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ABSTRACT 
There are estimated to be on the order of 106 single nucleotide 
polymorphisms (SNPs) existing as standing variation in the 
human genome.  Certain combinations of these SNPs can interact 
in complex ways to predispose individuals for a variety of 
common diseases, even though individual SNPs may have no ill 
effects.  Detecting these epistatic combinations is a 
computationally daunting task.  Trying to use individual or 
growing subsets of SNPs as building blocks for detection of larger 
combinations of purely epistatic SNPs (e.g., via genetic 
algorithms or genetic programming) is no better than random 
search, since there is no predictive power in subsets of the correct 
set of epistatically interacting SNPs.  Here, we explore the 
potential for hill-climbing from the other direction; that is, from 
large sets of candidate SNPs to smaller ones.  This approach was 
inspired by Kauffman’s “random chemistry” approach to 
detecting small autocatalytic sets of molecules from within large 
sets.  Although the algorithm is conceptually straightforward, its 
success hinges upon the creation of a fitness function able to 
discriminate large sets that contain subsets of interacting SNPs 
from those that don’t.  Here, we employ an approximate and noisy 
fitness function based on the ReliefF data mining algorithm. 
Preliminary results from synthetic data sets show that the 
resulting algorithm can detect epistatic pairs from up to 1000 
candidate SNPs in O(log N) fitness evaluations, although success 
rate degrades as heritability declines. The results presented herein 
are offered as proof of concept for the random chemistry 
approach, but research continues into seeking a more accurate 
fitness approximator for large sets that will enable us to extend 
the approach to larger data sets and to lower heritabilities.   

Categories and Subject Descriptors 
I.2.8 [Computing Methodologies]: Problem Solving, Control 
Methods, and Search 

General Terms 
Algorithms, Design. 

Keywords 
Population based optimization, epistasis, SNPs, data mining. 

1. INTRODUCTION 
There are estimated to be on the order of 106 single nucleotide 
polymorphisms (SNPs) existing as standing variation in the 
human genome, and current genetic studies are identifying many 
of these.  While the majority of these SNPs have no physiological 
effect, certain combinations of these SNPs can interact in 
complex ways to predispose individuals for a variety of common 
diseases, even though the individual SNPs may have no ill effects.  
Increasingly, researchers are seeking new methods that will 
enable us to capitalize on the rapidly growing databases of human 
variability by conducting genome-wide association studies that 
could revolutionize detection, prevention, and treatment of many 
common complex diseases [1],[2].  However, detecting which 
handfuls of SNPs (from among hundreds, thousands, or even 
hundreds of thousands of candidate SNPs) exhibit nonlinear 
epistatic interactions is a computationally daunting optimization 
task [3].  Solution of this important problem is further exacerbated 
by low disease heritability, small sample sizes, little or no 
marginal effects for individual SNPs, and unknown a priori 
information regarding how many, if any, SNPs interact 
epistatically.  An analytical retooling is needed to deal with these 
challenges [4] and some new methods, such as multifactor 
dimensionality reduction or MDR [5]-[7], show promise [8].  
Despite some progress in this area, the optimal search or wrapper 
method for implementing these methods for genome-wide genetic 
analysis is still an open question.  Exhaustive searches are not 
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computationally feasible, gradient-based algorithms are not 
suitable, and stochastic search algorithms will require careful 
design to fully embrace the difficult nature of the fitness 
landscape [9]-[10].   

In this work, we propose a new approach, inspired by Stuart 
Kauffman’s “random chemistry” [12], that tackles the problem by 
hill-climbing from larger to smaller sets of SNPs, rather than vice 
versa.  First, we discuss how to evaluate the predictive power of a 
set of SNPs for a particular disease, and briefly review why 
standard evolutionary algorithms are ill-suited to locating epistatic 
combinations of SNPs.  We then describe the proposed random 
chemistry approach, which necessitates the creation of a different 
type of fitness metric.  Preliminary tests using synthetic data sets 
with 0.4 and 0.1 heritabilities establish proof-of-concept for the 
method, and future directions are discussed. 

2. EVALUATING FITNESS 
How does one evaluate whether a small set of SNP loci interact to 
influence susceptibility to a given condition?  This is a non-trivial 
question, especially when heritability is low and epistatic 
interactions are such that different genotypes at the same loci 
exhibit different penetrance values for the same disease.  (Without 
loss of generality, we refer to the condition in question 
generically as the “disease”.) Here, we borrow an idea commonly 
employed in medical decision making; i.e., the receiver operating 
characteristic (ROC) curve [11], described below.  The 
“sensitivity” of a test is equivalent to the true positive fraction 
(TPF); that is, the fraction of test subjects which have the disease 
and yield a positive test result. On the other hand, the 
“specificity” of a test is simply 1 minus the false positive fraction 
(FPF), where the FPF is the fraction of test subjects that do not 
have the disease but still test “positive”.  An ROC curve is simply 
a plot showing the trade-off between sensitivity and specificity 
(typically plotted as 1-specificity) as we vary some cutoff 
criterion for when a test is considered “positive” (e.g., Figure 1).  
Ideally, a good test will have high sensitivity and high specificity, 

so will have an ROC curve that passes close to the upper left hand 
corner of the plot.  The area under the curve (AUC) is frequently 
used as a measure of the predictive power of a test.  A test with no 
predictive power will simply have a diagonal ROC curve, with 
AUC = 0.5.   

In the case of assessing the predictive power of a set of SNPs, we 
can create an ROC curve as follows.  First, we compute the 
“sample penetrance” pg for each possible diploid genotype g at 
the specified SNP loci; i.e., the proportion of subjects in the 
sample with genotype g that exhibit the disease.  The ROC curve 
can then be estimated by varying the cutoff of sample penetrance 
that is considered a “positive” test.  Since there are only a finite 
number of possible genotypes for a given set of loci, this is not a 
continuous curve, but rather is a set of discrete points.  Thus, it is 
not meaningful to try to calculate an AUC.  Instead, we use the 
maximum distance (MD) above the diagonal as a measure of the 
predictive power of a set of SNPs.  The “sample prevalence” P is 
the proportion of the sample that exhibits the disease.  The MD 
occurs at the point where the cutoff includes all genotypes whose 
sample penetrance is greater than or equal to the sample 
prevalence, as follows: 

, gMD TPF FPF g p P= − ∀ ≥    (2.1) 

We illustrate the ROC curve and the MD fitness metric with a 
synthetic data set that contains 1000 SNPS, each with two 
possible allele values, from 1600 individuals, half of whom have 
disease (so P=0.50).  Although none of the SNP loci are 
individually correlated with the disease, the alleles at two loci 
interact epistatically to affect susceptibility to the disease with 0.4 
heritability.  Suppose the two epistatically interacting SNP loci 
are locus A, with 3 possible diploid genotypes AA, Aa, and aa, 
and locus B, with genotypes BB, Bb, and bb.  Then there are 32 = 
9 possible genotype combinations.  In this example, the calculated 
sample penetrance for these 9 genotypes is as shown inside the 
double lines in Table 1, with the boldface values representing 
those genotypes with sample penetrance ≥ sample prevalence.  
Note that sample penetrance values for the A and B loci taken 
individually (right column and bottom row, respectively) are all 
close to the sample prevalence of 0.5 (bottom right value), 
indicating that there are no marginal effects.   
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Figure 1. ROC curve for the data shown in Table 1, with
the maximum distance (MD) fitness metric shown for the
two interacting A and B loci. Note that the specificity axis
is shown in decreasing order. 
Table 1. Sample penetrance pg for all 9 genotypes of two 
loci, A and B, that interact epistatically to influence 

susceptibility to a disease with heritability 0.4. 

pg BB Bb bb A alone 

AA 0.09 0.72 0.91 0.52 

Aa 0.89 0.25 0.31 0.48 

aa 0.12 0.88 0.16 0.53 

B alone 0.48 0.52 0.48 P=0.50 
e ROC curve for this data is shown in Figure 1, showing how 
 points on the curve correspond to the values in the table, and 

picting the MD fitness metric for the epistatic loci.  Also 
own, for comparison, are the ROC curves for the A and B loci 
ne, which are not significantly above the main diagonal and 



hence indicate that these loci have no predictive power when 
viewed in isolation.  Assuming that there are at most two allelic 
variants at a given locus (which is typically the case), then there 
are 3 possible diploid genotypes per locus (the two homozygotes 
and the heterozygote), so there are 3L possible genotype 
combinations at L loci for which the sample penetrance must be 
computed.  Thus, computing the MD fitness metric for L loci has 
time complexity θ(3L), which is only practical for small L. 

If individual loci have no significant marginal effects (as in the 
synthetic data sets used herein), then it is not possible to hill-
climb from smaller sets of SNPs with no detectable genetic effects 
to larger sets of SNPs that exhibit epistatic interactions.  Thus, 
evolutionary algorithms such as genetic algorithms or genetic 
programming, that attempt to grow small, high fitness building 
blocks into complete solutions, will be no better than random 
search [9],[10].  To illustrate this point, Figure 2 shows a portion 
of this needle-in-a-haystack fitness landscape, for a variety of 
pairs of loci, only two of which interact. 

If hill-climbing from lower to higher order building blocks is not 
possible, then are we stuck with brute force or random search?  In 
order to try all combinations of 2..Lmax out of N possible loci, 
brute force algorithms will require θ  fitness 

evaluations, each of which requires θ(3
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L) time to compute.  
Clearly, this becomes computationally prohibitive for large N 
and/or L.  In this work, we explore an alternative approach that 
attempts to hill climb from larger sets of SNPs to smaller sets of 
SNPs using a proposed algorithm we dub “random chemistry”, 
described in the following sections.  

3. RANDOM CHEMISTRY ALGORITHM 
Stuart Kauffman [12] outlined a simple procedure for detecting 
small autocatalytic sets of molecules from among large numbers 
of potential molecules.  The process he described, to search for L 
interacting molecules from N potential molecules, can be 
summarized as shown in Algorithm 1. 

Note that, if we grab a random 50% of the molecules, the 
probability that we got any given molecule is 0.5.  Thus, the 

probability that we got lucky and got all L of the desired 
molecules is 0.5L, and hence we would expect that, on average, 
one out of every 2L tubes will contain all of the L molecules that 
we seek.  By using σ⋅2L tubes, where σ is a safety margin to help 
ensure that at least one tube has all L molecules (Kauffman 
suggested σ=2), we increase the probability that at least one tube 
will be “positive”.  Note that the algorithm will require only θ(log 
N) screening tests (i.e., fitness evaluations) to pick out the L 
interacting molecules. 

Figure 2. A portion of the needle-in-a-haystack fitness
landscape evaluating the predictive power of all possible
pairs in SNPs; only the correct pair has high MD fitness, 
and thus hill-climbing towards the correct pair is not
possible. 

Algorithm 1: “Random Chemistry”  
1) Put a random 50% of the “parent set” of molecules into 

each of σ⋅2L test tubes (the “child” sets). 
2) Determine which of the child sets are “positive” (i.e., 

contain the autocatalytic set of L molecules) by 
screening each of the tubes for some resulting product of 
the catalytic reaction.   

3) Save only those molecules that are in one of the 
“positive” tubes (i.e., replace the parent set with a 
positive child set). 

4) Repeat from Step 1, until the number of molecules has 
been reduced to L. 

Can we adopt a “random chemistry” approach to detecting small 
sets of L epistatically interacting SNPs from among N candidate 
SNPs?  The answer depends on whether or not we can effectively 
do the “screening” process in Step 2.  In other words, can we 
construct a fitness function that yields higher fitness for large sets 
of SNPs that contain the correct subset of L SNPs from those that 
don’t? Furthermore, if we do not know exactly the degree of 
epistasis L, then can our fitness function yield higher fitness for 
smaller sets of SNPs that contain the correct subset of L SNPs 
than for larger sets that contain the correct subset of L SNPs, so 
that we can simultaneously identify both the number and location 
of epistatically interacting SNPs? These questions are explored in 
the next section. 

4. FITNESS REVISTED 
In Section 2 we described the MD fitness metric.  Is it sufficient 
for use in a random chemistry algorithm?  Unfortunately, the 
answer is “no”.  Although MD is higher for sets containing the 
correct subsets of epistatically interacting SNPs, it continues to 
increase as additional “extra” SNPs are considered. This is 
illustrated in Figure 3a for the same synthetic 1600 member data 
set described in Section 2, for random sets containing both correct 
loci (×’s) and random sets containing 0 or 1 of the correct loci 
(dots).  The reason for this is two-fold; first, adding in additional 
loci does not lower the predictive power of epistatically 
interacting loci also contained in the set, and second, as the 
number of loci L in a set increases, the number of genotypes 
increases as 3L.  As the number of possible genotypes approaches 
the number of samples in the data set, we are simply over-fitting 
the data and so the MD fitness metric continues to increase.  In 
order to compensate for overfitting, we incorporate cross-
validation into the fitness metric.  Specifically, we divide the 
sample in two, and compute sample penetrance tables for each 
half of the data set.  For each of these two tables, we determine 
which of the 3L genotypes a) were represented in both tables, b) 
had sample penentrance < the sample prevalence (“negatives”),  



c) had sample penentrance ≥ the sample prevalence (“positives”).  
We then define a cross-correlation value C (Figure 3b) to be the 
proportion of genotypes that “agreed” between the two tables 
(i.e., were either both positively or both negatively associated 
with the disease), and we also define a metric of support S (Figure 
3c) as the proportion of the 3L genotypes that had representatives 
in both tables. We define m to be the smallest MD above the ROC 
diagonal that is considered to be more predictive than random (we 
used m = 0.1).  If MD > m, then we repeat the cross-validation test 
for some number of repetitions (we used 20).  More sophisticated 
types of cross-validation could certainly be employed, if 
necessary.  A new fitness function F is empirically defined from 
the averaged results, as follows: 

( ) 0.25
F MD m C S= − ⋅ ⋅     (2.2) 

The support S is raised to the 0.25 power to minimize the effects 
of the strong non-linearity in this metric (Figure 3c).  While none 
of MD, C, or S alone satisfy the criteria for our fitness function 
(Figure 3a,b,c), the combined fitness metric F does, at least for 
relatively small L (Figure 3d), enabling us to distinguish larger 
sets of SNPs that contain the correct loci from those that don’t, 
and enabling us to hill-climb from larger sets to smaller sets that 
contain fewer “extra” loci.   

Unfortunately, the fitness function defined in equation (2.2) is 
only useful on these data sets for L ≤ 8, since a) with sample size 
of 1600, the support is already close to zero for L = 8 (Figure 3c), 
and b) because the fitness computation is θ(3L) equation (2.2) 
becomes too slow to be practical for L > 8.  However, for the 
random chemistry algorithm to be useful we will need to evaluate 
the fitness of sets of SNPs in the hundreds or thousands.  This 
remains a nontrivial problem and we are continuing to seek better 
ways to estimate the fitness of large sets of SNPs.  However, to 

date, the most effective fitness approximator we have achieved is 
based on the ReliefF data mining algorithm [13], which has 
previously been shown to have promise for the SNP problem [14].  
The ReliefF algorithm attempts to estimate importance of weights 
of each locus in discriminating between two classes (e.g., healthy 
and diseased) as shown in Algorithm 2. 

 
W

F

u
th
s
n

Figure 3. a) Maximum distance metric, b) cross validation
metric, c) support metric, and d) fitness metric per
equation (2.2) for the synthetic data set described in
Section 2. Random subsets of SNPs containing both
correct loci are shown with ×’s and random sets
containing 0 or 1 of the correct loci are shown with dots.   
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Algorithm 2: “ReliefF” 

Weights Wj=0, ∀ j∈{1..N} loci  
For i = 1 to k (k = # random samples) 
   Select an individual Ri 

   Hits = nn nearest neighbors from same class as Ri 

   Misses =  nn nearest neighbors from other class as Ri 

   For j = 1 to N (for all loci) 
      Hj = prop. of the nn Hitsj that matched value of Rij  
      Mj = prop. of the nn Missesj that matched value of Rij  
      Wj = Wj + (Hj – Mj)/k (estimate importance of each locus)
   End for 
End for
e define a “rough” fitness function Fr as: 

mean of top 25% of Weights r W=   (2.3) 

sing the weights W as calculated by ReliefF (Algorithm 2).  For 
e results reported here, we used k = 1600 (where we used each 

ample individual exactly once) and nn = 10 (i.e., 10 nearest 
eighbors).  The nearest neighbors are determined by maximizing 

igure 4. The rough fitness approximator Fr from 
quation (2.3) as applied to synthetic data with heritability 
) 0.4 and b) 0.1.  The top lines are for random sets that 
ontain the correct 2 loci and the bottom lines are for 
andom sets without the correct loci.  Each data point is 
he mean of 5 random sets, with error bars indicating ±
ne standard deviation. 



 
Figure 6. Percent of the time that 2 epistatically 
interacting SNPs, with disease heritability 0.4, were 
correctly isolated from initial sets of varying sizes.  Each 
bar represents 5 trials on each of 5 different data sets. 
For each initial set size, at least one of the 5 trials on a 
given data set was able to find the correct 2 SNPs.  Note 
that the x-axis is not uniformly spaced. 

the number of loci with the same genotype as the sample Ri.  For 
large numbers of loci N this fitness approximator gets 
increasingly noisy, because without knowing which loci are the 
most important SNPs, the ReliefF algorithm may pick the 
“wrong” nearest neighbors (i.e., based on matching genotypes of 
irrelevant loci).  Nonetheless, this fitness approximator works 
fairly well up to a few hundred SNPs, although it becomes noisier 
as heritability decreases (Figure 4). 

5. COMPENSATING FOR NOISE 
Since Fr is a noisy approximate fitness function, we modified 
Step 3 of the random chemistry algorithm to save, not just the 
single fittest child set, but the top t fittest children sets, where 

4log pt =  N   and Np is the number of SNPs in the parent set of 

the current iteration.  These sets were then merged by saving all 
of the SNPs in the fittest set along with all other SNPs that 
occurred in at least two of the remaining top sets.  Thus, set sizes 
are no longer reduced by exactly ½ during each iteration, but 
were only reduced by approximately ½ to ¼ (Figure 5).  We 
continued iterating the random chemistry algorithm until the set 
size was reduced to only 8 SNPS, after which we applied a brute 
force evaluation of all possible combinations of 2 through 8 
SNPs, using the more accurate fitness metric F from equation 
(2.2).  In practice, this requires on the order of log1.5N iterations 
(rather than log2N iterations, as in algorithm 1), due to the 
merging of sets. 

6. EXPERIMENTAL RESULTS 
We have performed preliminary testing of the algorithm using 
synthetic data generated as described in [15].  In each data set, 
there were 2 epistatically interacting SNPs with no marginal 
effects.  There were 1600 samples in each set with sample 
prevalence of 0.5, and major/minor alleles frequencies of 0.6/0.4, 
respectively, at each locus.  Some of the data sets had disease 
heritability of 0.4, and some had heritability of 0.1.  For all data 
sets, we created 12 child sets from the parent set, at step 1 of the 
random chemistry algorithm (Algorithm 1).  At total of 250 test 
runs were performed, as follows.  We ran 5 repetitions of 5 
different data sets with each of 200, 500, and 1000 SNPs, for a 

total of 75 test runs at 0.4 heritability.  In addition, we ran 5 
repetitions of 5 different data sets with each of 100, 150, 200, 
300, 400, 500, and 1000 SNPs, for a total of 175 test runs at 0.1 
heritability.  Since Fr is so much noisier for the 0.1 heritability 
data than at 0.4 heritability (Figure 4) we ran more tests at the 
lower heritability. 

Figure 7. Percent of the time that 2 epistatically
interacting SNPs, with disease heritability 0.1, were
correctly isolated from initial sets of varying sizes.  Each
bar represents 5 trials on each of 5 different data sets.
For initial set sizes up to 200, at least one of the 5 trials on
a given data set was able to find the correct 2 SNPs.  Note
that the x-axis is not uniformly spaced. 
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Figure 5. Decrease in SNP set sizes during a
representative run of the random chemistry algorithm
compensated for noise, in which 2 epistatically interacting
SNPs were correctly detected from 1000 SNP loci, using
the data set described in Section 2. 

For the 0.4 heritability data, the percent of trials that were able to 
correctly isolate the 2 epistatically interacting SNPs declined with 
the initial set size (Figure 6) but, even with 1000 initial SNPs, at 
least one of the the five trials on a given data set was able to 
correctly identify the 2 SNPs.  Thus, doing repeated trials can 
further compensate for noise in the fitness function.  For the 0.1 
heritability data, the percent of trials that were able to correctly 
isolate the 2 epistatically interacting SNPs dropped more rapidly 
with increasing initial set size (Figure 7).  For the lower 



heritability data, at least one of the five trials on a given data set 
was able to correctly identify the 2 SNPs from initial set sizes up 
to 200 SNPs, but for larger set sizes there were some data sets for 
which none of the 5 trials found the correct 2 SNPs.  Overall, 
these results are better than we would have predicted, given the 
level of noise in the rough fitness approximator (Figure 4). 

7. SUMMARY AND FUTURE WORK 
Detecting small sets of epistatically interacting SNPs that can 
influence an individual’s susceptibility to disease is a difficult but 
important challenge facing bioinformaticists.  Since smaller 
subsets of purely epistatically interacting sets of SNPs have no 
effect, it is not possible to hill-climb from smaller to larger 
building blocks in constructing these SNP sets.  In this work we 
have presented an alternative population based approach dubbed 
the “random chemistry” algorithm, which enables us to hill-climb 
from larger to smaller sets of SNPs in only O(log N) fitness 
evaluations, where N is the number of SNPs in the initial set.  
Furthermore, the algorithm is inherently parallelizeable.  The 
main challenge in implementing this algorithm is in finding a 
reliable way to approximate which large sets contain the correct 
SNPs and which don’t.  Herein we employ an approximate and 
noisy fitness function based on the ReliefF data mining algorithm.  
Although this fitness approximator is far from ideal, using it in 
combination with noise compensation techniques has enabled us 
to pick out 2 epistatically interacting SNP loci from up to 1000 
candidate loci, although not surprisingly the success rate declines 
with declining heritability. 

The results presented herein are offered as proof of concept for 
the random chemistry approach, but research continues into 
seeking a more accurate fitness approximator for large sets that 
will enable us to extend the approach to larger data sets and to 
lower heritabilities.  In particular, we are investigating the use of 
artificial neural networks or support vector machines as more 
accurate rough fitness approximators.  In real data sets, there may 
also be additional information which can be used to pre-filter the 
set of candidate SNPs, such as the presence of small marginal 
effects of individual loci, proximity of SNPs to coding or 
regulatory regions of genes suspected to be associated with the 
disease, etc.  These pre-filtering approaches can help to reduce 
initial set sizes down to a size that can be tackled through random 
chemistry.  We plan to apply the algorithm to actual SNP data 
sets in the coming months.  The random chemistry algorithm may 
also prove useful for related search problems in other domains, 
such as in microarray analysis. 

ACKNOWLEDGMENTS 
This work was supported, in part, by a pilot award and a graduate 
research assistantship, funded by DOE-FG02-00ER45828 
awarded by the US Department of Energy through its EPSCoR 
Program and by National Institutes of Health grants AI59694 and 
LM009012.  We thank Joshua Gilbert for his aid in creating the 
synthetic data sets. 

8. REFERENCES 
[1] Hirschhorn, J.N, and Daly, M.J. Genome-wide association 

studies for common diseases and complex traits. Nature 
Reviews Genetics 6, 95-108 (2005) 

[2] Wang, W.Y., Barratt, B.J., Clayton, D.G., Todd, J.A. 
Genome-wide association studies: theoretical and practical 
concerns.  Nat Rev Genet. 6(2):109-18 (2005) 

[3] Moore, J.H., Ritchie, M.D. The challenges of whole-genome 
approaches to common diseases. JAMA 291, 1642-1643 
(2002). 

[4] Thornton-Wells TA, Moore JH, Haines JL. Genetics, 
statistics and human disease: analytical retooling for 
complexity. Trends Genet., 20(12):640-7.  (2004) 

[5] Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, 
W.D., Parl, F.F., and Moore, J.H. Multifactor dimensionality 
reduction reveals high-order interactions among estrogen 
metabolism genes in sporadic breast cancer.  Amer. J. of 
Hum. Gen. 69, 138-147. (2001) 

[6] Moore, J.H. Computational analysis of gene-gene 
interactions in common human diseases using multifactor 
dimensionality reduction.  Expert. Rev. Mol. Diagn. 4, 795-
803 (2004). 

[7] Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, 
Barney N, White BC. A flexible computational framework 
for detecting, characterizing, and interpreting statistical 
patterns of epistasis in genetic studies of human disease 
susceptibility. J Theor Biol., in press.  (2006) 

[8] McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine 
learning for detecting gene-gene interactions.  Applied 
Bioinformatics, in press.  (2006) 

[9] White, B.C., Gilbert, J.C, Reif, D.M., Moore, J.H. A 
statistical comparison of grammatical evolution strategies in 
the domain of human genetics.  Proc. of the IEEE Congress 
on Evol. Computing, 676-682 (2005). 

[10] Moore, J.H. and White, B.C. Genome-wide genetic analysis 
using genetic programming: The critical need for expert 
knowledge. In Genetic Programming Theory and Practice 
IV, Springer, in press (2006). 

[11] Barrett, H.H, and Myers, K.J. Foundations of Image Science, 
John Wiley & Sons, Inc., NJ (2004). 

[12] Kauffman, S. At Home in the Universe: The Search for the 
Laws of Self-Organization and Complexity, Oxford Univ. 
Press, USA, 336 pp. (1996). 

[13] Robnik-Sikonja, M., and Konenenko, I.  Theoretical and 
empirical analysis of ReliefF and RReliefF.  Mach. 
Learning. 53, 23-69 (2003). 

[14] Moore, J.H. and White, B.C.. Tuning ReliefF for genome-
wide genetic analysis. Submitted. (2006) 

[15] Culverhouse, R., Suarez, B.K., Lin, J., and Reich, T. A 
perspective on epistasis: Limits of models displaying no 
main effect.  Am. J. Hum. Genet. 70, 461-471 (2002). 

 


	I.2.8 [Computing Methodologies]: Problem Solving, Control Methods, and Search
	INTRODUCTION
	EVALUATING FITNESS
	RANDOM CHEMISTRY ALGORITHM
	FITNESS REVISTED
	COMPENSATING FOR NOISE
	EXPERIMENTAL RESULTS
	SUMMARY AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

