant colony optimization metaheuristic

Beam search: 1st construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

η(c1,2) η(c1,3)
η(c1,4)

kext = 2

kbw = 3
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The ant colony optimization metaheuristic

Beam search: 2nd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

η(c2,3) η(c2,4) η(c4,2) η(c4,3)

kext = 2

kbw = 3

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

The ant colony optimization metaheuristic

Beam search: after 2nd construction step → use of lower bound

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

kext = 2

kbw = 3

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

The ant colony optimization metaheuristic

Beam search: 3rd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

kext = 2

kbw = 3
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The ant colony optimization metaheuristic

Idea: Beam-ACO , in which each ant performs a probabilistic beam search

Advantages:

I Strong heuristic guidance by a lower bound

I Embedded in the adaptive framework of ACO

Result: Beam-ACO is state-of-the-art for

I open shop scheduling (OSS)

I some assembly line balancing problems
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The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

I Example 1: Hybridization with beam search [Blum, 2004]

I Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]

I Example 3: ACO and multi-level techniques [Korošec et al., 2004]

I Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]
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The ant colony optimization metaheuristic

Constraint programming (CP): Study of computational systems based on

constraints

How does it work?

I Phase 1:

? Express CO problem in terms of a discrete problem (variables+domains)

? Define (“post”) constraints among the variables

? The constraint solver reduces the variable domains

I Phase 2: Labelling

? Search through the remaining search tree

? Possibly “post” additional constraints
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The ant colony optimization metaheuristic

ACO-CP hybrid:

ACO-CP

probabilistic

solution

construction

pheromone

value

update

CP additional

constraints

initialization

of pheromone
values

2) 3)

1)
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The ant colony optimization metaheuristic

Advantages:

I Advantage of ACO:

Good in finding high quality solutions for moderately constrained problems.

I Advantage of CP:

Good in finding feasible solutions for highly constrained problems.

ACO-CP:

Promising for constrained problems with still a high number of feasible solutions.
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The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

I Example 1: Hybridization with beam search [Blum, 2004]

I Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]

I Example 3: ACO and multi-level techniques [Korošec et al., 2004]

I Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]
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The ant colony optimization metaheuristic

The multi-level framework:

Prob 1

Prob 2

Prob 3

Prob 4

P

P ′

P ′′

P ′′′ Prob 4

Prob 3

Prob 2

Prob 1s

s′

s′′

s′′′
ACO

ACO

ACO

ACO

contract

contract

contract

expand

expand

expand
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The ant colony optimization metaheuristic

Application fields of multi-level techniques:

I Originally: graph-based optimization problems

I In general:

? When problem instances can be contracted while maintaining

characteristics

? When large-scale problem instances are considered

Multi-level ACO: Very good performance for mesh-partitioning.
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The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

I Example 1: Hybridization with beam search [Blum, 2004]

I Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]

I Example 3: ACO and multi-level techniques [Korošec et al., 2004]

I Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]
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The ant colony optimization metaheuristic

General idea:

Higher level search space

Original search space

Mapping

Apply
ACO
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The ant colony optimization metaheuristic

Application example: The k-cardinality tree problem

Given:

I An undirected graph G = (V, E),

I Edge-weights we, ∀ e ∈ E, and node-weights wv, ∀ v ∈ V .

I A cardinality k < |V |

Let Tk be the set of all trees in G with exactly k edges.

Goal: Find a k-cardinality tree Tk ∈ Tk which minimizes

f(Tk) =

(

∑

e∈E(Tk)

we

)

+

(

∑

v∈V (Tk)

wv

)
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The ant colony optimization metaheuristic

Idea:

I Higher level search space: Space of all l-cardinality trees (l > k)

I Mapping: Use dynamic programming (Blum; 2004) to find the best

k-cardinality tree in an l-cardinality tree

Note: Currently state-of-the-art for the KCT problem
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Bla

Negative search bias:
When ACO algorithms might fail
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Theoretical studies of ant colony optimization

Search bias in ant colony optimization:

I Positive (and wanted) bias: Choice of (in comparison) good solutions for

updating

I Negative bias:

1. Modelling of the problem

2. Solution construction process

3. Pheromone update

How to detect negative bias? Decreasing algorithm performance over time
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Theoretical studies of ant colony optimization

Implicit assumptions in ACO:

Assumption 1:

Good solutions are composed of good solution components.

(A solution component is regarded to be good, if the average quality of

the solutions that contain it is high.)

Assumption 2:

The pheromone update is such that good solution components on

average are stronger reinforced than others.
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Theoretical studies of ant colony optimization

Implicit assumptions in ACO:

Assumption 1:

Good solutions are composed of good solution components.

(A solution component is regarded to be good, if the average quality of

the solutions that contain it is high.)

Assumption 2:

The pheromone update is such that good solution components on

average are stronger reinforced than others.
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Theoretical studies of ant colony optimization

Example: 2-cardinality tree problem

v1 v2 v3 v4 v5

1

e1

2

e2

2

e3

1

e4

3 different solutions:

s1 : v1 v2 v3 v4 v5

1 2 2 1
f(s1) = 3

s2 : v1 v2 v3 v4 v5

1 2 2 1
f(s2) = 4

s3 : v1 v2 v3 v4 v5

1 2 2 1
f(s3) = 3
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Theoretical studies of ant colony optimization

Average iteration quality of Ant System ρ = 0.01
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Theoretical studies of ant colony optimization

Benchmark instances: Ant System applied to an Internet-like instance
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Theoretical studies of ant colony optimization

Instance statistics:
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Theoretical studies of ant colony optimization

Defintion: Competition-balanced system (CBS)

Given:

1. a feasible partial solution sp;

2. and the set of solution components N(sp) that can be added to extend the

partial solution sp

An ACO algorithm applied to P ∈ P is called a CBS , if each solution

component c ∈ N(sp) is a component of the same number of feasible solutions.
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Theoretical studies of ant colony optimization

Example: 2-cardinality tree problem

v1 v2 v3 v4 v5

1

e1

2

e2

2

e3

1

e4

Search tree:

〈〉

ce1
ce2

ce3
ce4

ce2
ce1

ce3
ce2

ce4
ce3

s1 s1 s2 s2 s3 s3

Therefore: This example is NOT a competition-balanced system
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Theoretical studies of ant colony optimization

What do we know?

1. In case an ACO algorithm applied to a problem instance is NOT a

competition-balanced system → possibility of negative search bias

2. Existing theoretical result: The Ant System algorithm applied to

unconstrained problems does not suffer from negative search bias

Open questions:

1. Can it be shown that a competition-balanced system does not suffer from

negative search bias?

2. ...

In general: Research on search bias might lead to better guidelines on how to

develop ACO algorithms
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Bla

Ant colony optimization for
continuous optimization
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Ant colony optimization for continuous optimization

Continuous optimization

Given:

1. Function f : IRn 7→ IR

2. Constrains such as, for example, xi ∈ [li, ui]

Goal: Find

~X∗ = (x∗
1
, . . . , x∗

n) ∈ IRn

such that

I ~X∗ fulfills all constraints

I f( ~X∗) ≤ f(~Y ),∀ ~Y ∈ IRn
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Ant colony optimization for continuous optimization

Different approaches:

I Continuous ACO (CACO) [Bilchev, Parmee, 1995]

I API [Monmarché et al., 2000]

I Contiuous Interacting Ant Colony (CIAC) [Dréo, Siarry, 2002]

I ACOIR [Socha, 2002]

Note: API and ACOIR can be applied to mixed problems
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Dicrete ant colony optimization

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values
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Continuous ant colony optimization

Continuous problem
population

of solutions

ACO

probabilistic

solution

construction

population

update

initialization

of the
population

Main conceptual difference:

Population instead of pheromone model
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Continuous ACO: Probabilistic solution construction

A solution construction: Choose a value xi ∈ IR for each variable Xi, i = 1, . . . , n

→ n solution construction steps

How to choose a value for variable Xi?

→ by sampling the following Gaussian kernel probability density function (PDF):

Gi(x) =
k

∑

j=1

ωj

(

1

σj

√
2π

e
−

(x−µj)2

2σj
2

)

where k is the cardinality of the population P .
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Continuous ACO: Probabilistic solution construction

A Gaussian kernel PDF:

−4 −2 0 2 4

z

Gaussian kernels
individual Gausian functions
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Continuous ACO: Probabilistic solution construction

Problem: It is quite difficult to sample a Gaussian kernel PDF

Solution: Instead, at the start of each solution construction

1. choose probabilistically one of the Gaussian kernels, denoted by j∗

2. and sample—for all decision variables—the j∗-th Gaussian kernel

Methods for sampling: For example, the Box-Muller method
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Continuous ACO: Probabilistic solution construction

Choice of a Gaussian kernel:

pj =
ωj

∑k

l=1
ωl

,∀ j = 1, . . . , k

Definition of ωj ’s:

ωj =
1

qk
√

2π
· e−

(rj−1)2

2q2k2

Hereby:

I rj is the rank of solution j in population P

I q is a parameter of the algorithm: A small q favours high-ranked solutions
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Continuous ACO: Probabilistic solution construction

Assumption: Gaussian kernel j∗ is chosen for sampling

j∗-th Gaussian kernel =
1

σj∗

√
2π

e
−

(x− µj∗ )2

2 σj∗
2

What remains? Definition of

1. the mean µj∗

2. and the standard deviation σj∗
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Continuous ACO: Probabilistic solution construction

Definition of µj∗ :

µj∗ = x
j∗

i ,

where xj∗

i is the value of the i-th decision variable of solution j∗.

Definition of σj∗ :

σj∗ = ρ





∑k

l=1

√

(

xl
i − x

j∗

i

)2

k





where ρ is a parameter of the algorithm: high ρ means slow convergence speed
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Continuous ACO

Different methods for constraint handling:

1. Repair function: Each unfeasible solution is transformed into a feasible one

2. Penalty function: Unfeasible solutions are penalized by high objective

function values
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Continuous ACO

Additional feature: Using the correlation between the decision variables

Standard approach: Principal Component Analysis (PCA)

I Advantage: Standard approach, works well for reasonably regular

distributions

I Disadvantage: Not so good for more complex functions

Our alternative approach: For each

p(u|j∗) =
d(u, j∗)4

∑k

l=1
d(l, j∗)4
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9  10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 3

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Summary and conclusions

Presented topics:

I Origins of ACO: Swarm intelligence

I How to transfer the biological inspiration into an algorithm

I Example applications of ACO: TSP and Assembly line balancing

I Hybridizations of ACO algorithms with more classical techniques

I Negative search bias

I ACO for continuous optimization

Is ACO better than other metaheuristics? No! (problem dependant)

Rule of thumb: ACO works well for problems for which well-working

constructive heuristics exist
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Outlook

Questions?


