Overview

What is ant colony optimization (ACO)? A technique for optimization whose

inspiration is the foraging behaviour of real ant colonies.

Different topics of the tutorial: Part I

- **Swarm intelligence:** Origins and inspiration of ACO
- ► The ACO metaheuristic:
 - \star How does it work?
 - \star Application examples:
 - Traveling salesman problem
 - Assembly line balancing

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Ant Colony Optimization: Introduction and Recent Advances

Christian Blum

Albcom, Lsi, Universitat Politècnica De Catalunya Barcelona, Spain

Swarm intelligence

The origins of ant colony optimization

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US $\,$

© C. Blum

Overview

Different topics of the tutorial: Part II

- **Hybridization** with other optimization techniques
- ▶ **Negative search bias:** When ACO algorithms may fail
- ▶ Ant colony optimization for **continuous optimization**

© C. Blum

Swarm intelligence

Properties of social societies:

- ► Consist of a set of simple entities
- **Distributedness:** No global control
- **Self-organization** by:
 - \star **Direct communication:** visual, or chemical contact
 - ★ Indirect communication: Stigmergy (Grassé, 1959)

Result:

ult: Complex tasks can be accomplished in cooperation

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence

Collective behaviour of social insects, flocks of birds, or fish schools

© Soren Breitling

© SuperStock, Inc.

Natural examples

- ▶ Nest building behaviour of wasps
- ▶ Agricultural behaviour of leaf-cutter ants
- ▶ Nest building behaviour of weaver ants
- Cemetary building behaviour of ants
- ▶ Foraging behaviour of ants

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence

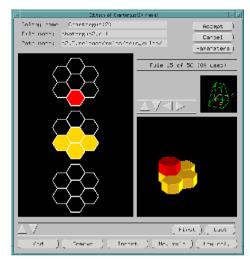
Examples of social insects:

- Ants
- Termites
- ▶ Some wasps and bees

Some facts:

- ▶ About 2% of all insects are social
- \blacktriangleright About 50% of all social insects are ants
- ▶ The total weight of ants is about the total weight of humans
- Ants colonize the world since 100.000.000 years, humans only since 50.000 years

Swarm intelligence



© Dominique Snyers (http://www-iasc.enst-bretagne.fr/PROJECTS/SWARM/nest.html)

Swarm intelligence

Natural examples

- ▶ Nest building behaviour of wasps
- ► Agricultural behaviour of leaf-cutter ants
- ▶ Nest building behaviour of weaver ants
- ▶ Cemetary building behaviour of ants
- ▶ Foraging behaviour of ants

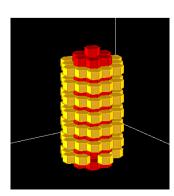
Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

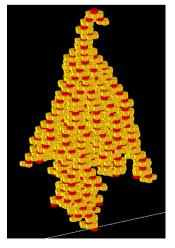
Swarm intelligence

© C. Blum

Swarm intelligence



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US



Swarm intelligence

© Alex Wild (http://www.myrmecos.net)

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence

Swarm intelligence

Natural examples

- ▶ Nest building behaviour of wasps
- ▶ Agricultural behaviour of leaf-cutter ants
- ▶ Nest building behaviour of weaver ants
- ▶ Cemetary building behaviour of ants
- ▶ Foraging behaviour of ants

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

Swarm intelligence

Swarm intelligence

© La Fourmiliere (http://super.canard.wc.free.fr/fourmiliere/a-accueil.html)

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

Swarm intelligence

© La Fourmiliere (http://super.canard.wc.free.fr/fourmiliere/a-accueil.html)

Swarm intelligence

Natural examples

- ▶ Nest building behaviour of wasps
- ▶ Agricultural behaviour of leaf-cutter ants
- ▶ Nest building behaviour of weaver ants
- Cemetary building behaviour of ants
- ▶ Foraging behaviour of ants

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence

© C. Blum

Swarm intelligence

Natural examples

- ▶ Nest building behaviour of wasps
- ▶ Agricultural behaviour of leaf-cutter ants
- ▶ Nest building behaviour of weaver ants
- ▶ Cemetary building behaviour of ants
- ► Foraging behaviour of ants

Communication strategies:

Swarm intelligence

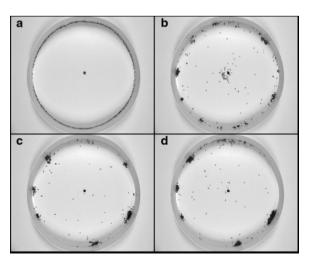
- ▶ Direct communication: For example, recruitment
- ▶ Indirect communication: via chemical pheromone trails

Basic behaviour:

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence

Communication strategies:

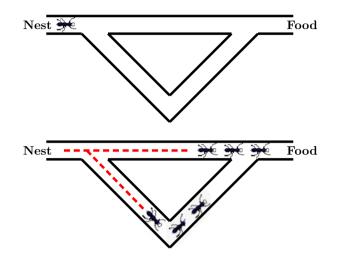
- **•** Direct communication: For example, recruitment
- ▶ Indirect communication: via chemical pheromone trails

© Alex Wild (http://www.myrmecos.net)

© Christian Blum

© by the National Academy of Sciences (PNAS)

Swarm intelligence



The ant colony optimization metaheuristic

- ▶ Simulation of the foraging behaviour
- ▶ The ACO metaheuristic
- ► Example: traveling salesman problem (TSP)
- ► Example: assembly line balancing
- ► A closer look at algorithm components

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

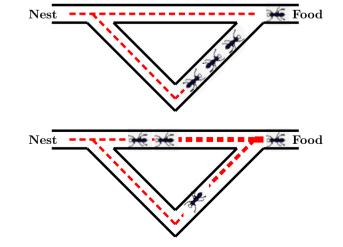
Swarm intelligence

© Alex Wild (http://www.myrmecos.net)

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Swarm intelligence



Algorithm:

Iterate:

- 1. Place n_a ants in node a.
- 2. Each of the n_a ants traverses from a to b either
 - ▶ via e_1 with probability $\mathbf{p}_1 = \frac{\tau_1}{\tau_1 + \tau_2}$,
 - or via e_2 with probability $\mathbf{p}_2 = 1 \mathbf{p}_1$.
- 3. Evaporate the artificial pheromone: i = 1, 2

 $\tau_i \leftarrow (1-\rho)\tau_i \ , \ \rho \in (0,1]$

4. Each ant leaves pheromone on its traversed edge e_i :

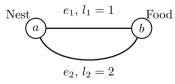
$$\tau_i \leftarrow \tau_i + \frac{1}{l_i}$$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Technical simulation:



1. We introduce artificial pheromone parameters:

 \mathcal{T}_1 for e_1 and \mathcal{T}_2 for e_2

2. W initialize the phermomone values:

 $\tau_1 = \tau_2 = c > 0$

The ant colony optimization metaheuristic

Main differences between model and reality:

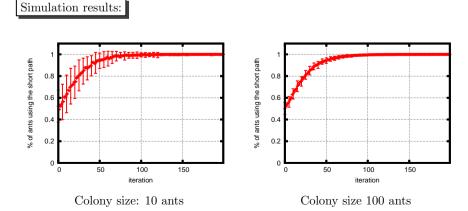
	Real ants	Simulated ants
Ants' movement	asynchronous	synchronized
Pheromone laying	while moving	after the trip
Solution evaluation	implicitly	explicit quality measure

Problem: In combinatorial optimization we want to find good solutions

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

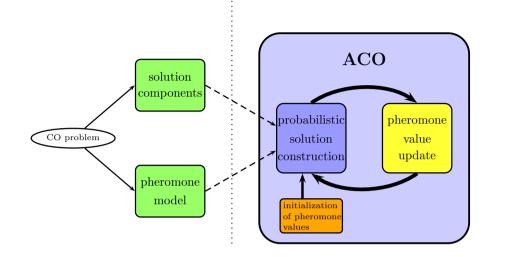
The ant colony optimization metaheuristic



Observation: Optimization capability is due to co-operation

© C. Blum

The ant colony optimization metaheuristic



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic

- ▶ Simulation of the foraging behaviour
- ► The ACO metaheuristic
- ► Example: traveling salesman problem (TSP)
- ▶ Example: assembly line balancing
- ► A closer look at algorithm components

The ant colony optimization metaheuristic

D	efinition: Metaheuristic		
A	metaheuristic is a general strategy for tackling CO problems		
wh	ich is		
	not problem-specific		
	approximate and usually non-deterministic		
	▶ a high-level concept to guide the search process		
G	oal: Efficiently explore the search space in order to find good		
sol	utions in a reasonable amount of computation time.		

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic

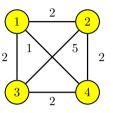
input: An instance P of a combinatorial problem \mathcal{P} . InitializePheromoneValues(\mathcal{T}) while termination conditions not met do $S_{iter} \leftarrow \emptyset$ for $j = 1, \dots, n_a$ do $s \leftarrow \text{ConstructSolution}(\mathcal{T})$ $s \leftarrow \text{LocalSearch}(s) \qquad - \text{optional} \qquad S_{iter} \leftarrow S_{iter} \cup \{s\}$ end for ApplyPheromoneUpdate(\mathcal{T}) end while output: The best solution found

Metaheuristics:

► Simulated Annealing (SA)	[Kirkpatrick, 1983]
► Tabu Search (TS)	[Glover, 1986]
► Genetic and Evolutionary Computation (EC)	[Goldberg, 1989]
► Ant Colony Optimization (ACO)	[Dorigo, 1992]
► Greedy Randomized Adaptive Search Procedure (GRASP)	$[{\rm Resende},1995]$
► Guided Local Search (GLS)	[Voudouris, 1997]
► Iterated Local Search (ILS)	[Stützle, 1999]
► Variable Neighborhood Search (VNS)	[Mladenović, 1999]

The ant colony optimization metaheuristic

Example: Traveling salesman problem (TSP). Given a completely connected, undirected graph G = (V, E) with edge-weights.



Goal: Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

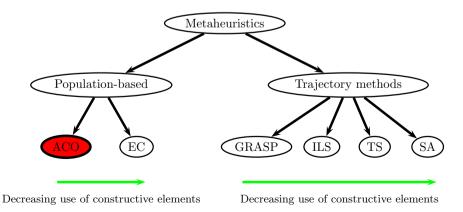
© C. Blum

Ant colony optimization

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic



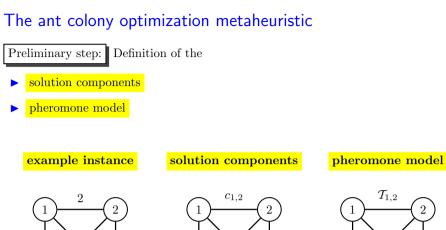
The ant colony optimization metaheuristic

- ▶ Simulation of the foraging behaviour
- ▶ The ACO metaheuristic
- ► Example: traveling salesman problem (TSP)
- ► Example: assembly line balancing
- ▶ A closer look at algorithm components

2

3

2



 $c_{2.3}$

 $c_{3.4}$

 $c_{2,4}$

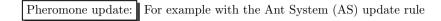
 C_1

 $c_{1,3}$

2 $T_{1,3}$ $T_{2.4}$ -3 $T_{3,4}$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic



Pheromone evaporation

Reinforcement

$$\tau_{i,j} \leftarrow (1-\rho) \cdot \tau_{i,j} \qquad \qquad \tau_{i,j} \leftarrow \tau_{i,j} + \rho \cdot \sum_{\{s \in S_{iter} | c_{i,j} \in s\}} F(s)$$

where

- evaporation rate $\rho \in (0, 1]$
- ▶ S_{iter} is the set of solutions generated in the current iteration
- ▶ quality function $F: S \mapsto \mathbb{R}^+$. We use $F(\cdot) = \frac{1}{f(\cdot)}$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

2

© C. Blum

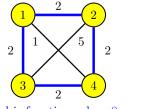
 $\mathbf{2}$

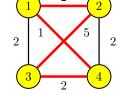
© C. Blum

The ant colony optimization metaheuristic

TSP in terms of a combinatorial optimization problem $\mathcal{P} = (\mathcal{S}, f)$:

- \triangleright S consists of all possible Hamiltonian cycles in G.
- ▶ Objetive function $f : S \mapsto \mathbb{R}^+$: $s \in S$ is defined as the sum of the edge-weights of the edges that are in s.





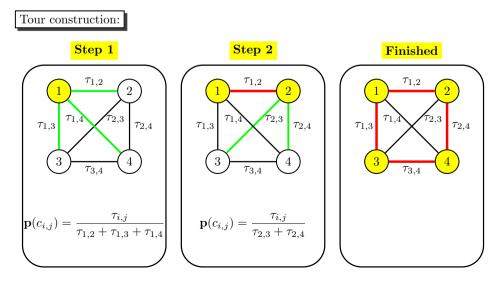
obj. function value: 10 obj. function value: 10

2

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic



▶ Simulation of the foraging behaviour

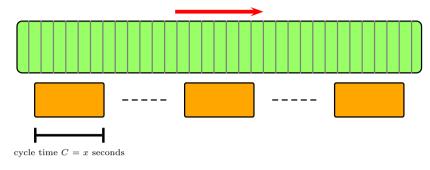
Example: assembly line balancing

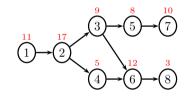
► A closer look at algorithm components

► Example: traveling salesman problem (TSP)

► The ACO metaheuristic

The ant colony optimization metaheuristic

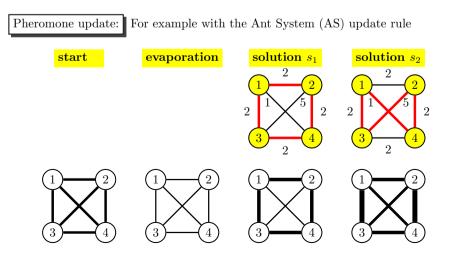




Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic



The ant colony optimization metaheuristic

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

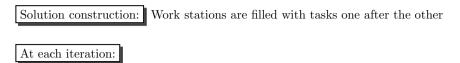
© C. Blum

The ant colony optimization metaheuristic

Assembly line balancing

© BMW

© J. Bautista & NISSAN



- j^* : The current work station to be filled
- T: The set of tasks
 - 1. that are not yet assigned to a work station
 - 2. whose predecessors are all assigned to work stations
 - 3. whose time requirement is such that it fits into j^*

If T is empty: Open a new work station

If all tasks assigned: Stop solution construction

© C. Blum

The ant colony optimization metaheuristic

Additionally given: The maximum number UB of possible work stations

Goal: Minimize the number of work stations needed!

1st step of applying ACO: Solution components and pheromone model

- 1. Solution components: We consider each possible assignment of
 - \triangleright a task *i*
 - \blacktriangleright to a work station j

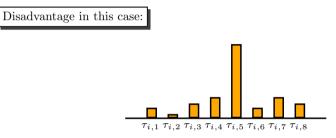
to be a solution component $c_{i,i}$

2. Pheromone model: We assign to each solution component $c_{i,j}$ a pheromone trail parameter $\mathcal{T}_{i,j}$ with value $\tau_{i,j}$

The ant colony optimization metaheuristic

At each iteration: How to choose a task from T?

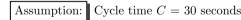
$$\mathbf{p}(c_{i,j^*}) = \frac{\tau_{i,j^*}}{\sum_{k \in T} \tau_{k,j^*}} \quad \forall i \in T$$



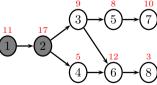
Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

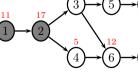


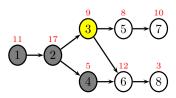
Example situation 1:



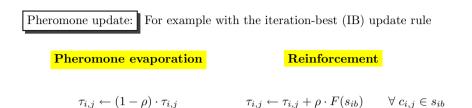
Example situation 2:







The ant colony optimization metaheuristic



where

- evaporation rate $\rho \in (0, 1]$
- \triangleright s_{ib} is the best solution constructed in the current iteration
- ▶ quality function $F: S \mapsto \mathbb{R}^+$. We use $F(\cdot) = \frac{1}{f(\cdot)}$

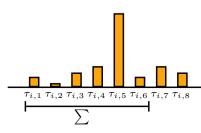
Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic

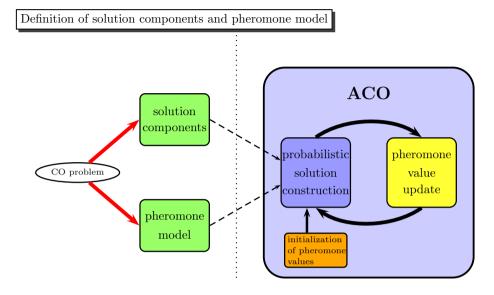
Possible solution: The summation rule [Merkle et al., 2000]

$$\mathbf{p}(c_{i,j^*}) = \frac{\left(\sum_{h=1}^{j^*} \tau_{i,h}\right)}{\sum_{k \in T} \left(\sum_{h=1}^{j^*} \tau_{k,h}\right)} \qquad \forall i \in T$$

Graphical example: Current work station: 6



The ant colony optimization metaheuristic

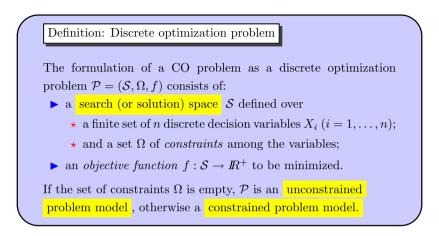


Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

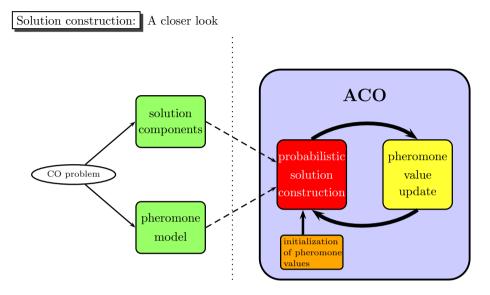
© C. Blum

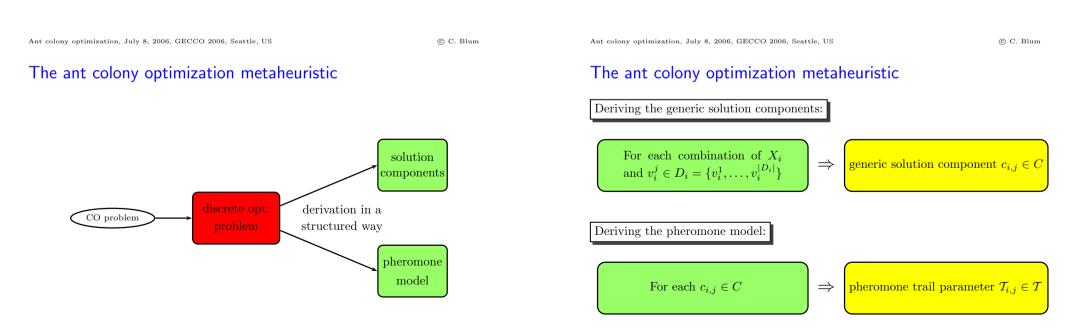
The ant colony optimization metaheuristic

- ▶ Simulation of the foraging behaviour
- ▶ The ACO metaheuristic
- ► Example: traveling salesman problem (TSP)
- ▶ Example: assembly line balancing
- ► A closer look at algorithm components



The ant colony optimization metaheuristic



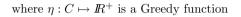


The ant colony optimization metaheuristic

Possibilities for implementing $\mathsf{ChooseFrom}(N(s^p))$:

► Greedy algorithms:

$$c^* = \operatorname{argmax}_{c_{i,j} \in N(s^p)} \eta(c_{i,j}) ,$$



Examples for Greedy functions:

- **TSP:** Inverse distance between nodes (i.e., cities)
- **SALB:** t_i/C

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

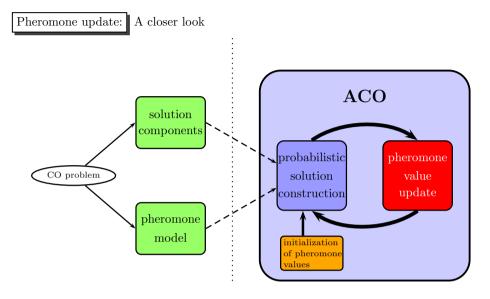
The ant colony optimization metaheuristic

A general constructive heuristic:

- $\triangleright \ s^p = \langle \rangle$
- \triangleright Determine $N(s^p)$
- ▶ while $N(s^p) \neq \emptyset$
 - $\star c \leftarrow \mathsf{ChooseFrom}(N(s^p))$
 - $\star~s^p \leftarrow \text{extend}~s^p$ by adding solution component c
 - \star Determine $N(s^p)$
- end while

Problem: How to implement function $ChooseFrom(N(s^p))$?

The ant colony optimization metaheuristic



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Possibilities for implementing $\mathsf{ChooseFrom}(N(s^p))$:

► Ant colony optimization:

$$\mathbf{p}(c_{i,j} \mid s^p) = \frac{\left[\tau_{i,j}\right]^{\alpha} \cdot \left[\eta(c_{i,j})\right]^{\beta}}{\sum\limits_{c_{k,l} \in N(s^p)} \left[\tau_{k,l}\right]^{\alpha} \cdot \left[\eta(c_{k,l})\right]^{\beta}} , \quad \forall \ c_{i,j} \in N(s^p) ,$$

where α and β are positive values

 α and β balance between pheromone information and Greedy function

Observations:

- ▶ ACO can be applied if a constructive heuristic exists!
- ▶ ACO can be seen as an iterative, adaptive Greedy algorithm

ACO update variants:

AS-update	$S_{upd} \leftarrow S_{iter}$
	weights: $w_s = 1 \ \forall \ s \in S_{upd}$
elitist AS-update	$S_{upd} \leftarrow S_{iter} \cup \{s_{bs}\} \ (s_{bs} \text{ is best found solution})$
	weights: $w_s = 1 \ \forall \ s \in S_{iter}, \ w_{s_{bs}} = e \ge 1$
rank-based AS-update	$S_{upd} \leftarrow \text{best } m-1 \text{ solutions of } S_{iter} \cup \{s_{bs}\} \text{ (ranked)}$
	weights: $w_s = m - r$ for solutions from $S_{iter}, w_{s_{bs}} = m$
IB-update:	$S_{upd} \leftarrow \operatorname{argmax} \{ F(s) \mid s \in S_{iter} \}$
	weight 1
BS-update:	$S_{upd} \leftarrow \{s_{bs}\}$
	weight 1

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

© C. Blum

The ant colony optimization metaheuristic

A general update rule:

$$\tau_{i,j} \leftarrow (1-\rho) \cdot \tau_{i,j} + \rho \cdot \sum_{\{s \in S_{upd} | c_{i,j} \in s\}} w_s \cdot F(s) ,$$

where

- evaporation rate $\rho \in (0, 1]$
- S_{upd} is the set of solutions used for the update
- ▶ quality function $F: S \mapsto \mathbb{R}^+$. We use $F(\cdot) = \frac{1}{f(\cdot)}$
- \blacktriangleright w_s is the weight of solution s

Question: Which solutions should be used for updating?

The ant colony optimization metaheuristic

Successful ACO variant:

► Ant Colony System(ACS)

[Gambardella, Dorigo, 1996]

Characteristic properties:

 \blacktriangleright Deterministic construction steps with probability q

$$c = \operatorname{argmax}_{c_{i,j} \in N(s^p)} [\tau_{i,j}]^{\alpha} \cdot [\eta(c_{i,j})]^{\beta}$$

 \blacktriangleright Evaporation of pheromone during the construction of solution s:

$$\tau_{i,j} \leftarrow \gamma \tau_{i,j} + (1 - \gamma)c \ , \forall \ c_{i,j} \in s \ ,$$

where c > 0 is the initial pheromone value, and $\gamma \in (0, 1]$

▶ Use of the BS-update (evaporation only for used solution components)

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Successful ACO variant:

 $\blacktriangleright \mathcal{MAX}\text{-}\mathcal{MIN} \text{ Ant System}(\mathcal{MMAS})$

[Stützle, Hoos, 2000]

Characteristic properties:

- ▶ Use of a pheromone lower bound $\tau_{min} > 0$
- ▶ Application of restarts (by re-initializing the phermone values)
- ▶ Mix of IB-update and BS-update depending on a convergence measure

Rewriting the HCF update in vector form:

$$\vec{\tau} \leftarrow \vec{\tau} + \rho \cdot (\vec{m} - \vec{\tau})$$
,

where \vec{m} is a |C|-dimensional vector with

$$\vec{m} = \sum_{s \in S_{upd}} \gamma_s \cdot \vec{s} \text{ and } \gamma_s = \frac{F(s)}{\sum_{s' \in S_{upd}} F(s')}$$
.

Hybridization with other optimization techniques

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic

Successful ACO variant:

► The hyper-cube framework (HCF) for ACO

[Blum, Dorigo, 2004]

© C. Blum

Charactersitic properties:

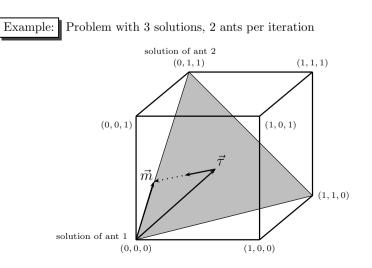
Limits the pheromone values to the interval [0,1] by using the folling update:

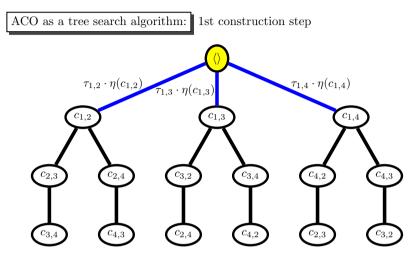
$$\tau_{i,j} \leftarrow (1-\rho) \cdot \tau_{i,j} + \rho \cdot \sum_{\{s \in S_{upd} | c_{i,j} \in s\}} \frac{F(s)}{\sum_{s' \in S_{upd}} F(s')}$$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

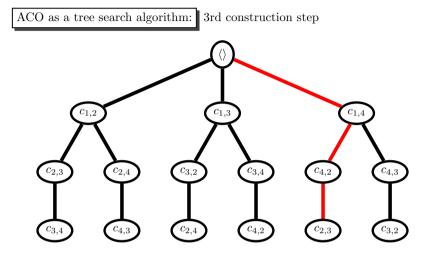
© C. Blum

The ant colony optimization metaheuristic





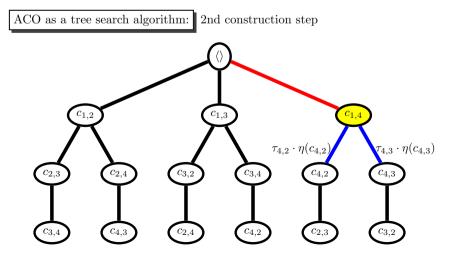
The ant colony optimization metaheuristic



© C. Blum Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

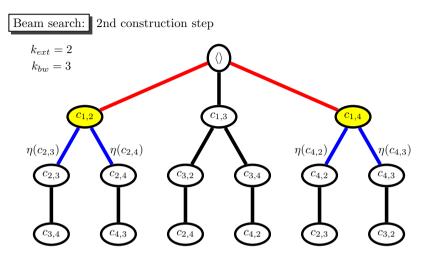
© C. B

The ant colony optimization metaheuristic

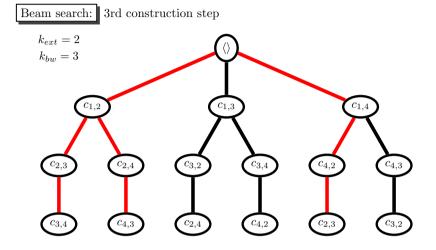
Hybridizations of ACO algorithms:

- **Example 1:** Hybridization with beam search [Blum, 2004]
- **Example 2:** Hybridization with constraint programming [Meyer, Ernst, 2004]
- ► Example 3: ACO and multi-level techniques [Korošec et al., 2004]
- **Example 4:** Applying ACO to a higher level search space [Blum, Blesa, 2005]

Important concept for 1, 2: ACO can be seen as a tree search method!



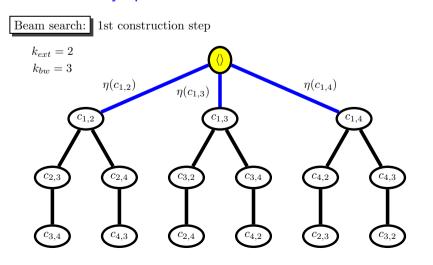
The ant colony optimization metaheuristic



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

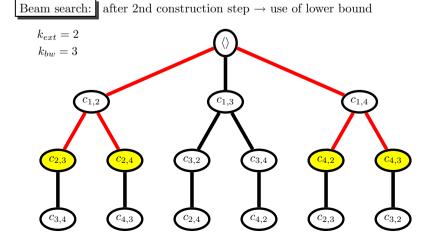
© C. Blum

The ant colony optimization metaheuristic



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

The ant colony optimization metaheuristic



[Blum, 2004]

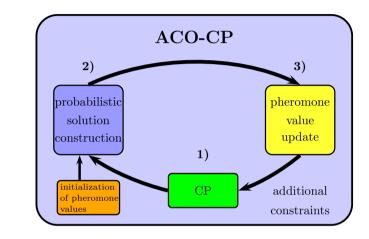
The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

- Example 1: Hybridization with beam search
- **Example 2:** Hybridization with constraint programming [Meyer, Ernst, 2004]
- ► Example 3: ACO and multi-level techniques [Korošec et al., 2004]
- ► Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]

The ant colony optimization metaheuristic

ACO-CP hybrid:



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Idea: Bea

Beam-ACO, in which each ant performs a probabilistic beam search

Advantages:

- ▶ Strong heuristic guidance by a lower bound
- ▶ Embedded in the adaptive framework of ACO

Result: Beam-ACO is state-of-the-art for

- ▶ open shop scheduling (OSS)
- ▶ some assembly line balancing problems

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Constraint programming (CP): Study of computational systems based on constraints

How does it work?

- ▶ Phase 1:
 - ★ Express CO problem in terms of a discrete problem (variables+domains)
 - ★ Define ("post") constraints among the variables
 - \star The constraint solver reduces the variable domains
- ▶ Phase 2: Labelling
 - \star Search through the remaining search tree
 - \star Possibly "post" additional constraints

Hybridizations of ACO algorithms:

- ► Example 1: Hybridization with beam search [Blum, 2004]
- ▶ Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]
- ► Example 3: ACO and multi-level techniques [Korošec et al., 2004]
- ► Example 4: Applying ACO to a higher level search space [Blum, Blesa, 2005]

© C. Blum

© C. Blum

The ant colony optimization metaheuristic

Application fields of multi-level techniques:

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

- ▶ Originally: graph-based optimization problems
- ▶ In general:
 - \star When problem instances can be contracted while maintaining characteristics
 - \star When large-scale problem instances are considered

Multi-level ACO: Very good performance for mesh-partitioning.

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

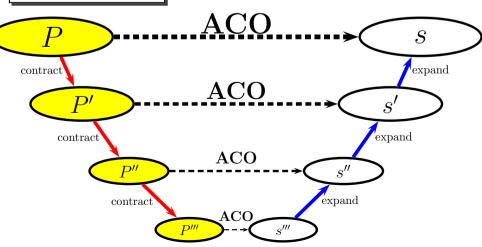
- Advantages:
- Advantage of ACO: Good in finding high quality solutions for moderately constrained problems.
- ► Advantage of CP:

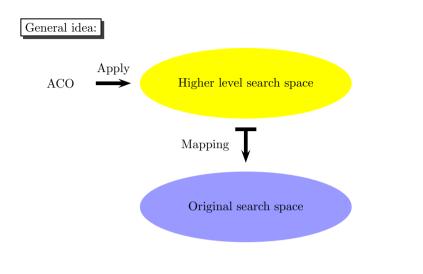
Good in finding feasible solutions for highly constrained problems.

ACO-CP:

Promising for constrained problems with still a high number of feasible solutions.

The ant colony optimization metaheuristic

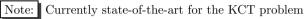




The ant colony optimization metaheuristic

Idea:

- ▶ Higher level search space: Space of all *l*-cardinality trees (l > k)
- ▶ Mapping: Use dynamic programming (Blum; 2004) to find the best *k*-cardinality tree in an *l*-cardinality tree



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

The ant colony optimization metaheuristic

Hybridizations of ACO algorithms:

- ► Example 1: Hybridization with beam search [Blum, 2004]
- ▶ Example 2: Hybridization with constraint programming [Meyer, Ernst, 2004]
- ► Example 3: ACO and multi-level techniques [Korošec et al., 2004]
- **Example 4:** Applying ACO to a higher level search space [Blum, Blesa, 2005]

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US	©
The ant colony optimization metaheuristic	
Application example: The k-cardinality tree problem	
Given:	
► An undirected graph $G = (V, E)$,	
▶ Edge-weights w_e , $\forall e \in E$, and node-weights w_v , $\forall v \in V$.	
• A cardinality $k < V $	

Let \mathcal{T}_k be the set of all trees in G with exactly k edges.

Goal: Find a k-cardinality tree $T_k \in \mathcal{T}_k$ which minimizes

$$f(T_k) = \left(\sum_{e \in E(T_k)} w_e\right) + \left(\sum_{v \in V(T_k)} w_v\right)$$

Theoretical studies of ant colony optimization

Theoretical studies of ant colony optimization

Search bias in ant colony optimization:

- Positive (and wanted) bias: Choice of (in comparison) good solutions for updating
- ▶ Negative bias:
 - 1. Modelling of the problem
 - 2. Solution construction process
 - 3. Pheromone update

How to detect negative bias? Decreasing algorithm performance over time

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

<section-header><text><text><text><text><text><text><text>

Theoretical studies of ant colony optimization

Implicit assumptions in ACO

Assumption 1:

Good solutions are composed of good solution components. (A solution component is regarded to be good, if the average quality of the solutions that contain it is high.)

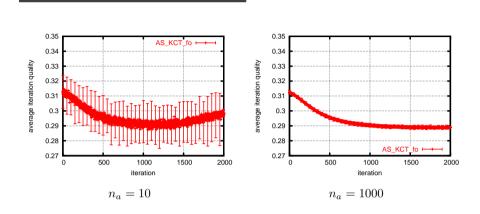
Assumption 2:

The pheromone update is such that good solution components on average are stronger reinforced than others.

Negative search bias: When ACO algorithms might fail

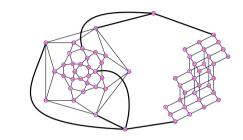
Average iteration quality of Ant System $\rho = 0.01$

Theoretical studies of ant colony optimization



Theoretical studies of ant colony optimization

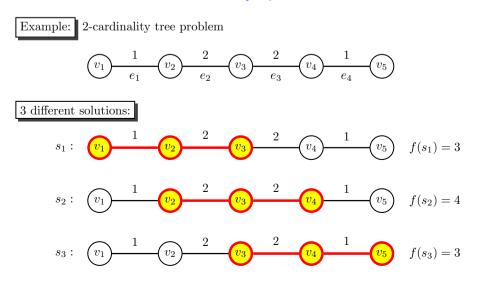
Instance statistics:



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Theoretical studies of ant colony optimization



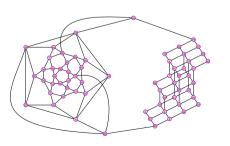
Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

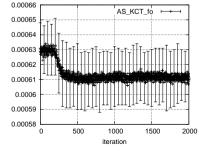
© C. Blum

Theoretical studies of ant colony optimization

Benchmark instances: Ant System applied to an Internet-like instance

quality

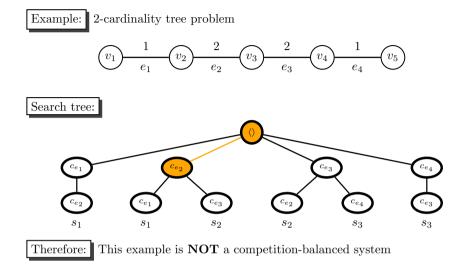




instance gd96c (65 nodes, 125 edges)

10 ants, $\rho = 0.1, k = 30$

Theoretical studies of ant colony optimization



Ant colony optimization for continuous optimization

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Theoretical studies of ant colony optimization

Definition: Competition-balanced system (CBS)

Given:

- 1. a feasible partial solution s^p ;
- 2. and the set of solution components $N(s^p)$ that can be added to extend the partial solution s^p

An ACO algorithm applied to $P \in \mathcal{P}$ is called a CBS, if each solution component $c \in N(s^p)$ is a component of the same number of feasible solutions. Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Theoretical studies of ant colony optimization

What do we know?

- 1. In case an ACO algorithm applied to a problem instance is **NOT** a competition-balanced system \rightarrow possibility of negative search bias
- 2. Existing theoretical result: The Ant System algorithm applied to unconstrained problems does not suffer from negative search bias

Open questions:

1. Can it be shown that a competition-balanced system does not suffer from negative search bias?

2. ...

In general: Research on search bias might lead to better guidelines on how to develop ACO algorithms

Ant colony optimization for continuous optimization

Different approaches:

► Continuous ACO (CACO)	[Bilchev, Parmee, 1995]
► API	[Monmarché et al., 2000]
► Continuus Interacting Ant Colony (CIAC)	[Dréo, Siarry, 2002]
$\blacktriangleright \operatorname{ACO}_{\mathbb{R}}$	[Socha, 2002]



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Ant colony optimization for continuous optimization

Continuous optimization

Given:

- 1. Function $f : \mathbb{R}^n \mapsto \mathbb{R}$
- 2. Constraints such as, for example, $x_i \in [l_i, u_i]$

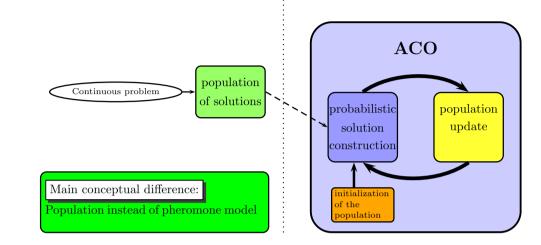
Goal: Find

$$\vec{X^*} = (x_1^*, \dots, x_n^*) \in I\!\!R^n$$

such that

- ▶ $\vec{X^*}$ fulfills all constraints
- $\blacktriangleright f(\vec{X^*}) \le f(\vec{Y}), \forall \vec{Y} \in I\!\!R^n$

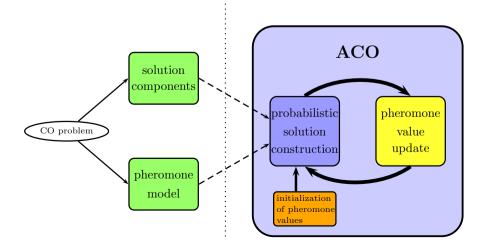
Continuous ant colony optimization



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

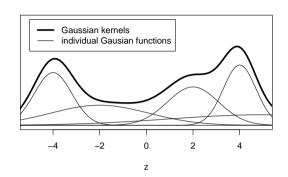
© C. Blum

Dicrete ant colony optimization



Continuous ACO: Probabilistic solution construction

A Gaussian kernel PDF:



Continuous ACO: Probabilistic solution construction

Choice of a Gaussian kernel:

$$\mathbf{p}_j = \frac{\omega_j}{\sum_{l=1}^k \omega_l} \ , \forall \ j = 1, \dots, k$$

Definition of ω_j 's:

$$\omega_j = \frac{1}{qk\sqrt{2\pi}} \cdot e^{-\frac{(r_j-1)^2}{2q^2k^2}}$$

Hereby:

 \triangleright r_j is the rank of solution j in population P

 \triangleright q is a parameter of the algorithm: A small q favours high-ranked solutions

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO: Probabilistic solution construction

A solution construction: Choose a value $x_i \in \mathbb{R}$ for each variable $X_i, i = 1, ..., n$

 $\rightarrow n$ solution construction steps

How to choose a value for variable X_i ?

 \rightarrow by sampling the following Gaussian kernel probability density function (PDF):

$$G_i(x) = \sum_{j=1}^k \omega_j \left(\frac{1}{\sigma_j \sqrt{2\pi}} e^{-\frac{(x-\mu_j)^2}{2\sigma_j^2}} \right)$$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO: Probabilistic solution construction

Problem: It is quite difficult to sample a Gaussian kernel PDF

Solution: Instead, at the start of each solution construction

- 1. choose probabilistically one of the Gaussian kernels, denoted by j^*
- 2. and sample—for all decision variables—the j^* -th Gaussian kernel

Methods for sampling: For example, the Box-Muller method

where k is the cardinality of the population P.

Continuous ACO: Probabilistic solution construction

Definition of μ_{i^*} :

$$\mu_{j^*} = x_i^{j^*} \quad ,$$

where $x_i^{j^*}$ is the value of the *i*-th decision variable of solution j^* .

Definition of σ_{i^*} :

$$\sigma_{j^*} = \rho\left(\frac{\sum_{l=1}^k \sqrt{\left(x_i^l - x_i^{j^*}\right)^2}}{k}\right)$$

where ρ is a parameter of the algorithm: high ρ means slow convergence speed

Continuous ACO

Additional feature: Using the correlation between the decision variables

Standard approach: Principal Component Analysis (PCA)

- Advantage: Standard approach, works well for reasonably regular distributions
- **Disadvantage:** Not so good for more complex functions

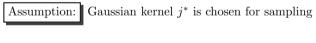
Our alternative approach: For each

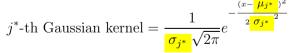
 $\mathbf{p}(u|j^*) = \frac{d(u, j^*)^4}{\sum_{l=1}^k d(l, j^*)^4}$

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO: Probabilistic solution construction





What remains? Definition of

- 1. the mean μ_{i^*}
- 2. and the standard deviation σ_{i^*}

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO

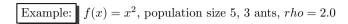
Different methods for constraint handling:

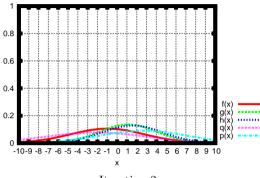
- 1. Repair function: Each unfeasible solution is transformed into a feasible one
- 2. **Penalty function:** Unfeasible solutions are penalized by high objective function values

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO

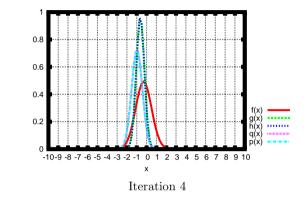




Iteration 2

Continuous ACO

Example:
$$f(x) = x^2$$
, population size 5, 3 ants, $rho = 2.0$

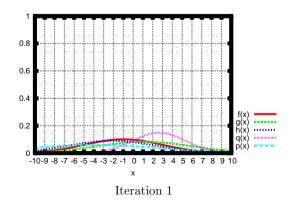


Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO

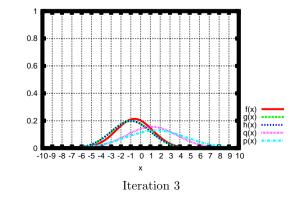
Example:
$$f(x) = x^2$$
, population size 5, 3 ants, $rho = 2.0$



Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US $\,$

Continuous ACO

Example:
$$f(x) = x^2$$
, population size 5, 3 ants, $rho = 2.0$



© C. Blum

Summary and conclusions

Presented topics:

- ▶ Origins of ACO: Swarm intelligence
- ▶ How to transfer the biological inspiration into an algorithm
- ▶ Example applications of ACO: TSP and Assembly line balancing
- ▶ Hybridizations of ACO algorithms with more classical techniques
- ▶ Negative search bias
- ▶ ACO for continuous optimization

Is ACO better than other metaheuristics? No! (problem dependant)

Rule of thumb: ACO works well for problems for which well-working constructive heuristics exist

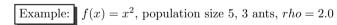
Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

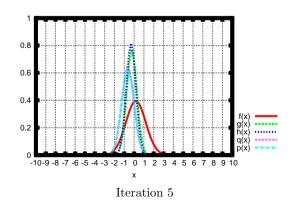
© C. Blum

Ant colony optimization, July 8, 2006, GECCO 2006, Seattle, US

© C. Blum

Continuous ACO





Questions?

