
Constructional Selection, Methylation and Adaptable
Representation: Preliminary Findings

Susan Khor
Concordia University

1455 de Maisonneuve Blvd. West, Montreal,

Quebec H3G 1M8, CANADA
slc_khor@cse.concordia.ca

ABSTRACT
This paper investigates the adaptability of genotypes produced by
a modified genome growth algorithm (MGG) in a genetic
algorithm. MGG uses constructional selection, a genome growth
strategy modeled on the evolution of the biological genome [1].
Experiments did not favor the more costly MGG genotypes. This
paper also proposes a new type of mutation operator: meth, which
is loosely based on DNA methylation. Experiments suggest the
utility of ‘methylation’ to improve the adaptability of
representations and to build robust and adaptable digital
structures.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods and Search]:
Heuristic methods.

General Terms
Algorithms, Performance, Design

Keywords
genetic algorithm, representation, epistasis

1. INTRODUCTION
Adaptive plans were introduced by John Holland [2] as a means
to study adaptation in natural and artificial systems. These
adaptive plans subsequently became known as genetic algorithms
(GAs) [3, 4, 5]. The use of crossover and inversion genetic
operators, and of a population of solutions to enable parallel
global search distinguishes genetic algorithms from other meta-
heuristic search methods. While GAs have had much success in a
wide range of applications, theoretical and practical challenges
remain. One of these challenges is representation, or what the
search space should look like to a GA.

Representation is an important influence on the performance of
GAs. Rothlauf [6] reports that when specific representations
were used, some problems became easier for a GA to solve,

while other problems became more difficult. There are, to our
view, three facets to representation which are seldom made
explicit in GA literature: (i) encoding, (ii) structure and (iii)
directness. Encoding encompasses issues such as binary versus
integer or real, and binary versus Gray coding. The structure of a
representation may be designed to enable positional
independence of the parts of a solution [2, 7], or to designate
different parts of a solution to different tasks [8, 9]. A direct
solution is one that is plugged into the fitness function directly.
An indirect solution is transformed by at least one process which
itself may be evolved, and the outcome of the transformation is
evaluated by the fitness function of a GA. Examples of indirect
representation include grammatical evolution [10] and chemical
GA [11].

We deal with the structural aspect of representation in this paper.
Specifically, we suggest the utility of a mechanism modeled on
DNA methylation which is a form of mutation found in biological
genetic systems, to improve the adaptability (the ability to evolve
fitter variants) of representations in epistatic fitness landscapes.
We call this mechanism meth. The effectiveness of meth on
random genotypes is compared with the adaptability of
constructed genotypes which are genotypes selectively grown
using a variant of the method suggested by [1]. Results from our
experiments suggest that meth is effective at improving the
adaptability of genotypes with high or low epistasis levels.
Further, with meth, the average epistasis level of a population of
genotypes could increase without severely impacting the mean
population fitness. Thus genotypes could grow in diversity and
store potential alternative solutions without having to express
them. Evolution with meth also produced more robust genotypes.
These two factors suggest that meth, combined with other
techniques, would be useful for building complex, robust but
adaptable digital structures.

Paper organization: background material is provided in section 2
followed by a description of our modified genome growth
algorithm (MGG) in section 3. Section 4 presents results from
our experiments with MGG genotypes. Section 5 introduces the
meth mechanism and reports on experiments with meth. Section
6 concludes with a discussion on the current work and possible
extensions thereof.

2. BACKGROUND
Adaptive or fitness landscapes having epistasis are rugged with
many narrow false peaks (or troughs). Adaptation in epistatic
fitness landscapes is not easy because a slight change in a

Copyright is held by the author/owner(s).
GECCO’06, July 8–12, 2004, Seattle, WA, USA.
ACM 1-59593-186-4/06/0007.

solution may result in a drastic positive or negative change in the
fitness of the solution. This makes producing fitter offspring by
varying fit solutions found so far, which is essentially how a GA
conducts its search, a challenging task. The amplification or
reduction of effect is due to existing non-linear dependencies
between parts of the solution so that the effect of a gene depends
strongly upon one or more other genes. These dependencies may
not be avoided entirely if they are part of the problem. Besides
the potential of advanced search methods including GAs to solve
not linearly separable problems or at least nearly decomposable
problems [12], is part of their appeal. Nevertheless, given its
potential for detrimental effect on adaptability, it is preferable to
reduce epistasis in solutions where possible.

Holland recognized that epistasis complicates credit
apportionment and suggested the search for coadapted sets of
alleles which he generalized under the term schema [2]. Whereas
Holland was confident that linkage between coadapted alleles
could be preserved with the inversion operator [2], others made
explicit the effort to identify and preserve linkages within
building blocks. A building block is a short schema with above
average fitness. Kargupta and Park [13] provide a brief history of
linkage learning. Learning linkage to avoid destroying linkages
and hence preserve good building blocks does not preclude
conflict between building blocks [14]. An alternative route is to
avoid where possible, placing conflicting building blocks in a
solution in the first place, and reduce the epistasis level in
solutions. One way to accomplished this is by constructing the
representation one building block at a time as suggested by
Altenberg’s constructional selection strategy. Constructional
selection is modeled after the evolutionary process of the
biological genome [1]. This strategy expands a genome (a
solution) one gene at a time until the desired genome length N is
reached. A gene is added to the genome only if the addition of
the gene improves the fitness of the genome.

The constructional selection strategy is used in the genome
growth algorithm to produce constructed genotypes. If
constructional selection (steps 2, 3 and 4 below) is omitted, the
genome growth algorithm produces random genotypes, the kind
normally produced for the initial population of GAs.

The genome growth algorithm is:

1. Add a new gene to the genome.

(a) Create a pleiotropy vector. Pick ki, a random integer in
[0, N] then randomly pick ki other genes to influence
the new gene. Let M = [mij] be an N × N zero-one
matrix where entry mij = 1 means gene gi influences
fitness component fj. The rows of M are pleiotropy
vectors and give the fitness components influenced by a
gene.

(b) Randomly pick an allelic value for the new gene.

2. Calculate the fitness of the genome.

(a) Construct the polygeny vector for each fitness
component. The columns of M are polygeny vectors and
give the genes influencing a fitness component.

(b) Calculate the fitness of each fitness component using
the component’s polygeny vector and the allelic values
of the genome. This is done using the pseudo-random
function described in [1].

(c) Calculate the fitness of the genome which is the
average fitness value of the fitness components (as in
Kauffman’s NK model [15]).

3. If the new genome fitness is better than the previous, keep the
gene. Otherwise, discard the ‘new’ gene and go back to 1.

4. Adapt the genome constructed so far to new (local) optimum
using a “greedy” 1-mutant (using allelic substitution) adaptive
walk.

5. If genome length has reached N, stop. Otherwise, go back to 1.

In contrast to the genotype-phenotype (g-p) map for a random
genome, the g-p map for a constructed genome showed a distinct
pattern of decreasing pleiotropy as the genome lengthened [1].
This happened without there being an explicit selection for low
epistasis in the genome growth algorithm. A consequence of
decreasing pleiotropy is that fitness levels achieved by fitness
components are protected from major degradation as the genome
grows. Therefore, constructed genotypes end up with higher
fitness values and lower epistasis levels than random genotypes;
but they are also more expensive to produce. In section 4, we see
if this additional cost is worthwhile.

3. THE MODIFIED GENOME GROWTH
ALGORITHM
Experiments in this paper use a modified genome growth
algorithm (MGG) in anticipation of employing this method on
real applications in which case fitness values for fitness
components cannot be generated randomly but would have to be
learnt from the problem on hand. MGG takes the following
inputs:

1. N, the length of genotypes,

2. M′ = [m′ij], a |G| × |F| gene-function contribution map,

3. Formula to calculate fitness of a function, and

4. Formula to calculate fitness of a genotype.

G is a set of genes, F is a set of fitness components or functions.
N, |G| and |F| are pair-wise independent. When N > |G|, there
will be multiple occurrences of a gene in a genotype. MGG
ignores duplicate genes so multiple occurrences of a gene
contribute only once to fitness calculations. Experiments in this
paper use N > |G| and |G| = |F|. Specifically, N = 100 and |G| =
|F| = 32.

Inputs 2, 3 and 4 are related, and together they form a
challenging hurdle towards the practical application of MGG.
These components must capture sufficient knowledge of the
problem for MGG to do better than a random search. This issue
is outside the scope of this paper. Previous work on linkage
learning and function induction mentioned in section 4 are fertile
starting points for research on this issue. Experiments in this
paper, work on an abstract problem where M′ is a matrix with

real-value entries. m′ij = r means gene gi contributes r to function
fj. r may be a positive real, a negative real or zero, in which case
gi does not influence fj. Experiments in this paper use a gene-
function contribution map filled with randomly generated real
values in (-2, 2) with 1/3 probability of a negative value
including zero. The mix of positive and negative values creates
frustration and the ruggedness of the fitness landscape. Figures
1A and 1B contrast the adaptive landscapes for random
genotypes with lengths 32 and 100, respectively. The jagged
nature of the graphs in Figure 1A depicts the epistatic nature of
the problem at hand. This ruggedness though is smoothed out
considerably in Figure 1B when the genotypes are lengthened to
100, allowing for duplicate genes. The fitness values of
genotypes in Figure 1B show less sensitivity to mutation – large
declines in fitness are prevented, but so are big fitness
improvements.

N=32

0.85

0.9

0.95

1

1.05

1.1

1 21 41 61 81 101 121 141
mutant step

Fitness

Figure 1A: 1-mutant random walks by four random
genotypes, one for each problem (seed). Each genotype has 32
genes. This gives a total of 32 × 5 mutation steps. Each gene
is 5 bits. Suppose the first 5 bits of a genotype is 11001. At
mutation step 1, this sequence becomes 01001, at mutation
step 2, it is 00001, and so on so that at ith mutation step, the
Hamming distance between the genotype and the original
genotype is i.

Fitness calculation: Suppose x is the constructed genome so far.
Let x′ be x with multiple occurrences of a gene removed
(compressed x) and x′′j be x′ without the genes that do not
influence fj. For example: if x = 〈0, 2, 7, 9, 2, 7〉 , then x′ = 〈0, 7,
9, 2〉 and x′′j = 〈7, 9, 2〉 given m′0j = 0.0. The fitness of a function
fj is calculated as follows:

F(fj) =
 |'x'|

1 ∑
=

1

0

|x''|-

i

ir where ri = m′x′′[i]j.

The fitness of a genotype is calculated using the “standard” (as in
the NK-landscape model) method:

F(x) =
 ||

1
F
∑

−

=

1||

0

).F(
F

i

if

The MGG steps are:

1. Append to genome x, a randomly selected gene g from G.

2. Calculate fitness of genome with new gene, F(x+g).

3. If F(x+g) ≥ F(x) or tries = 0, x := x+g , i.e. accept g into x.
Else decrement tries and go back to 1.

4. If |x| = N, stop. Else, go back to 1.

tries is the number of chances MGG is allocated to find a
suitable gene. In the experiments tries = 4.

N = 100

0.85

0.9

0.95

1

1.05

1.1

1 21 41 61 81 101 121 141
mutant step

Fitness

Figure 1B: 1-mutant random walks by four random
genotypes, one for each problem. Each genotype has 100
genes, giving a total of 100 × 5 mutation steps. Only the first
160 steps are shown in this figure so that it can be compared
with the Figure 1A. Figure 3A shows the full 500 mutation
steps.

4. EXPERIMENTS WITH MGG
GENOTYPES
The purpose of the experiments in this section is twofold: (i) to
compare constructed genotypes (produced by MGG) with random
genotypes; and (ii) to see whether using an initial population of
constructed genotypes can improve the performance of a GA
significantly enough to justify their production cost.

For the first objective, it is essential that MGG genotypes attain
higher levels of fitness and lower levels of epistasis than random
genotypes, since these are the two elementary properties of
genotypes constructed using the genome growth algorithm with
constructional selection. The experiments confirm the superiority
of MGG genotypes over random genotypes in both aspects.

Tables 1A and 1B show the starting mean fitness and starting
average epistasis levels for a population of 100 genotypes from 4
runs, each with a different random seed labeled s0, s1, s2 and s5.
This means we tested MGG genotypes on 4 different exercises
since each seed creates a different, unrelated gene-function
contribution map. The average epistasis level says how many
genes influence a function on average. It is measured by finding
the average the number of genes that influence each function for
each genotype in a population and then taking the average of
these averages to get a per function average epistasis level
measure. Genes with negative alleles (explained in Section 5)
are excluded from this measurement. For the 24 runs reported in
Table 1C, the average population fitness for constructed

genotypes was on average 239.3 standard deviations higher than
the average population fitness for random genotypes.

Table 1A. Average population fitness for one run on each
problem at iteration 1

s random (A) constructed (B) Difference (B-A)
0 0.9496 1.1034 +0.1538
1 0.9518 1.0677 +0.1159
2 1.0249 1.1156 +0.0907
5 1.0054 1.0864 +0.0810

Table 1B. Average population epistasis level for one run on

each problem at iteration 1
s random (C) constructed (D) Difference (D-C)
0 14.7003 10.0844 -4.6159
1 18.0209 12.1150 -5.9059
2 13.5275 9.2284 -4.2991
5 15.5691 9.8444 -5.7247

Table 1C. Averages and standard deviations of pop. fitness

for six independent runs on each problem at iteration 1

s random constructed Number of std devs
0 0.950367 (a)

0.000643 (b)
1.098845 (c)

0.003385
231.0321 (c-a)/b

1 0.951725

0.000536
1.064503
0.00701

210.3592

2 1.024258
0.000441

1.116522
0.003548

209.2485

5 1.00579
0.000257

1.084582
0.001713

306.6033

For the second objective, MGG was used to create an initial
population of genotypes for a GA with the parameters set out in
Table 2. The performance of this MGG-GA is compared with
rGA which has the parameters in Table 2 but its initial
population comprises random genotypes.

Table 2. GA Parameters

Bits per gene 5 (log2 |G|)
Initial population size 100
Population size 200
Crossover rate 0.65
Crossover type Single point, at gene boundary
Mutation level 1 (default), 3, 5, 7
Mutation rate (Pm) Mutation level / (N×bits per gene)
Iterations 800
Selection strategy 100 fittest

The next generation is created by first putting the 100 fittest
genotypes (the parents) from the current generation into the next
generation, then applying crossover (crossover rate × population
size times) on these 100 genotypes to produce one offspring each
time, cloning random parents to reach the population size and
finally applying mutation on the entire next population, i.e.:
parents and offspring. Crossover operates only at gene
boundaries so that an offspring cannot obtain genes not found in
either of its parents. Mutation rate (Pm) is the portion of bits
flipped in a population of genotypes. At mutation level 1, Pm =
0.002 and there are 100 × 100 × 5 bits in the current generation,
so 100 random bits are flipped when creating the next

generation. It may be said that since the next generation (before
selection) has twice as many bits as the current or parent
generation the mutation rate is effectively halved.

Tables 3A and 3B record the end results of the experiments.
Overall, the use of constructed genotypes produced higher fitness
and lower epistasis levels, at the end of the runs. What is striking
is the inverse relationship between fitness and epistasis levels.
However, if we examine the results from the perspective of
adaptability and look at the change columns, it appears that
constructed genotypes are less adaptable than random genotypes
because they show more modest improvements. Considering the
estimated cost incurred to produce a constructed genotype (on
average (N-1) × tries/2 evaluations), the experiments do not
depict a convincing argument for the use of constructed (MGG)
genotypes as the initial population for a GA. The results in Table
3C corroborate this conclusion. The average population fitness
achieved by MGG-GA was on average 0.659 standard deviations
higher than the average population fitness level attained by rGA.

Table 3A. Average population fitness for one run on each
problem at iteration 800 with Pm = 0.002

s rGA
(E)

Change
(E-A)

MGG-GA
(F)

Change
(F-B)

Difference
(F-E)

0 1.0804 +0.1308 1.1897 +0.0863 +0.1093
1 1.0840 +0.1322 1.0872 +0.0020 +0.0032
2 1.1471 +0.1222 1.1977 +0.0821 +0.0506
5 1.1265 +0.1211 1.1349 +0.0485 +0.0084

Table 3B. Average population epistasis level for one run on

each problem at iteration 800 with Pm = 0.002

s rGA
(G)

Change
(G-C)

MGG-GA
(H)

Change
(H-D)

Difference
(H-G)

0 7.5313 -7.1690 5.0000 -5.0844 -2.5313
1 7.4063 -10.6146 8.3750 -3.7400 +0.9687
2 5.5625 -7.9650 4.0938 -5.1346 -1.4687
5 6.3750 -9.1941 5.9063 -3.9381 -0.4687

Table 3C. Averages and standard deviations of population

fitness for six independent runs on each problem at iteration
800 with Pm = 0.006

s rGA MGG-GA Number of std devs

0 1.174115 (d)
0.005065 (e)

1.181833 (f)
0.021875 (g)

1.523951 (f-d)/e

1 1.07977
0.007595

1.088727
0.002877

1.179332

2 1.148392
0.010811

1.148473
0.013932

0.007554

5 1.137517
0.013036

1.13656
0.018231

-0.07339

There are two possible problems with a straightforward use of
constructional selection in a GA: (i) the assumption that it is
possible to quantify the genome fitness contribution made by any
set of genes with any allelic combination, and (ii) there is no
(explicit) mechanism to preserve the low epistasis level attained
in the initial population through constructional selection, in
subsequent iterations of a GA. The first problem is essentially a
credit assignment problem and efforts have been made to learn
the mapping between genotypes and phenotypes in GAs under

various guises [16, 13, 17]. Function induction techniques used
in other fields could also be useful here. The second problem is
related to the length of schemata. Because the constructional
selection strategy considers the entire genome before adding a
gene (or more precisely giving an allelic value to a gene if one
permits genes without allelic value), each gene in a genome is
coadapted to the set of genes already present in the genome so
that it would seem that there are few to no loci where crossover
can take place without destroying some schema. This raises the
question whether crossover is a suitable variation operator in the
case of constructed genotypes. In GAs, crossover enhances
building block mixing and assists in the search for coadapted sets
of alleles in a population of random genotypes. Constructed
genotypes are already exposed to a degree of searching and
mixing during their genome growth stage. Does crossover help or
hinder adaptation of constructed genotypes in a GA? Is a
mutation only variation strategy better? The flatness of the
graphs in Figures 1B and 3A hints at the answer.

Table 4A. Average population fitness at iteration 800 for s1
at different mutation levels and the effect of a mutation only

strategy.

Pm MGG-
GA (I)

Change
(I - 1.0677)

mutonly
(J)

Change
(J-1.0677)

Difference
(J-I)

0.002 1.0872 +0.0195 1.0902 +0.0225 +0.0030
0.006 1.0886 +0.0209 1.0708 +0.0031 -0.0178
0.010 1.0441 -0.0236 1.0263 -0.0414 -0.0178
0.014 1.0225 -0.0452 1.0131 -0.0546 -0.0094

Table 4B. Average population fitness at iteration 800 for s5
at different mutation levels and the effect of a mutation only

strategy.

Pm MGG-
GA (K)

Change
(K-1.0054)

mutonly
(L)

Change
(L-1.0864)

Difference
(L-K)

0.002 1.1349 +0.1295 1.1289 +0.0425 -0.0060
0.006 1.1500 +0.1446 1.1437 +0.0573 -0.0063
0.010 1.0936 +0.0882 1.0876 +0.0012 -0.0060
0.014 1.0735 +0.0681 1.0719 -0.0145 -0.0016

To answer these questions, we ran MGG-GA with and without
crossover at different mutation levels. The results from these
experiments are summarized in Tables 4A and 4B. We report on
s1 and s5 because they performed best and worst respectively in
the previous experiment. The results suggest that crossover does
help constructed genotypes achieve higher levels of fitness. In all
but one instance, MGG-GA outperformed the mutation only
(mutonly) strategy. Further, genotypes under MGG-GA show
more adaptability or less fitness degradation than genotypes
under mutonly. The positive changes for MGG-GA are larger and
the negative changes are smaller, than mutonly. This indicates
that crossover may not be as disruptive as previously thought.
The differences in performance increase as the mutation rate
ascends. A possible explanation for this is that as in nature,
crossing over reduces the accumulation of harmful mutations in
individuals.

5. METHYLATION
In this section a new kind of variation operator for GAs, meth, is
introduced. meth is a highly simplified version of DNA

methylation. DNA methylation is a chemical change to the
genome which adds methyl groups to bases of DNA after DNA
synthesis and is a reversible form of gene inactivation [18]. The
idea for methylation in a GA comes from the following
observation: mutation and crossover exert two effects on existing
epistasis levels of genotypes. They remove the pleiotropic effects
of genes leaving a genotype and add the pleiotropic effects of
genes joining a genotype. These two effects happen one after the
other with no chance for a GA to evaluate the intermediate
result. To enable such evaluation, there needs to be an operator
which can remove genes and their corresponding pleiotropic
effects without adding new genes and their pleiotropic effects.
meth is this operator. The reverse case: adding new genes and
their corresponding pleiotropic effects without having to first
remove existing genes and their pleiotropic effects was done
during the genome growth stage.

meth is implemented in MGG-GA as a special mutation operator
which has the probability of occurring once every one hundred
mutations. Its syntactic effect is to negate the allelic value of the
target gene. Suppose we are dealing with integral
representations, the allelic value for gene gi is ni and gi gets
chosen for mutation. If the mutation operator happens to be meth,
the allelic value of gi will be –ni after the mutation completes.
Strictly speaking, meth also does demethylation, negative value
alleles can become positive again. Negative alleles in a genotype
suppress the expression of their positive counterparts in the
genotype. For example: if x = 〈6, -7, 3, 2, 7, -3, 4, -3, 9, 2, 7〉
then the alleles considered in the fitness calculation of x is 6, 2, 4
and 9. The order of appearance in a genotype is not important. A
negative allele may appear before or after its positive
counterpart. The genes in MGG-GA are position independent.

Table 5A. Averages and standard deviations of population
fitness for six independent runs on each problem at iteration

800 with Pm = 0.006 and with meth

s r_meth Number of std
devs

c_meth Number of
std devs

0 1.2637(h)
0

17.6882
(h–d)/e

1.2637 (i)
0

3.7425
(i-f)/g

1 1.1936
0.0037

14.9881

1.1777
0.0061

30.9170

2 1.2399
0.0039

8.4622

1.2407
0.0038

6.6199

5 1.2028
0.0082

5.0110

1.2042
0.0033

3.7115

Average 11.5374 11.2478

Table 5B. Comparing average population epistasis levels for
one run on each problem using different evolutionary

strategies at iteration 800 with Pm = 0.006

s rGA r_meth MGG-GA c_meth
0 6.6847 11.7672 5.7734 12.4416
1 9.2678 13.7853 8.2550 14.8453
2 6.5463 11.3219 6.4447 11.1641
5 6.7688 12.2188 5.8044 12.0309

We experimented with meth on rGA and MGG-GA at mutation
level 3, which gave the best overall performance in previous
experiments. The results are summarized in Tables 5A and 5B.

r_meth is rGA with meth, random is rGA (by default without
meth). c_meth is MGG-GA with meth and constructed is MGG-
GA (by default without meth). Both rGA and MGG-GA benefited
from meth; their runs convincingly attained higher fitness values
than runs that did not use meth. For instance, on problem s5, the
average population fitness attained by r_meth was 5 standard
deviations higher than that of rGA. However, very little
distinguishes the improvements by r_meth and c_meth over their
non-meth counterparts (rGA and MGG-GA respectively). The
average improvement was 11.54 standard deviations for r_meth,
and 11.25 standard deviations for c_meth. Since c_meth uses
constructed genotypes which are more costly to produce in the
initial stage, we conclude that although meth improved the
adaptability of constructed genotypes, it also cancelled any
adaptive advantage had by constructed genotypes because
random genotypes with meth did just as well.

Table 6. Population diversity for s5 with Pm = 0.006 at
iteration 800

 rGA r_meth MGG-GA c_meth
Range of genotype
diversity

18-19 24-29 16-17 24-27

Gene pool (allele)
diversity

19 30 17 28

Number of distinct
genotypes

2 52 2 27

The r_meth and c_meth columns in Table 5B show higher levels
of epistasis. Upon closer investigation, this reflects the greater
variety of genotypes and diversity of the population gene pool.
Table 6 gives some diversity measurements. Gene pool (allele)
diversity is the number of alleles found in a population of
genotypes. The gene pool is the reservoir of raw material for
future adaptations and its diversity helps prevent suboptimal
adaptations or premature GA convergence. Typically, mutation is
relied upon to replenish genetic variety loss through directed
selection and genetic drift. There are 32 alleles in the
experiments; we exclude negative alleles in our variety
calculations. That r_meth and c_meth managed to retain at least
87.5% of possible alleles suggest the utility of meth as a
complement to mutation’s role as variety provider. Table 6 also
shows that runs with meth produced populations with many more
distinct genotypes. In a population of 100, r_meth had 52 unique
genotypes and the genotype lengths ranged from 24 to 29 distinct
alleles. Genotypes are differentiated on the basis of their alleles;
the order of alleles is irrelevant. The c_meth population had
fewer distinct genotypes (27) than r_meth’s but more than
constructed which like random had only 2 distinct genotypes.

Table 7 shows the mean population fitness for s5 at the end of
runs using different strategies and with different mutation rates.
At higher mutation rates, runs with meth (r_meth and c_meth)
suffer smaller fitness degradation than runs without meth. This
suggests that evolution with meth produces more robust
genotypes in terms of withstanding higher levels of mutation.
This suggestion is supported by the evolutionary graphs in Figure
2 which depict the progression of each strategy at Pm=0.006.
Upon reaching their best mean fitness levels, the graphs of runs
with meth exhibit long periods of stasis and loose their initial
“noisiness”.

Table 7. Average population fitness for one run on s5 using
different strategies and mutation levels at iteration 800

 Pm rGA r_meth MGG-GA mutonly c_meth
(M) 0.002 1.1265 1.2085 1.1349 1.1289 1.2085

 0.006 1.1206 1.2085 1.1500 1.1437 1.2021
 0.010 1.0961 1.2021 1.0936 1.0876 1.2021

(N) 0.014 1.0756 1.1876 1.0735 1.0719 1.1900
(N-M) -0.0509 -0.0209 -0.0614 -0.0570 -0.0185

Std. dev. 0.0234 0.0098 0.0355 0.0338 0.0077

0.98
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14
1.16
1.18
1.2

1.22

1 101 201 301 401 501 601 701Iteration

Fitness

Figure 2: Evolutionary graphs of five runs using different
evolution strategies for problem s5 with Pm = 0.006. The best
performances were by strategies with meth.

N = 100 w ithout meth

0.85

0.9

0.95

1

1.05

1.1

1 51 101 151 201 251 301 351 401 451

mutant step

Fitness

Figure 3A: 1-mutant random walks by four random
genotypes, one for each problem. Each genotype has 100
genes, giving a total of 100 × 5 mutation steps.

While more investigation needs to be done, we suspect that meth
works as a mask, revealing new schema to a GA. Without meth,
the adaptive landscape as indicated in Figure 3A is rather flat.
With no hill to climb or valley to descend, it is conceivably
difficult to discriminate genotypes for their potentially useful
schema. With meth, the adaptive landscape changes dramatically
as indicated in Figure 3B. Figure 3B shows how the fitness of a
genotype is affected by accumulating mutations, which includes
meth. The graph in Figure 3B (magnified in Figure 3C for the

random

r_meth

constructed

mutonly

c_meth

first 160 steps) is neither as erratically jagged as the graph in
Figure 1A, nor as level and smooth as the graph in Figure 3A.

N = 100 w ith meth

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

mutant step

Fitness

Figure 3B: 1-mutant random walks by four random
genotypes, one for each problem. Each genotype has 100
genes, giving a total of 100 × 5 mutation steps. Mutation
includes meth, negation of an allele, with a 0.01 probability.
To generate the graphs in this figure, which are meant to
represent changes in fitness as a result of 1-bit mutations, an
ordinary mutation, i.e. bit flip, of a negative allele, consists of
negating the negative allele. So when meth occurs, fitness
values oscillate for a 2-5 subsequent mutations. This accounts
for what looks like at this scale, stout vertical bars in the
graph. Ordinarily, an ordinary mutation of a negative allele
consists of replacing the negative allele with a randomly
selected positive allele from G.

N = 100 w ith meth

0.8

0.85

0.9

0.95

1

1.05

1.1

1 21 41 61 81 101 121 141
mutation step

Fitness

Figure 3C: 1-mutant random walks by four random
genotypes, one for each problem. Each genotype has 100
genes, giving a total of 100 × 5 mutation steps. Only the first
160 steps are shown in this figure so that it can be compared
with Figure 1B. Figure 3B shows the full 500 mutation steps.

6. CONCLUSION
This paper explored two methods by which adaptability of
representations for inherently epistatic problems: constructional
selection and methylation. Constructional selection, first
proposed by [1], was investigated using our modified genome
growth algorithm (MGG). The genotypes produced by MGG bore

similar characteristics as that reported in [1], namely higher
fitness and lower epistasis. Having established this, we subjected
genotypes constructed by MGG to evolution via a genetic
algorithm (GA) and compared their adaptability and end results
with that of random genotypes. Although MGG genotypes
achieved better end results in terms of higher fitness and lower
epistasis than random genotypes, their adaptability was sluggish.
This left us skeptical about the net benefits of using the more
costly MGG genotypes in GAs and we set out to investigate if
crossover was a culprit for the dismal adaptability of MGG
genotypes. Contrary to our expectations, the experiments suggest
that crossover serves two purposes in adaptation for MGG
genotypes: accumulation of good sub-solutions and the
disbandment of accrued harmful mutations. The link between
types of epistasis, whether synergistic or antagonistic, and
crossover has been studied in biology [19]. With more details
about the relationships between functions, the model proposed in
this paper could be used to extend the biological studies to
digital organisms.

The epistatic nature of our test problems and hence sensitivity to
change, led us to ask how variation of genotypes can be made
one effect at a time. By default, crossover and mutation make
two changes to a genotype; they remove and insert alleles so that
the epistasis level of a genotype is doubly disturbed with larger
unpredictable consequences for the fitness of the genotype.
Methylation or the meth mechanism is a way to reduce such
disturbance and make one change at a time to a genotype so that
a GA has the opportunity to evaluate the intermediate genotype
and possibly increase its intrinsic parallelism. The experiments
confirm the utility of meth for MGG genotypes and random
genotypes on our test problems. GA evolution with meth
produced significantly fitter and more robust genotypes while
conserving the diversity of the gene pool for future adaptations.
These qualities of meth suggest its potential for building complex
and robust but adaptable digital structures from random
genotypes.

Although MGG genotypes thrived with meth, their improvement
was not significant enough to justify their higher initial cost.
However, this disadvantage may only be so due to the
environment of our test problems, which could be extended with
additional constraints such as imposing a minimum or maximum
threshold on fitness values of some or all functions, adding
relationships between functions and creating a hierarchy of
functions. In addition, GA evolution began with fully specified
genotypes. If partially specified genotypes were allowed to
compete and adapt, constructional selection might prove
advantageous. In this situation, as in nature, there are no partial
solutions; all so-called intermediate stages must be fit to survive
and adaptations are explained in terms of “immediate selective
advantage” [19] to the individual rather than “the ultimate
benefits” they might confer to future individuals. Nevertheless, it
seems there are limits to self-assembly in nature and “the larger-
scale structures require the differential activation of genes, in
time and space” [19] which in artificial systems could be
provided in part by meth.

There are several roles open to meth in adaptation: as a
mechanism to backtrack from a decision made earlier, a way to
store alternate solutions for the future and preserve the diversity

of the gene pool, a way to regulate genes, a mechanism to effect
phenotypic polymorphism [19], or as a “suppressor mutation” in
the ‘parliament of genes’ [19]. To some extent, this paper has
exploited meth in the last sense. This was unplanned; and an
important pre-condition to make this possible is N >> |G|. The
impact of redundant representation on GAs is discussed in [20].
Runs without meth and N = 32 produced random and constructed
genotypes with higher average fitness values than runs without
meth and N = 100, but these values were lower than the average
fitness values produced by runs with meth and N = 100 (compare
Tables 8, 5A and 3C). Average fitness of runs with meth and N =
32 were also lower than that of runs with meth and N = 100 by
about 6 standard deviations. In each of the four problems, MGG-
GA with meth produced the best average population fitness. meth
had a smaller impact when N = 32. While the average population
fitness was improved approximately 11 standard deviations when
N = 100, it only improved by about 4 standard deviations when N
= 32. The many possible roles of meth would be an interesting
subject for future investigations.

Table 8. Averages and standard deviations of population
fitness for six independent runs on each problem at iteration

800 with Pm = 0.006 and N = 32.

s rGA r_meth No. std devs MGG-GA c_meth

0 1.2256
0.0037

1.2331 (j)
0.0053 (k)

5.7736
(h-j)/k

1.2220
0.0059

1.2320
0.0046

1 1.1252
0.0073

1.1545
0.0029

13.4828 1.1253
0.0065

1.1546
0.0046

2 1.1866
0.0053

1.2310
0.0075

1.1867 1.1823
0.0059

1.2311
0.0096

5 1.1738
0.0088

1.1887
0.0037

3.8108 1.1723
0.0038

1.1880
0.0052

 Average 6.0635

Finally, there are several unexplored areas in the parameter
space of MGG-GA. These include: |G| > |F|, |G| < |F|, making
some genes position-dependent and taking into account the
contributions of duplicate genes so that the frequency with which
an allele appears in a genotype is significant.

7. ACKNOWLEDGMENTS
The author thanks Dr. Peter Grogono for comments on an early
draft of the paper. This work received support from NSERC and
the Faculty of Engineering and Computer Science, Concordia
University.

8. REFERENCES
[1] Altenberg, L, Evolving Better Representations through

Selective Genome Growth. In Proceedings of the IEEE
World Congress on Computational Intelligence, 1994, 182-
187.

[2] Holland, J. H. Adaptation in Natural and Artificial Systems.
The University of Michigan Press, 1975.

[3] Goldberg, D. E. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

[4] Mitchell, M. An Introduction to Genetic Algorithms. The
MIT Press, 1996.

[5] Fogel, D. B. Evolutionary Computation: Toward a new
philosophy of machine intelligence. IEEE Press, 1995.

[6] Rothlauf, F. Representations for Genetic and Evolutionary
Algorithms. Physica-Verlag Heidelberg, 2002.

[7] Goldberg, D. E., Korb, B. and Deb, K. Messy Genetic
Algorithms: Motivation, Analysis and First Results.
Complex Systems 3:493-530 (1989).

[8] Kargupta, H. The gene expression messy genetic algorithm.
In Proceedings of the IEEE International Conference on
Evolutionary Computation, 1996, 814-819.

[9] Kvasnička, V. and Prospíchal, J. Emergence of Modularity
in Genotype-Phenotype Mappings. Artificial Life 8:295-310
(2002).

[10] O’Niell, M. and Ryan, C. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer Academic Publishers, 2003.

[11] Suzuki, H., Sawai, H. and Piaseczny, W. Chemical Genetic
Algorithms: Evolutionary Optimization of Binary-to-Real-
Value Translation in Genetic Algorithms. Artificial Life
12(1):89-116 (2005).

[12] Simon, H. A. The Sciences of the Artificial. MIT Press,
1969.

[13] Kargupta, H. and Park, B.-H. Gene Expression and Fast
Construction of Distributed Evolutionary Representation.
Evolutionary Computation 9(1):45-68 (2000).

[14] Yu, T.-L., Sastry, K. and Goldberg, D. E. Linkage Learning,
Overlapping Building Blocks, and Systematic Strategy for
Scalable Recombination. IlliGAL Report No. 2005016,
University of Illinois at Urbana-Champaign, 2005.

[15] Kauffman, S. A. Adaptation on rugged fitness landscapes. In
Lectures in the Sciences of Complexity. Ed.: D. Stein,
Addison-Wesley, 1989, 527-618.

[16] Goldberg, D. E., Deb, K., Kargupta, H. and G. Harik.
Rapid, accurate optimization of difficult problems using fast
messy genetic algorithms. In Proceedings of the 5th
International Conference on Genetic Algorithms. Ed: S.
Forrest, Morgan Kaufmann Publishers, 1993, 56-63.

[17] Pelikan, M, Goldberg, D. E., Ocenasek, J. and Trebst, S.
Robust and Scalable Black-Box Optimization, Hierarchy
and Ising Spin Glasses. IlliGAL Report No. 2003019,
University of Illinois at Urbana-Champaign, 2003.

[18] Campbell, N. A. Biology. Third Edition. Benjamin-
Cummings Publishing Company, Inc., 1993.

[19] Maynard-Smith, J. and Szathmáry, E. The Major
Transitions in Evolution. W.H. Freeman & Co. Ltd., 1995.

[20] Rothlauf, F. and Goldberg, D. E. Redundant
Representations in Evolutionary Computation. Evolutionary
Computation 11(4):381-415 (2003).

