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ABSTRACT  
Hardware based systems shows better performance for embedded 
applications than those based on software. Software based systems 
also need a generic purpose processor, which is not adequate for 
several problems. Hardware systems, on the other hand, are too 
inflexible. Many hardware solutions cannot be updated. Even 
when this process is possible, it requires specific knowledge and 
tools. 

The proposed system aims at investigating a solution for these 
drawbacks involving hardware systems. The proposal is based on 
an Evolutionary Algorithm to reconfigure Filed Programmable 
Gate Arrays.   

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming - 
Program synthesis. 

General Terms 

Algorithms 

Keywords 

Evolvable Hardware, Filed Programmable Gate Arrays, 
Evolutionary Algorithms, Embedded Systems.  

1. INTRODUCTION 
This work proposes the use of Evolutionary Algorithms and Field 
Programmable Gate Arrays to produce an intelligent hardware 
system with adaptive capabilities. 

This system could be used for real embedded applications, in 
fields where few systems can achieve the required performance. 
Several problems cannot be efficiently solved using generic 
purpose processors as, for example, embedded systems.  For these 
problems, dedicated hardware solutions are in general employed. 
On the other hand, these hardware solutions are too inflexible and 

may become obsolete with small changes on problem 
requirements. If these requirements are expected to change often, 
reconfigurable systems have been the usual solution. 

However, reconfigurable systems are in general difficult and 
expansive to be built. In order to overcome this drawback, we 
propose a self-reconfigurable approach, based on Evolutionary 
Algorithms. This approach can reconfigure a FPGA until it 
becomes a dedicated system for the target problem. Moreover, this 
process never finishes since the system continues to evolve and 
adapt to the problem when its requirements change.  

2. EVOLUTIONARY ALGORTHMS 
 

Evolutionary Algorithms (EAs) have been largely employed for 
complex design problems [5, 6, 7], combinatorial optimization [9, 
12] and multi-objective problems [3, 4, 9]. Moreover EAs are 
plausible solution strategies for problems requiring adaptive 
capabilities. In this way, we choose an evolutionary approach to 
guide the FPGA reconfiguration.  

An EA has typically the following characteristics. A set (named 
population) of solutions (named individuals) is generated at 
random. At each iteration, or generation, evolutionary operators 
are applied to the individuals modifying them and generating new 
individuals. These individuals are then selected according to a 
selection strategy and a level of adequacy for the target problem. 
This level is named fitness. The selected individuals compose a 
new population. After several generations, the EA produce a 
population with individuals that should correspond to adequate 
solutions. Several relevant references about EAs are available in 
the literature [3, 4, 9, 10, 11, 12, 14].   

3. FIELD PROGRAMMABLE GATE 

ARRAYS 
For problems whose requirements are expected to change often, 
reconfigurable systems have been the usual solution. If the EA is 
the intelligence of the proposed system, the FPGA is its physical 
component. It holds the IO interfaces, stores the system logic and 
executes the processing.  

A FPGA is a hardware system designed to hold another hardware 
system. It is composed by a set of logical blocks or elements and a 
set of connections among them. In an ideal architecture, there 
would be one connection between each pair of elements and one 

 

 



connection between each element and each IO port. This 
architecture however is not necessary for most real problems and 
is too expansive and complex to implement. Real FPGA uses only 
a subset of this complete set of connections. 

The FPGA works as follow. The input ports have the function of 
reading external signals from the environment. These signals are 
propagated through the connections and logical elements until 
they reach an output port. During this route, the logical elements 
modify the signals according to a FPGA configuration. Once the 
signals are stabilized in the output ports, they are the output of the 
system. Introductory references about FPGA architectures can be 
found in [1, 2, 15]. 

4. FPGA AND EA INTEGRATION 
The architecture of the FPGA is very important since it defines the 
complexity of the problems the FPGA can be used to solve. The 
architecture also has large influence on the EA efficiency to 
reconfigure the FPGA.  

If the architecture is too complex, the FPGA can be employed for 
a wide range of problems. On the other hand, complex 
architectures can reduce the EA performance. It is important to 
define architectures that both give the system enough power to 
solve relatively complex problems and also allow an efficient EA 
for FPGA reconfiguration.  

In this way, the first step to build the proposed system should be 
the definition of the FPGA architecture. The second step is the 
definition of the data structure (named chromosome in EAs) to 
computationally represent the architecture. From the chromosome, 
evolutionary operators are elaborated. Afterward, Fitness function 
and selection method are determined according to the target 
problem characteristics. 

4.1 Architecture of FPGA 
The FPGA architecture plays an important role for the proposed 
system, both determining the FPGA capability of solving 
problems and the EA performance. This section describes the 
employed architecture. 

The proposed architecture organizes the FPGA as a logical 
element matrix. Each logical element receives n input signals and 
produces one output signal. In FPGAs, a logical element is built 
as an array of 2n binary memory units. Each memory can store one 
single bit. One of these bits is selected using the input signals and 
multiplexers. Figure 1 shows an architecture example, where S1, 
S2 and S3 are the received signals and is the produced output. 

 

Figure 1: Architecture of a logical element 

Each element in the matrix has two indexes indicating its line and 
column in the architecture. Given a block in line l, each input 
terminal of this block can be connected to the output terminal of 
any block in line l-1. Figure 2 shows the proposed architecture. 

 

Figure 2: Architecture of The FPGA 

The elements in the first line have their input terminals connect to 
the FPGA input ports. They are to transmit signals from 
environment through the FPGA. The output terminals of the 
elements in the last line are also the output ports of the FPGA. 
Then, a FPGA of c columns will also have c output terminals. 

4.2 Individual Representation and 

Evolutionary Operators 
Based on the architecture described in Section 4.1, individual’s 
computational representation (chromosome) was defined as 
follow:  Each logic element is represented as a string of 2n bits, 
where n is the number of input terminals in the element. Based on 
this string of bits, we define the evolutionary operators:  crossover 
and mutation. 



The crossover operator is applied to two individuals named 
father1 and father2, generating two new individuals named child1 

and child2. This operator generates a random mask of 2n bits used 
to alter the bit string producing a new one. For each position of 
the bit string, if the bit in the mask is 0, child1 keeps the 
corresponding bit value from father1 and child2 retains the 
corresponding bit value from father2. If the bit in the mask is 1, 
child1 keeps the bit value from father2 and child2 retains the bit 
value from father1. 

The mutation operation is applied to one individual, generating 
generates a new individual. It consists on the negation of a 
random bit from a bit string of the individual. 

The connections among elements are represented as an array of n 

integers. Each element in a line of the architecture has an array of 
integers indicating the connections of this element with the 
elements of previous line. The mutation operator alters element 
connections by randomly changing the value of one position in 
the array.  

A chromosome is structured as a pair composed by a logical 
element matrix and a connection matrix. The former can be 
changed by a crossover operator that consists of the 
recombination of each logical element from father1 with the 
logical element in the corresponding position from father2. This 
process generates two children. The mutation operator for the 
logical element matrix consists on randomly choosing a matrix 
position and altering the corresponding element. 

The connection matrix mutation process is similar to the mutation 
of logical element matrix. For the connection matrix no crossover 
operator is employed.  

It is important to notice that small changes in the logical element 
matrix produce small changes on how the FPGA works. However, 
small changes on the connection matrix may drastically affects the 
way the FPG$A works. Moreover, a good logical element set for a 
given connection matrix may be inadequate for another 
connection matrix. These characteristics demand an efficient 
evolution strategy, which is discussed in Section 4.3. 

4.3 Strategies for the Evolution Process 
Given a connection matrix, the evolution strategy employed first 
evolves the logical element matrix. Only if this matrix is not 
adequate, a new connection matrix is produced. 

This strategy requires two stopping criteria. The first criterion 
determines when a satisfactory solution is found. The second 
criterion decides when the evolution of a logical element matrix 
for a given connection matrix should stop. In this case, the 
evolution of a logical element matrix is restarted for a new 
connection matrix. 

As consequence, if a given connection matrix propagates all input 
signals to all output signals, it will not be necessary to change it. 
In this case, it is possible to reach the expected operation of the 
FPGA by reconfiguring properly the logical elements matrix.  

If it is possible to create a connection matrix that propagates all 
input signals to all output signals, then we should first find this 
matrix and then run the EA only for the logical element matrix. 
This improves the performance of the proposed system, avoiding 
unnecessary connection matrix changes.  

However, it is not always possible to create connection that 
propagates all input signals to all output signals. For example, if 
the number of columns is much larger than the number of lines for 
a FPGA, it is not possible to create such matrix. In this case, it 
may be impossible to solve the target problem using this FPGA, 
requiring a larger one. 

5. TARGET PROBLEM AND FITNESS 

EVALUATION  

The focus of this work was to produce an efficient EA to 
configure a FPGA. The implementation of the proposal on 
hardware will performed in a future work. In order to validate the 
proposed approach, we use a simulator. The simulation is a 
simple, fast and easy procedure to debug and evaluate the 
developing system. 

The simulator was written in Java and the computational 
efficiency of the simulator was considered secondary criterion for 
its evaluation. The main objective was the investigation of how 
the EA work with the problem of reconfiguration of FPGAs. Main 
criterion to evaluate the system is the number of individual 
evaluations.  

 In order to obtain a target problem which was relatively easy to 
simulate and evaluate solutions, we use one-max problem 
formulation. First, we generate a random individual named target 
individual. For all possible inputs (2n for n input terminals), all 
possible outputs are generated for the target individual.  The 
fitness of an individual is calculated comparing its outputs with 
the corresponding outputs of the target individual. The individual 
score is increased by one for each bit that matches with the target 
output. The target individual score is the maximum score and can 
be calculated as: 

nOutputnInput
∗2  

where nInput is the number of input ports and nOutput is the 
number of output ports. 

The simulator works with a population of n individuals. At each 
generation a recombination process generates n new individuals. 
The recombination consists on the crossover of the logical 
function matrix of two individuals (say father1 and father2) of the 
population. These individuals (father1 and father2) are selected 
using the roulette-wheel selection method.  

From the resulting population of 2n individuals, n individuals are 
selected using a steady stated strategy, i.e., one individual of the 
old population is substituted by one individual of the new 
population only if the new individual has a better fitness. Other 
selecting strategies are possible; however, the reported results 
were based on this strategy. 

  

6. STATISTIC MEASURES OF THE EA 

PERFORMANCE 

This section presents statistics showing the performance of the 
EA. The system was tested using different combination of the 
following parameters: number of individuals on the population 
(n), size of the FPGA (number of columns c and lines l), mutation 
rate (for logical elements only), and convergence criterion.  



For the first test, we used a population of 10 individuals (n = 10). 
The mutation rate was set to 0. The EA executes until all 
individuals reach the maximum score. Each individual is a FPGA 
of eight lines and eight columns. Although this FPGA may look 
small, it is complex enough for example for a robot navigation 
problem where robots navigate through the environment using 
binary distance sensor [8]. 

At each execution of the EA, the number of generations and 
running time for convergence were measured. The data of 2000 
executions were then divided into classes to drawn an 
approximated graphic of the probability distribution of the 
number of generation and running time for convergence of the 
EA. The interval between the maximum and the minimum value 
of the measured data was divided into subintervals (or classes) of 
equal length and the number of values on each class was counted. 
The relative frequency of each class was calculated as the number 
of elements on this class divided by the number of total 
executions (2000). This process was applied to both number of 
generation and running time.  

Figure 3 shows the approximated probability density for the 
number of generations required to all individuals in the 
population converge. 
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Figure 3: Graphic of the probability distribution of the 

number of generations for convergence 

Figure 4 shows the approximated probability density for the time 
until the convergence of all individuals of the population. 
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Figure 4: Graphic of the probability distribution of the time 

for convergence 

 

As expected, the graphic for probability distribution for the 
number of generations is very similar to the graphic probability 
distribution for running time. This occurs since the running time 
the EA requires to converge is proportional to the number of 
generations. There are also other factors that influence the 
convergence process; however, they are less important than the 
number of generations.  

Table 1 presents the main descriptive statistics involving running 
time and number of generations for convergence. 

Table 1: Descriptive statistics 

 Number of 

Generations 

Time (ms) 

Mean 18.572393 949 

Mean Deviation 8.58767 421 

Minimum 3 186 

First Quartile 11 564 

Median 15 767 

Third Quartile 21 1036 

Maximum 141 6960 

 

Figure 5 is a box plot of number of generations for convergence 
without outliers. Figure 6 shows a box plot including outliers. 
Box Plots of running time for convergence are similar to those of 
number of generations and thus were omitted.  



0

5

10

15

20

25

30

 

Figure 5: Box Plot without Outliers 
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Figure 6: Box Plot including outliers 

Notice that although the maximum value for the number of 
generations is high, the third quartile is low. This means that, for 
the majority of cases, the number of generations for convergence 
is low. Figure 3 confirms this behavior. Cases with high number 
of generations were rare and spread. This means that the system 
has a good performance and convergence. 

The running time required to the EA converge is also low. The 
mean running time is lower than 1 second. This shows that we 
could evolve the system right on the environment without 
requiring high performance computers, since this process should 
require few minutes in a FPGA. 

6.1 Relationships between Parameters and 

Performance 
This section discusses how the parameters affect the system 
performance and how the system behaves for more complex 
problems. 

First, we investigated the relationship between the number of 
individuals in the population and the performance of the system. 
We used again a FPGA of eight lines and eight columns and the 
convergence of all individuals as stopping criterion. The 
population size was set to 2, 5, 7, 8, 10, 15, 20, 50 and 100. For 
each size 200 executions were performed. 
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Figure 7: Relationship between population size and number of 

generations for convergence 

Figure 7 shows that the number of generations for convergence 
depends on population size. For small population, the diversity of 
the population is low, and lots of generations are required for 
convergence. For medium size populations, there is already 
enough diversity, so, few generations are required. For large 
populations it is difficult to converge all individuals, and the 
number of generations increases. 
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Figure 8: Relationship between population size and time for 

convergence 

Figure 8 shows that, although the number of generations for small 
populations is high, the running time required is not so high. 
Moreover, for large populations, that have low number of 
generations for convergence, the corresponding running is very 
high. Figure 9 helps to explain this behaviour. 
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 Figure 9: Relationship between time to process on generation 

and population size 



As we can see on Figure 9, the larger the population size, the 
larger is the running time required by the EA to process one 
generation. Although large populations require fewer generations 
to converge, each generation requires higher running time in order 
to be processed.  

For Figures 10 and 11, the stopping criterion was the convergence 
of one individual. As in Figure 7 for small populations, the 
number of generations is large. As the population size increases, 
the number of generations decreases. In contrast with Figure 7, 
the number of generations for convergence does not increase. This 
occurs since the convergence of all individuals is not required. 
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Figure 10: Relationship between the population size and the 

number of generations for convergence of one individual. 
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Figure 11: Relationship between the population size and the 

time for convergence of one individual. 

Figure 12 shows the influence of mutation operator over the EA 
performance. The relationship between mutation rate and EA 
performance in the proposed system is not clear.  

More accurate statistic investigation of such effects should be 
carried out. 
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Figure 12: Effect of mutation rate. 

7.  FINAL CONSIDERATIONS   
The development of an intelligent system capable of solving real 
problems without needing general-purpose processors and with 
self-adapting capabilities for problem requirement changes is a 
computational difficult problem. This work presents a method to 
create a system with these characteristics using EA and FPGA. 

The proposed system showed satisfactory results for small 
FPGAs. For larger systems, the complexity of configuring a 
FPGA increases and more efficient approaches should be 
investigated.  

In order to use more efficient data structures and operators, larger 
processing capabilities are required. The available processors for 
embedded system are in general not adequate to work with 
complex structures. Hardware modules to implement complex 
operators or store large data structures require a large amount of 
logical elements, increasing cost and size of the final system.  

Definition of the most adequate FPGA size for a problem is also 
complex. Large FPGAs are capable of solving hard problems. 
However, their configuration is more difficult to be achieved by 
the EA. On the other hand, the configuration of small FPGAs is 
easier, although these FPGAs can only be applied to relatively 
simple problems. 

The obtained results show that the proposed approach can 
produce a system that reaches the requirements of the test 
problem. Additional aspects of the proposal could be investigated 
in future works in order to obtain an improved system.  
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