
Evolvable Hardware Approach Using Evolutionary
Algorithms and FPGAs

Thyago Sellmann Pinto Cesar
Duque

University of Sao Paulo
Trabalhador Sao-carlense, 400, Sao

Carlos, Sao Paulo, Brazil
55 16 33738167

thyago@grad.icmc.usp.br

 Alexandre Cláudio Botazzo
Delbem

University of Sao Paulo
Trabalhador Sao-carlense, 400, Sao

Carlos, Sao Paulo, Brazil
55 16 33738167

acbd@icmc.usp.br

ABSTRACT
Hardware based systems shows better performance for embedded
applications than those based on software. Software based systems
also need a generic purpose processor, which is not adequate for
several problems. Hardware systems, on the other hand, are too
inflexible. Many hardware solutions cannot be updated. Even
when this process is possible, it requires specific knowledge and
tools.

The proposed system aims at investigating a solution for these
drawbacks involving hardware systems. The proposal is based on
an Evolutionary Algorithm to reconfigure Filed Programmable
Gate Arrays.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming -
Program synthesis.

General Terms

Algorithms

Keywords

Evolvable Hardware, Filed Programmable Gate Arrays,
Evolutionary Algorithms, Embedded Systems.

1. INTRODUCTION
This work proposes the use of Evolutionary Algorithms and Field
Programmable Gate Arrays to produce an intelligent hardware
system with adaptive capabilities.

This system could be used for real embedded applications, in
fields where few systems can achieve the required performance.
Several problems cannot be efficiently solved using generic
purpose processors as, for example, embedded systems. For these
problems, dedicated hardware solutions are in general employed.
On the other hand, these hardware solutions are too inflexible and

may become obsolete with small changes on problem
requirements. If these requirements are expected to change often,
reconfigurable systems have been the usual solution.

However, reconfigurable systems are in general difficult and
expansive to be built. In order to overcome this drawback, we
propose a self-reconfigurable approach, based on Evolutionary
Algorithms. This approach can reconfigure a FPGA until it
becomes a dedicated system for the target problem. Moreover, this
process never finishes since the system continues to evolve and
adapt to the problem when its requirements change.

2. EVOLUTIONARY ALGORTHMS

Evolutionary Algorithms (EAs) have been largely employed for
complex design problems [5, 6, 7], combinatorial optimization [9,
12] and multi-objective problems [3, 4, 9]. Moreover EAs are
plausible solution strategies for problems requiring adaptive
capabilities. In this way, we choose an evolutionary approach to
guide the FPGA reconfiguration.

An EA has typically the following characteristics. A set (named
population) of solutions (named individuals) is generated at
random. At each iteration, or generation, evolutionary operators
are applied to the individuals modifying them and generating new
individuals. These individuals are then selected according to a
selection strategy and a level of adequacy for the target problem.
This level is named fitness. The selected individuals compose a
new population. After several generations, the EA produce a
population with individuals that should correspond to adequate
solutions. Several relevant references about EAs are available in
the literature [3, 4, 9, 10, 11, 12, 14].

3. FIELD PROGRAMMABLE GATE

ARRAYS
For problems whose requirements are expected to change often,
reconfigurable systems have been the usual solution. If the EA is
the intelligence of the proposed system, the FPGA is its physical
component. It holds the IO interfaces, stores the system logic and
executes the processing.

A FPGA is a hardware system designed to hold another hardware
system. It is composed by a set of logical blocks or elements and a
set of connections among them. In an ideal architecture, there
would be one connection between each pair of elements and one

connection between each element and each IO port. This
architecture however is not necessary for most real problems and
is too expansive and complex to implement. Real FPGA uses only
a subset of this complete set of connections.

The FPGA works as follow. The input ports have the function of
reading external signals from the environment. These signals are
propagated through the connections and logical elements until
they reach an output port. During this route, the logical elements
modify the signals according to a FPGA configuration. Once the
signals are stabilized in the output ports, they are the output of the
system. Introductory references about FPGA architectures can be
found in [1, 2, 15].

4. FPGA AND EA INTEGRATION
The architecture of the FPGA is very important since it defines the
complexity of the problems the FPGA can be used to solve. The
architecture also has large influence on the EA efficiency to
reconfigure the FPGA.

If the architecture is too complex, the FPGA can be employed for
a wide range of problems. On the other hand, complex
architectures can reduce the EA performance. It is important to
define architectures that both give the system enough power to
solve relatively complex problems and also allow an efficient EA
for FPGA reconfiguration.

In this way, the first step to build the proposed system should be
the definition of the FPGA architecture. The second step is the
definition of the data structure (named chromosome in EAs) to
computationally represent the architecture. From the chromosome,
evolutionary operators are elaborated. Afterward, Fitness function
and selection method are determined according to the target
problem characteristics.

4.1 Architecture of FPGA
The FPGA architecture plays an important role for the proposed
system, both determining the FPGA capability of solving
problems and the EA performance. This section describes the
employed architecture.

The proposed architecture organizes the FPGA as a logical
element matrix. Each logical element receives n input signals and
produces one output signal. In FPGAs, a logical element is built
as an array of 2n binary memory units. Each memory can store one
single bit. One of these bits is selected using the input signals and
multiplexers. Figure 1 shows an architecture example, where S1,
S2 and S3 are the received signals and is the produced output.

Figure 1: Architecture of a logical element

Each element in the matrix has two indexes indicating its line and
column in the architecture. Given a block in line l, each input
terminal of this block can be connected to the output terminal of
any block in line l-1. Figure 2 shows the proposed architecture.

Figure 2: Architecture of The FPGA

The elements in the first line have their input terminals connect to
the FPGA input ports. They are to transmit signals from
environment through the FPGA. The output terminals of the
elements in the last line are also the output ports of the FPGA.
Then, a FPGA of c columns will also have c output terminals.

4.2 Individual Representation and

Evolutionary Operators
Based on the architecture described in Section 4.1, individual’s
computational representation (chromosome) was defined as
follow: Each logic element is represented as a string of 2n bits,
where n is the number of input terminals in the element. Based on
this string of bits, we define the evolutionary operators: crossover
and mutation.

The crossover operator is applied to two individuals named
father1 and father2, generating two new individuals named child1

and child2. This operator generates a random mask of 2n bits used
to alter the bit string producing a new one. For each position of
the bit string, if the bit in the mask is 0, child1 keeps the
corresponding bit value from father1 and child2 retains the
corresponding bit value from father2. If the bit in the mask is 1,
child1 keeps the bit value from father2 and child2 retains the bit
value from father1.

The mutation operation is applied to one individual, generating
generates a new individual. It consists on the negation of a
random bit from a bit string of the individual.

The connections among elements are represented as an array of n

integers. Each element in a line of the architecture has an array of
integers indicating the connections of this element with the
elements of previous line. The mutation operator alters element
connections by randomly changing the value of one position in
the array.

A chromosome is structured as a pair composed by a logical
element matrix and a connection matrix. The former can be
changed by a crossover operator that consists of the
recombination of each logical element from father1 with the
logical element in the corresponding position from father2. This
process generates two children. The mutation operator for the
logical element matrix consists on randomly choosing a matrix
position and altering the corresponding element.

The connection matrix mutation process is similar to the mutation
of logical element matrix. For the connection matrix no crossover
operator is employed.

It is important to notice that small changes in the logical element
matrix produce small changes on how the FPGA works. However,
small changes on the connection matrix may drastically affects the
way the FPG$A works. Moreover, a good logical element set for a
given connection matrix may be inadequate for another
connection matrix. These characteristics demand an efficient
evolution strategy, which is discussed in Section 4.3.

4.3 Strategies for the Evolution Process
Given a connection matrix, the evolution strategy employed first
evolves the logical element matrix. Only if this matrix is not
adequate, a new connection matrix is produced.

This strategy requires two stopping criteria. The first criterion
determines when a satisfactory solution is found. The second
criterion decides when the evolution of a logical element matrix
for a given connection matrix should stop. In this case, the
evolution of a logical element matrix is restarted for a new
connection matrix.

As consequence, if a given connection matrix propagates all input
signals to all output signals, it will not be necessary to change it.
In this case, it is possible to reach the expected operation of the
FPGA by reconfiguring properly the logical elements matrix.

If it is possible to create a connection matrix that propagates all
input signals to all output signals, then we should first find this
matrix and then run the EA only for the logical element matrix.
This improves the performance of the proposed system, avoiding
unnecessary connection matrix changes.

However, it is not always possible to create connection that
propagates all input signals to all output signals. For example, if
the number of columns is much larger than the number of lines for
a FPGA, it is not possible to create such matrix. In this case, it
may be impossible to solve the target problem using this FPGA,
requiring a larger one.

5. TARGET PROBLEM AND FITNESS

EVALUATION

The focus of this work was to produce an efficient EA to
configure a FPGA. The implementation of the proposal on
hardware will performed in a future work. In order to validate the
proposed approach, we use a simulator. The simulation is a
simple, fast and easy procedure to debug and evaluate the
developing system.

The simulator was written in Java and the computational
efficiency of the simulator was considered secondary criterion for
its evaluation. The main objective was the investigation of how
the EA work with the problem of reconfiguration of FPGAs. Main
criterion to evaluate the system is the number of individual
evaluations.

 In order to obtain a target problem which was relatively easy to
simulate and evaluate solutions, we use one-max problem
formulation. First, we generate a random individual named target
individual. For all possible inputs (2n for n input terminals), all
possible outputs are generated for the target individual. The
fitness of an individual is calculated comparing its outputs with
the corresponding outputs of the target individual. The individual
score is increased by one for each bit that matches with the target
output. The target individual score is the maximum score and can
be calculated as:

nOutputnInput
∗2

where nInput is the number of input ports and nOutput is the
number of output ports.

The simulator works with a population of n individuals. At each
generation a recombination process generates n new individuals.
The recombination consists on the crossover of the logical
function matrix of two individuals (say father1 and father2) of the
population. These individuals (father1 and father2) are selected
using the roulette-wheel selection method.

From the resulting population of 2n individuals, n individuals are
selected using a steady stated strategy, i.e., one individual of the
old population is substituted by one individual of the new
population only if the new individual has a better fitness. Other
selecting strategies are possible; however, the reported results
were based on this strategy.

6. STATISTIC MEASURES OF THE EA

PERFORMANCE

This section presents statistics showing the performance of the
EA. The system was tested using different combination of the
following parameters: number of individuals on the population
(n), size of the FPGA (number of columns c and lines l), mutation
rate (for logical elements only), and convergence criterion.

For the first test, we used a population of 10 individuals (n = 10).
The mutation rate was set to 0. The EA executes until all
individuals reach the maximum score. Each individual is a FPGA
of eight lines and eight columns. Although this FPGA may look
small, it is complex enough for example for a robot navigation
problem where robots navigate through the environment using
binary distance sensor [8].

At each execution of the EA, the number of generations and
running time for convergence were measured. The data of 2000
executions were then divided into classes to drawn an
approximated graphic of the probability distribution of the
number of generation and running time for convergence of the
EA. The interval between the maximum and the minimum value
of the measured data was divided into subintervals (or classes) of
equal length and the number of values on each class was counted.
The relative frequency of each class was calculated as the number
of elements on this class divided by the number of total
executions (2000). This process was applied to both number of
generation and running time.

Figure 3 shows the approximated probability density for the
number of generations required to all individuals in the
population converge.

Number of Generations for Convergence

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35

0 15 30 45 60 75 90 10
5

12
0

13
5

Numeber of Generations

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 3: Graphic of the probability distribution of the

number of generations for convergence

Figure 4 shows the approximated probability density for the time
until the convergence of all individuals of the population.

Time to Convergence

0
0,05
0,1

0,15
0,2

0,25
0,3

0
67

5

13
50

20
25

27
00

33
75

40
50

47
25

54
00

60
75

Time (ms)

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4: Graphic of the probability distribution of the time

for convergence

As expected, the graphic for probability distribution for the
number of generations is very similar to the graphic probability
distribution for running time. This occurs since the running time
the EA requires to converge is proportional to the number of
generations. There are also other factors that influence the
convergence process; however, they are less important than the
number of generations.

Table 1 presents the main descriptive statistics involving running
time and number of generations for convergence.

Table 1: Descriptive statistics

 Number of

Generations

Time (ms)

Mean 18.572393 949

Mean Deviation 8.58767 421

Minimum 3 186

First Quartile 11 564

Median 15 767

Third Quartile 21 1036

Maximum 141 6960

Figure 5 is a box plot of number of generations for convergence
without outliers. Figure 6 shows a box plot including outliers.
Box Plots of running time for convergence are similar to those of
number of generations and thus were omitted.

0

5

10

15

20

25

30

Figure 5: Box Plot without Outliers

0

20

40

60

80

100

120

140

160

Figure 6: Box Plot including outliers

Notice that although the maximum value for the number of
generations is high, the third quartile is low. This means that, for
the majority of cases, the number of generations for convergence
is low. Figure 3 confirms this behavior. Cases with high number
of generations were rare and spread. This means that the system
has a good performance and convergence.

The running time required to the EA converge is also low. The
mean running time is lower than 1 second. This shows that we
could evolve the system right on the environment without
requiring high performance computers, since this process should
require few minutes in a FPGA.

6.1 Relationships between Parameters and

Performance
This section discusses how the parameters affect the system
performance and how the system behaves for more complex
problems.

First, we investigated the relationship between the number of
individuals in the population and the performance of the system.
We used again a FPGA of eight lines and eight columns and the
convergence of all individuals as stopping criterion. The
population size was set to 2, 5, 7, 8, 10, 15, 20, 50 and 100. For
each size 200 executions were performed.

0

20

40

60

80

100

120

2 5 7 8 10 15 20 50 75 100

Population Size

N
u

m
b

e
r

o
f

G
e
n

e
ra

ti
o

n
s

Figure 7: Relationship between population size and number of

generations for convergence

Figure 7 shows that the number of generations for convergence
depends on population size. For small population, the diversity of
the population is low, and lots of generations are required for
convergence. For medium size populations, there is already
enough diversity, so, few generations are required. For large
populations it is difficult to converge all individuals, and the
number of generations increases.

907 776 733 947 949 12491762

6334

9275

13320

0

2000

4000

6000

8000

10000

12000

14000

2 5 7 8 10 15 20 50 75 100

Population Size

T
im

e
 (

m
s
)

Figure 8: Relationship between population size and time for

convergence

Figure 8 shows that, although the number of generations for small
populations is high, the running time required is not so high.
Moreover, for large populations, that have low number of
generations for convergence, the corresponding running is very
high. Figure 9 helps to explain this behaviour.

0

100

200

300

400

500

600

2 5 7 8 10 15 20 50 75 100

Population Size

T
im

e
 t

o
 P

ro
c
e
s
s
 o

n
e

G
e
n

e
ra

ti
o

n
 (

m
s
)

 Figure 9: Relationship between time to process on generation

and population size

As we can see on Figure 9, the larger the population size, the
larger is the running time required by the EA to process one
generation. Although large populations require fewer generations
to converge, each generation requires higher running time in order
to be processed.

For Figures 10 and 11, the stopping criterion was the convergence
of one individual. As in Figure 7 for small populations, the
number of generations is large. As the population size increases,
the number of generations decreases. In contrast with Figure 7,
the number of generations for convergence does not increase. This
occurs since the convergence of all individuals is not required.

3

23

43

63

83

103

123

2 5 7 10 15 20 50 99

Population Size

N
u

m
b

e
r

o
f

G
e
n

e
ra

ti
o

n
s

Figure 10: Relationship between the population size and the

number of generations for convergence of one individual.

1042

726

584
522

464 430
526

757

0

200

400

600

800

1000

1200

2 5 7 10 15 20 50 99

Population Size

T
im

e
 (

m
s
)

Figure 11: Relationship between the population size and the

time for convergence of one individual.

Figure 12 shows the influence of mutation operator over the EA
performance. The relationship between mutation rate and EA
performance in the proposed system is not clear.

More accurate statistic investigation of such effects should be
carried out.

0

10

20

30

0,
5

2,
5

7,
5 15 25 50 99

Mutation Rate

N
u

m
b

e
r

o
f

G
e
n

e
ra

ti
o

n
s

Mean for Mutation Rate 0

Number of Generations Mean

Figure 12: Effect of mutation rate.

7. FINAL CONSIDERATIONS
The development of an intelligent system capable of solving real
problems without needing general-purpose processors and with
self-adapting capabilities for problem requirement changes is a
computational difficult problem. This work presents a method to
create a system with these characteristics using EA and FPGA.

The proposed system showed satisfactory results for small
FPGAs. For larger systems, the complexity of configuring a
FPGA increases and more efficient approaches should be
investigated.

In order to use more efficient data structures and operators, larger
processing capabilities are required. The available processors for
embedded system are in general not adequate to work with
complex structures. Hardware modules to implement complex
operators or store large data structures require a large amount of
logical elements, increasing cost and size of the final system.

Definition of the most adequate FPGA size for a problem is also
complex. Large FPGAs are capable of solving hard problems.
However, their configuration is more difficult to be achieved by
the EA. On the other hand, the configuration of small FPGAs is
easier, although these FPGAs can only be applied to relatively
simple problems.

The obtained results show that the proposed approach can
produce a system that reaches the requirements of the test
problem. Additional aspects of the proposal could be investigated
in future works in order to obtain an improved system.

8. ACKNOWLEDGMENTS
This research was financed by FAPESP (Process N. 04/10394-7),
a foundation of the state of Sao Paulo, Brazil

9. REFERENCES
[1] Altera, Altera Data Book, Altera, 2003.

[2] Brown, S.; Vranesic, Z. Fundamentals of Digital Logic with

VHDL Design, McGraw Hill, 2000

[3] Coello C. A. C., Van Veldhuizen D. A., Lamont G. B.
Evolutionary Algorithms for Solving Multi-Objective Problems,

Kluwer Academic Publishers; ISBN: 0306467623, May 2002

[4] Deb, K. Multi-Objective Optimization Using Evolutionary

Algorithms, John Wiley & Sons, 2001

[5] Delbem, A. C. B., et al. A Forest Encoding for Evolutionary

Algorithms Applied to Desing Problems. Genetic and
Evolutionary Computation Conference 2003, Lecture Notes in

Computer Science, Springer-Verlag Heidelberg, vol. 2723, p.
634-635, 2003.

[6] Gen, M., Cheng, R., Genetic Algorithms and Engineering

Design, Ashikaga Institute of Technology, Japan, 1997.

[7] Gen, M., Cheng, R. Oren, S. S., Network design techniques

using adapted genetic algorithms. Advances in Engineering
Software, 2000.

[8] Floreano, D. and Mondada, F., Evolution of Homing

Navigation in a Real Mobile Robot. In IEEE Transactions on
Systems, Man, and Cybernetics -
Part B: Cybernetics, v. 26, n. 3, pp. 396-407, 1996.

[9] Goldberg, D. E Genetic Algorithms for search, Optimization,

and Machine Learning, MA: Addison-Wesley, 1989.

 [10] Goldberg, D. E. e Déb, K. Foundations of Genetic

Algorithms 1 FOGA-1, pp 69-93, 1991.

[11] Holland, J. H. Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: MIT press, 1975.

[12] Michalewicz. Z. Genetic Algorithms + Data Structures =

Evolution Programs, Springer, 1998

[13] Ridley, M, Evolution. Blackwell Science INC, 1996.

[14] Tate, D.M. & Smith A.E. Expected Allele Coverage and the

Role of Mutation in Genetic Algorithms. Proceeding of the Fifth
International Conference on Genetic Algorithms, S. Forrest (Ed.),
2003.

[15] Xilinx, Xilinx Data Book, Xilinx 2003.

