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ABSTRACT 
This paper investigates the adaptability of genotypes produced by 
a modified genome growth algorithm (MGG) in a genetic 
algorithm. MGG uses constructional selection, a genome growth 
strategy modeled on the evolution of the biological genome [1]. 
Experiments did not favor the more costly MGG genotypes. This 
paper also proposes a new type of mutation operator: meth, which 
is loosely based on DNA methylation. Experiments suggest the 
utility of ‘methylation’ to improve the adaptability of 
representations and to build robust and adaptable digital 
structures.  

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods and Search]: 
Heuristic methods.  

General Terms 
Algorithms, Performance, Design  

Keywords 
genetic algorithm, representation, epistasis 

1. INTRODUCTION 
Adaptive plans were introduced by John Holland [2] as a means 
to study adaptation in natural and artificial systems. These 
adaptive plans subsequently became known as genetic algorithms 
(GAs) [3, 4, 5]. The use of crossover and inversion genetic 
operators, and of a population of solutions to enable parallel 
global search distinguishes genetic algorithms from other meta-
heuristic search methods. While GAs have had much success in a 
wide range of applications, theoretical and practical challenges 
remain. One of these challenges is representation, or what the 
search space should look like to a GA.  

Representation is an important influence on the performance of 
GAs. Rothlauf [6] reports that when specific representations 
were used, some problems became easier for a GA to solve, 

while other problems became more difficult. There are, to our 
view, three facets to representation which are seldom made 
explicit in GA literature: (i) encoding, (ii) structure and (iii) 
directness. Encoding encompasses issues such as binary versus 
integer or real, and binary versus Gray coding. The structure of a 
representation may be designed to enable positional 
independence of the parts of a solution [2, 7], or to designate 
different parts of a solution to different tasks [8, 9]. A direct 
solution is one that is plugged into the fitness function directly. 
An indirect solution is transformed by at least one process which 
itself may be evolved, and the outcome of the transformation is 
evaluated by the fitness function of a GA. Examples of indirect 
representation include grammatical evolution [10] and chemical 
GA [11].  

We deal with the structural aspect of representation in this paper. 
Specifically, we suggest the utility of a mechanism modeled on 
DNA methylation which is a form of mutation found in biological 
genetic systems, to improve the adaptability (the ability to evolve 
fitter variants) of representations in epistatic fitness landscapes. 
We call this mechanism meth. The effectiveness of meth on 
random genotypes is compared with the adaptability of 
constructed genotypes which are genotypes selectively grown 
using a variant of the method suggested by [1]. Results from our 
experiments suggest that meth is effective at improving the 
adaptability of genotypes with high or low epistasis levels. 
Further, with meth, the average epistasis level of a population of 
genotypes could increase without severely impacting the mean 
population fitness. Thus genotypes could grow in diversity and 
store potential alternative solutions without having to express 
them. Evolution with meth also produced more robust genotypes. 
These two factors suggest that meth, combined with other 
techniques, would be useful for building complex, robust but 
adaptable digital structures. 

Paper organization: background material is provided in section 2 
followed by a description of our modified genome growth 
algorithm (MGG) in section 3. Section 4 presents results from 
our experiments with MGG genotypes. Section 5 introduces the 
meth mechanism and reports on experiments with meth. Section 
6 concludes with a discussion on the current work and possible 
extensions thereof. 

2. BACKGROUND 
Adaptive or fitness landscapes having epistasis are rugged with 
many narrow false peaks (or troughs). Adaptation in epistatic 
fitness landscapes is not easy because a slight change in a 
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solution may result in a drastic positive or negative change in the 
fitness of the solution. This makes producing fitter offspring by 
varying fit solutions found so far, which is essentially how a GA 
conducts its search, a challenging task. The amplification or 
reduction of effect is due to existing non-linear dependencies 
between parts of the solution so that the effect of a gene depends 
strongly upon one or more other genes. These dependencies may 
not be avoided entirely if they are part of the problem. Besides 
the potential of advanced search methods including GAs to solve 
not linearly separable problems or at least nearly decomposable 
problems [12], is part of their appeal. Nevertheless, given its 
potential for detrimental effect on adaptability, it is preferable to 
reduce epistasis in solutions where possible.  

Holland recognized that epistasis complicates credit 
apportionment and suggested the search for coadapted sets of 
alleles which he generalized under the term schema [2]. Whereas 
Holland was confident that linkage between coadapted alleles 
could be preserved with the inversion operator [2], others made 
explicit the effort to identify and preserve linkages within 
building blocks. A building block is a short schema with above 
average fitness. Kargupta and Park [13] provide a brief history of 
linkage learning. Learning linkage to avoid destroying linkages 
and hence preserve good building blocks does not preclude 
conflict between building blocks [14]. An alternative route is to 
avoid where possible, placing conflicting building blocks in a 
solution in the first place, and reduce the epistasis level in 
solutions. One way to accomplished this is by constructing the 
representation one building block at a time as suggested by 
Altenberg’s constructional selection strategy. Constructional 
selection is modeled after the evolutionary process of the 
biological genome [1]. This strategy expands a genome (a 
solution) one gene at a time until the desired genome length N is 
reached. A gene is added to the genome only if the addition of 
the gene improves the fitness of the genome.  

The constructional selection strategy is used in the genome 
growth algorithm to produce constructed genotypes. If 
constructional selection (steps 2, 3 and 4 below) is omitted, the 
genome growth algorithm produces random genotypes, the kind 
normally produced for the initial population of GAs.  

The genome growth algorithm is:  

1. Add a new gene to the genome. 

(a) Create a pleiotropy vector. Pick ki, a random integer in 
[0, N] then randomly pick ki other genes to influence 
the new gene. Let M = [mij] be an N × N zero-one 
matrix where entry mij = 1 means gene gi influences 
fitness component fj. The rows of M are pleiotropy 
vectors and give the fitness components influenced by a 
gene. 

(b) Randomly pick an allelic value for the new gene.  

2. Calculate the fitness of the genome.  

(a) Construct the polygeny vector for each fitness 
component. The columns of M are polygeny vectors and 
give the genes influencing a fitness component.  

(b) Calculate the fitness of each fitness component using 
the component’s polygeny vector and the allelic values 
of the genome. This is done using the pseudo-random 
function described in [1].  

(c) Calculate the fitness of the genome which is the 
average fitness value of the fitness components (as in 
Kauffman’s NK model [15]). 

3. If the new genome fitness is better than the previous, keep the 
gene. Otherwise, discard the ‘new’ gene and go back to 1. 

4. Adapt the genome constructed so far to new (local) optimum 
using a “greedy” 1-mutant (using allelic substitution) adaptive 
walk. 

5. If genome length has reached N, stop. Otherwise, go back to 1. 

In contrast to the genotype-phenotype (g-p) map for a random 
genome, the g-p map for a constructed genome showed a distinct 
pattern of decreasing pleiotropy as the genome lengthened [1]. 
This happened without there being an explicit selection for low 
epistasis in the genome growth algorithm. A consequence of 
decreasing pleiotropy is that fitness levels achieved by fitness 
components are protected from major degradation as the genome 
grows. Therefore, constructed genotypes end up with higher 
fitness values and lower epistasis levels than random genotypes; 
but they are also more expensive to produce. In section 4, we see 
if this additional cost is worthwhile. 

3. THE MODIFIED GENOME GROWTH 
ALGORITHM 
Experiments in this paper use a modified genome growth 
algorithm (MGG) in anticipation of employing this method on 
real applications in which case fitness values for fitness 
components cannot be generated randomly but would have to be 
learnt from the problem on hand. MGG takes the following 
inputs: 

1. N, the length of genotypes,  

2. M′ = [m′ij], a |G| × |F| gene-function contribution map,  

3. Formula to calculate fitness of a function, and 

4. Formula to calculate fitness of a genotype. 

G is a set of genes, F is a set of fitness components or functions. 
N, |G| and |F| are pair-wise independent. When N > |G|, there 
will be multiple occurrences of a gene in a genotype. MGG 
ignores duplicate genes so multiple occurrences of a gene 
contribute only once to fitness calculations. Experiments in this 
paper use N > |G| and |G| = |F|. Specifically, N = 100 and |G| = 
|F| = 32. 

Inputs 2, 3 and 4 are related, and together they form a 
challenging hurdle towards the practical application of MGG. 
These components must capture sufficient knowledge of the 
problem for MGG to do better than a random search. This issue 
is outside the scope of this paper. Previous work on linkage 
learning and function induction mentioned in section 4 are fertile 
starting points for research on this issue. Experiments in this 
paper, work on an abstract problem where M′ is a matrix with 



real-value entries. m′ij = r means gene gi contributes r to function 
fj. r may be a positive real, a negative real or zero, in which case 
gi does not influence fj. Experiments in this paper use a gene-
function contribution map filled with randomly generated real 
values in (-2, 2) with 1/3 probability of a negative value 
including zero. The mix of positive and negative values creates 
frustration and the ruggedness of the fitness landscape. Figures 
1A and 1B contrast the adaptive landscapes for random 
genotypes with lengths 32 and 100, respectively. The jagged 
nature of the graphs in Figure 1A depicts the epistatic nature of 
the problem at hand. This ruggedness though is smoothed out 
considerably in Figure 1B when the genotypes are lengthened to 
100, allowing for duplicate genes. The fitness values of 
genotypes in Figure 1B show less sensitivity to mutation – large 
declines in fitness are prevented, but so are big fitness 
improvements.
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Figure 1A: 1-mutant random walks by four random 
genotypes, one for each problem (seed). Each genotype has 32 
genes. This gives a total of 32 × 5 mutation steps. Each gene 
is 5 bits. Suppose the first 5 bits of a genotype is 11001. At 
mutation step 1, this sequence becomes 01001, at mutation 
step 2, it is 00001, and so on so that at ith mutation step, the 
Hamming distance between the genotype and the original 
genotype is i. 

 
Fitness calculation: Suppose x is the constructed genome so far. 
Let x′ be x with multiple occurrences of a gene removed 
(compressed x) and x′′j be x′ without the genes that do not 
influence fj. For example: if x = 〈0, 2, 7, 9, 2, 7〉 , then x′ = 〈0, 7, 
9, 2〉 and x′′j = 〈7, 9, 2〉 given m′0j = 0.0. The fitness of a function 
fj is calculated as follows:   

F(fj) =
 |'x'|
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The fitness of a genotype is calculated using the “standard” (as in 
the NK-landscape model) method:  
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The MGG steps are:  

1. Append to genome x, a randomly selected gene g from G. 

2. Calculate fitness of genome with new gene, F(x+g). 

3. If F(x+g) ≥ F(x) or tries = 0, x := x+g , i.e. accept g into x. 
Else decrement tries and go back to 1. 

4. If |x| = N, stop. Else, go back to 1. 

tries is the number of chances MGG is allocated to find a 
suitable gene. In the experiments tries = 4. 

N  = 100
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Figure 1B: 1-mutant random walks by four random 
genotypes, one for each problem. Each genotype has 100 
genes, giving a total of 100 × 5 mutation steps. Only the first 
160 steps are shown in this figure so that it can be compared 
with the Figure 1A. Figure 3A shows the full 500 mutation 
steps. 

4. EXPERIMENTS WITH MGG 
GENOTYPES 
The purpose of the experiments in this section is twofold: (i) to 
compare constructed genotypes (produced by MGG) with random 
genotypes; and (ii) to see whether using an initial population of 
constructed genotypes can improve the performance of a GA 
significantly enough to justify their production cost.  

For the first objective, it is essential that MGG genotypes attain 
higher levels of fitness and lower levels of epistasis than random 
genotypes, since these are the two elementary properties of 
genotypes constructed using the genome growth algorithm with 
constructional selection. The experiments confirm the superiority 
of MGG genotypes over random genotypes in both aspects.  

Tables 1A and 1B show the starting mean fitness and starting 
average epistasis levels for a population of 100 genotypes from 4 
runs, each with a different random seed labeled s0, s1, s2 and s5. 
This means we tested MGG genotypes on 4 different exercises 
since each seed creates a different, unrelated gene-function 
contribution map. The average epistasis level says how many 
genes influence a function on average. It is measured by finding 
the average the number of genes that influence each function for 
each genotype in a population and then taking the average of 
these averages to get a per function average epistasis level 
measure. Genes with negative alleles (explained in Section 5) 
are excluded from this measurement.  For the 24 runs reported in 
Table 1C, the average population fitness for constructed 



genotypes was on average 239.3 standard deviations higher than 
the average population fitness for random genotypes. 

Table 1A. Average population fitness for one run on each 
problem at iteration 1 

s random (A) constructed (B) Difference (B-A) 
0 0.9496 1.1034 +0.1538 
1 0.9518 1.0677 +0.1159 
2 1.0249 1.1156 +0.0907 
5 1.0054 1.0864 +0.0810 

 
Table 1B. Average population epistasis level for one run on 

each problem at iteration 1 
s random (C) constructed (D) Difference (D-C) 
0 14.7003 10.0844 -4.6159 
1 18.0209 12.1150 -5.9059 
2 13.5275 9.2284 -4.2991 
5 15.5691 9.8444 -5.7247 

 
Table 1C.  Averages and standard deviations of pop. fitness 

for six independent runs on each problem at iteration 1 

s random  constructed  Number of std devs 
0 0.950367 (a) 

0.000643 (b) 
1.098845 (c) 

0.003385 
231.0321 (c-a)/b 

 
1 0.951725 

0.000536 
1.064503 
0.00701 

210.3592 
 

2 1.024258 
0.000441 

1.116522 
0.003548 

209.2485 
 

5 1.00579 
0.000257 

1.084582 
0.001713 

306.6033 
 

For the second objective, MGG was used to create an initial 
population of genotypes for a GA with the parameters set out in 
Table 2. The performance of this MGG-GA is compared with 
rGA which has the parameters in Table 2 but its initial 
population comprises random genotypes. 

Table 2. GA Parameters 

Bits per gene 5 (log2 |G|) 
Initial population size 100 
Population size 200  
Crossover rate 0.65 
Crossover type Single point, at gene boundary 
Mutation level 1 (default), 3, 5, 7 
Mutation rate (Pm) Mutation level / (N×bits per gene) 
Iterations  800 
Selection strategy 100 fittest 

The next generation is created by first putting the 100 fittest 
genotypes (the parents) from the current generation into the next 
generation, then applying crossover (crossover rate × population 
size times) on these 100 genotypes to produce one offspring each 
time, cloning random parents to reach the population size and 
finally applying mutation on the entire next population, i.e.: 
parents and offspring. Crossover operates only at gene 
boundaries so that an offspring cannot obtain genes not found in 
either of its parents. Mutation rate (Pm) is the portion of bits 
flipped in a population of genotypes. At mutation level 1, Pm = 
0.002 and there are 100 × 100 × 5 bits in the current generation, 
so 100 random bits are flipped when creating the next 

generation. It may be said that since the next generation (before 
selection) has twice as many bits as the current or parent 
generation the mutation rate is effectively halved. 

Tables 3A and 3B record the end results of the experiments. 
Overall, the use of constructed genotypes produced higher fitness 
and lower epistasis levels, at the end of the runs. What is striking 
is the inverse relationship between fitness and epistasis levels. 
However, if we examine the results from the perspective of 
adaptability and look at the change columns, it appears that 
constructed genotypes are less adaptable than random genotypes 
because they show more modest improvements. Considering the 
estimated cost incurred to produce a constructed genotype (on 
average (N-1) × tries/2 evaluations), the experiments do not 
depict a convincing argument for the use of constructed (MGG) 
genotypes as the initial population for a GA. The results in Table 
3C corroborate this conclusion. The average population fitness 
achieved by MGG-GA was on average 0.659 standard deviations 
higher than the average population fitness level attained by rGA. 

Table 3A. Average  population fitness for one run on each 
problem at iteration 800 with Pm = 0.002 

s rGA  
(E) 

Change 
(E-A) 

MGG-GA  
(F) 

Change 
(F-B) 

Difference
(F-E) 

0 1.0804 +0.1308 1.1897 +0.0863 +0.1093 
1 1.0840 +0.1322 1.0872 +0.0020 +0.0032 
2 1.1471 +0.1222 1.1977 +0.0821 +0.0506 
5 1.1265 +0.1211 1.1349 +0.0485 +0.0084 

 
Table 3B. Average population epistasis level for one run on 

each problem at iteration 800 with Pm = 0.002 

s rGA 
(G) 

Change 
(G-C) 

MGG-GA 
(H) 

Change 
(H-D) 

Difference
(H-G) 

0 7.5313 -7.1690 5.0000 -5.0844 -2.5313 
1 7.4063 -10.6146 8.3750 -3.7400 +0.9687 
2 5.5625 -7.9650 4.0938 -5.1346 -1.4687 
5 6.3750 -9.1941 5.9063 -3.9381 -0.4687 

 
Table 3C.  Averages and standard deviations of population 

fitness for six independent runs on each problem at iteration 
800 with Pm = 0.006 

s rGA MGG-GA Number of std devs 

0 1.174115 (d) 
0.005065 (e) 

1.181833 (f) 
0.021875 (g) 

1.523951 (f-d)/e 
 

1 1.07977 
0.007595 

1.088727 
0.002877 

1.179332 
 

2 1.148392 
0.010811 

1.148473 
0.013932 

0.007554 
 

5 1.137517 
0.013036 

1.13656 
0.018231 

-0.07339 
 

There are two possible problems with a straightforward use of 
constructional selection in a GA: (i) the assumption that it is 
possible to quantify the genome fitness contribution made by any 
set of genes with any allelic combination, and (ii) there is no 
(explicit) mechanism to preserve the low epistasis level attained 
in the initial population through constructional selection, in 
subsequent iterations of a GA. The first problem is essentially a 
credit assignment problem and efforts have been made to learn 
the mapping between genotypes and phenotypes in GAs under 



various guises [16, 13, 17]. Function induction techniques used 
in other fields could also be useful here. The second problem is 
related to the length of schemata. Because the constructional 
selection strategy considers the entire genome before adding a 
gene (or more precisely giving an allelic value to a gene if one 
permits genes without allelic value), each gene in a genome is 
coadapted to the set of genes already present in the genome so 
that it would seem that there are few to no loci where crossover 
can take place without destroying some schema. This raises the 
question whether crossover is a suitable variation operator in the 
case of constructed genotypes. In GAs, crossover enhances 
building block mixing and assists in the search for coadapted sets 
of alleles in a population of random genotypes. Constructed 
genotypes are already exposed to a degree of searching and 
mixing during their genome growth stage. Does crossover help or 
hinder adaptation of constructed genotypes in a GA? Is a 
mutation only variation strategy better? The flatness of the 
graphs in Figures 1B and 3A hints at the answer. 

Table 4A. Average population fitness at iteration 800 for s1 
at different mutation levels and the effect of a mutation only 

strategy. 

Pm MGG-
GA (I) 

Change  
(I - 1.0677) 

mutonly  
(J) 

Change 
(J-1.0677) 

Difference 
(J-I) 

0.002 1.0872 +0.0195 1.0902 +0.0225 +0.0030 
0.006 1.0886 +0.0209 1.0708 +0.0031 -0.0178 
0.010 1.0441 -0.0236 1.0263 -0.0414 -0.0178 
0.014 1.0225 -0.0452 1.0131 -0.0546 -0.0094 

 
Table 4B. Average population fitness at iteration 800 for s5 
at different mutation levels and the effect of a mutation only 

strategy. 

Pm MGG- 
GA (K) 

Change 
(K-1.0054) 

mutonly 
(L) 

Change  
(L-1.0864)

Difference 
(L-K) 

0.002 1.1349 +0.1295 1.1289 +0.0425 -0.0060 
0.006 1.1500 +0.1446 1.1437 +0.0573 -0.0063 
0.010 1.0936 +0.0882 1.0876 +0.0012 -0.0060 
0.014 1.0735 +0.0681 1.0719 -0.0145 -0.0016 

To answer these questions, we ran MGG-GA with and without 
crossover at different mutation levels. The results from these 
experiments are summarized in Tables 4A and 4B. We report on 
s1 and s5 because they performed best and worst respectively in 
the previous experiment. The results suggest that crossover does 
help constructed genotypes achieve higher levels of fitness. In all 
but one instance, MGG-GA outperformed the mutation only 
(mutonly) strategy. Further, genotypes under MGG-GA show 
more adaptability or less fitness degradation than genotypes 
under mutonly. The positive changes for MGG-GA are larger and 
the negative changes are smaller, than mutonly. This indicates 
that crossover may not be as disruptive as previously thought. 
The differences in performance increase as the mutation rate 
ascends. A possible explanation for this is that as in nature, 
crossing over reduces the accumulation of harmful mutations in 
individuals.  

5. METHYLATION 
In this section a new kind of variation operator for GAs, meth, is 
introduced. meth is a highly simplified version of DNA 

methylation. DNA methylation is a chemical change to the 
genome which adds methyl groups to bases of DNA after DNA 
synthesis and is a reversible form of gene inactivation [18]. The 
idea for methylation in a GA comes from the following 
observation: mutation and crossover exert two effects on existing 
epistasis levels of genotypes. They remove the pleiotropic effects 
of genes leaving a genotype and add the pleiotropic effects of 
genes joining a genotype. These two effects happen one after the 
other with no chance for a GA to evaluate the intermediate 
result. To enable such evaluation, there needs to be an operator 
which can remove genes and their corresponding pleiotropic 
effects without adding new genes and their pleiotropic effects. 
meth is this operator. The reverse case: adding new genes and 
their corresponding pleiotropic effects without having to first 
remove existing genes and their pleiotropic effects was done 
during the genome growth stage.  

meth is implemented in MGG-GA as a special mutation operator 
which has the probability of occurring once every one hundred 
mutations. Its syntactic effect is to negate the allelic value of the 
target gene. Suppose we are dealing with integral 
representations, the allelic value for gene gi is ni and gi gets 
chosen for mutation. If the mutation operator happens to be meth, 
the allelic value of gi will be –ni after the mutation completes. 
Strictly speaking, meth also does demethylation, negative value 
alleles can become positive again. Negative alleles in a genotype 
suppress the expression of their positive counterparts in the 
genotype. For example: if x = 〈6, -7, 3, 2, 7, -3, 4, -3, 9, 2, 7〉 
then the alleles considered in the fitness calculation of x is 6, 2, 4 
and 9. The order of appearance in a genotype is not important. A 
negative allele may appear before or after its positive 
counterpart. The genes in MGG-GA are position independent.  

Table 5A. Averages and standard deviations of population 
fitness for six independent runs on each problem at iteration 

800 with Pm = 0.006 and with meth 

s r_meth Number of std 
devs 

c_meth Number of 
std devs 

0 1.2637(h) 
0 

17.6882  
(h–d)/e 

1.2637 (i) 
0 

3.7425  
(i-f)/g 

1 1.1936 
0.0037 

14.9881 
 

1.1777 
0.0061 

30.9170 
 

2 1.2399 
0.0039 

8.4622 
 

1.2407 
0.0038 

6.6199 
 

5 1.2028 
0.0082 

5.0110 
 

1.2042 
0.0033 

3.7115 
 

Average 11.5374  11.2478 
 

Table 5B. Comparing average population epistasis levels for 
one run on each problem using different evolutionary 

strategies at iteration 800 with  Pm = 0.006 

s rGA r_meth MGG-GA c_meth 
0 6.6847 11.7672 5.7734 12.4416 
1 9.2678 13.7853 8.2550 14.8453 
2 6.5463 11.3219 6.4447 11.1641 
5 6.7688 12.2188 5.8044 12.0309 

We experimented with meth on rGA and MGG-GA at mutation 
level 3, which gave the best overall performance in previous 
experiments. The results are summarized in Tables 5A and 5B. 



r_meth is rGA with meth, random is rGA (by default without 
meth). c_meth is MGG-GA with meth and constructed is MGG-
GA (by default without meth). Both rGA and MGG-GA benefited 
from meth; their runs convincingly attained higher fitness values 
than runs that did not use meth. For instance, on problem s5, the 
average population fitness attained by r_meth was 5 standard 
deviations higher than that of rGA. However, very little 
distinguishes the improvements by r_meth and c_meth over their 
non-meth counterparts (rGA and MGG-GA respectively). The 
average improvement was 11.54 standard deviations for r_meth, 
and 11.25 standard deviations for c_meth. Since c_meth uses 
constructed genotypes which are more costly to produce in the 
initial stage, we conclude that although meth improved the 
adaptability of constructed genotypes, it also cancelled any 
adaptive advantage had by constructed genotypes because 
random genotypes with meth did just as well.  

Table 6. Population diversity for s5 with Pm = 0.006 at 
iteration 800 

 rGA r_meth MGG-GA c_meth
Range of genotype 
diversity 

18-19 24-29 16-17 24-27 

Gene pool (allele) 
diversity 

19 30 17 28 

Number of distinct 
genotypes  

2 52 2 27 

The r_meth and c_meth columns in Table 5B show higher levels 
of epistasis. Upon closer investigation, this reflects the greater 
variety of genotypes and diversity of the population gene pool. 
Table 6 gives some diversity measurements. Gene pool (allele) 
diversity is the number of alleles found in a population of 
genotypes. The gene pool is the reservoir of raw material for 
future adaptations and its diversity helps prevent suboptimal 
adaptations or premature GA convergence. Typically, mutation is 
relied upon to replenish genetic variety loss through directed 
selection and genetic drift. There are 32 alleles in the 
experiments; we exclude negative alleles in our variety 
calculations. That r_meth and c_meth managed to retain at least 
87.5% of possible alleles suggest the utility of meth as a 
complement to mutation’s role as variety provider. Table 6 also 
shows that runs with meth produced populations with many more 
distinct genotypes. In a population of 100, r_meth had 52 unique 
genotypes and the genotype lengths ranged from 24 to 29 distinct 
alleles. Genotypes are differentiated on the basis of their alleles; 
the order of alleles is irrelevant. The c_meth population had 
fewer distinct genotypes (27) than r_meth’s but more than 
constructed which like random had only 2 distinct genotypes. 

Table 7 shows the mean population fitness for s5 at the end of 
runs using different strategies and with different mutation rates. 
At higher mutation rates, runs with meth (r_meth and c_meth) 
suffer smaller fitness degradation than runs without meth. This 
suggests that evolution with meth produces more robust 
genotypes in terms of withstanding higher levels of mutation. 
This suggestion is supported by the evolutionary graphs in Figure 
2 which depict the progression of each strategy at Pm=0.006. 
Upon reaching their best mean fitness levels, the graphs of runs 
with meth exhibit long periods of stasis and loose their initial 
“noisiness”.  

Table 7. Average  population fitness for one run on s5 using 
different strategies and mutation levels at iteration 800 

 Pm rGA r_meth MGG-GA mutonly c_meth
(M) 0.002 1.1265 1.2085 1.1349 1.1289 1.2085

 0.006 1.1206 1.2085 1.1500 1.1437 1.2021
 0.010 1.0961 1.2021 1.0936 1.0876 1.2021

(N) 0.014 1.0756 1.1876 1.0735 1.0719 1.1900
(N-M) -0.0509 -0.0209 -0.0614 -0.0570 -0.0185

Std. dev. 0.0234 0.0098 0.0355 0.0338 0.0077
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Figure 2: Evolutionary graphs of five runs using different 
evolution strategies for problem s5 with Pm = 0.006. The best 
performances were by strategies with meth.  

 

N  = 100 w ithout meth

0.85

0.9

0.95

1

1.05

1.1

1 51 101 151 201 251 301 351 401 451

mutant step

Fitness

 
Figure 3A: 1-mutant random walks by four random 
genotypes, one for each problem. Each genotype has 100 
genes, giving a total of 100 × 5 mutation steps. 

 
While more investigation needs to be done, we suspect that meth 
works as a mask, revealing new schema to a GA. Without meth, 
the adaptive landscape as indicated in Figure 3A is rather flat. 
With no hill to climb or valley to descend, it is conceivably 
difficult to discriminate genotypes for their potentially useful 
schema. With meth, the adaptive landscape changes dramatically 
as indicated in Figure 3B. Figure 3B shows how the fitness of a 
genotype is affected by accumulating mutations, which includes 
meth. The graph in Figure 3B (magnified in Figure 3C for the 
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first 160 steps) is neither as erratically jagged as the graph in 
Figure 1A, nor as level and smooth as the graph in Figure 3A.  
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Figure 3B: 1-mutant random walks by four random 
genotypes, one for each problem. Each genotype has 100 
genes, giving a total of 100 × 5 mutation steps. Mutation 
includes meth, negation of an allele, with a 0.01 probability. 
To generate the graphs in this figure, which are meant to 
represent changes in fitness as a result of 1-bit mutations, an 
ordinary mutation, i.e. bit flip, of a negative allele, consists of 
negating the negative allele. So when meth occurs, fitness 
values oscillate for a 2-5 subsequent mutations. This accounts 
for what looks like at this scale, stout vertical bars in the 
graph. Ordinarily, an ordinary mutation of a negative allele 
consists of replacing the negative allele with a randomly 
selected positive allele from G. 
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Figure 3C: 1-mutant random walks by four random 
genotypes, one for each problem. Each genotype has 100 
genes, giving a total of 100 × 5 mutation steps. Only the first 
160 steps are shown in this figure so that it can be compared 
with Figure 1B. Figure 3B shows the full 500 mutation steps.  

6. CONCLUSION 
This paper explored two methods by which adaptability of 
representations for inherently epistatic problems: constructional 
selection and methylation. Constructional selection, first 
proposed by [1], was investigated using our modified genome 
growth algorithm (MGG). The genotypes produced by MGG bore 

similar characteristics as that reported in [1], namely higher 
fitness and lower epistasis. Having established this, we subjected 
genotypes constructed by MGG to evolution via a genetic 
algorithm (GA) and compared their adaptability and end results 
with that of random genotypes. Although MGG genotypes 
achieved better end results in terms of higher fitness and lower 
epistasis than random genotypes, their adaptability was sluggish. 
This left us skeptical about the net benefits of using the more 
costly MGG genotypes in GAs and we set out to investigate if 
crossover was a culprit for the dismal adaptability of MGG 
genotypes. Contrary to our expectations, the experiments suggest 
that crossover serves two purposes in adaptation for MGG 
genotypes:  accumulation of good sub-solutions and the 
disbandment of accrued harmful mutations. The link between 
types of epistasis, whether synergistic or antagonistic, and 
crossover has been studied in biology [19]. With more details 
about the relationships between functions, the model proposed in 
this paper could be used to extend the biological studies to 
digital organisms. 

The epistatic nature of our test problems and hence sensitivity to 
change, led us to ask how variation of genotypes can be made 
one effect at a time. By default, crossover and mutation make 
two changes to a genotype; they remove and insert alleles so that 
the epistasis level of a genotype is doubly disturbed with larger 
unpredictable consequences for the fitness of the genotype. 
Methylation or the meth mechanism is a way to reduce such 
disturbance and make one change at a time to a genotype so that 
a GA has the opportunity to evaluate the intermediate genotype 
and possibly increase its intrinsic parallelism. The experiments 
confirm the utility of meth for MGG genotypes and random 
genotypes on our test problems. GA evolution with meth 
produced significantly fitter and more robust genotypes while 
conserving the diversity of the gene pool for future adaptations. 
These qualities of meth suggest its potential for building complex 
and robust but adaptable digital structures from random 
genotypes.  

Although MGG genotypes thrived with meth, their improvement 
was not significant enough to justify their higher initial cost. 
However, this disadvantage may only be so due to the 
environment of our test problems, which could be extended with 
additional constraints such as imposing a minimum or maximum 
threshold on fitness values of some or all functions, adding 
relationships between functions and creating a hierarchy of 
functions. In addition, GA evolution began with fully specified 
genotypes. If partially specified genotypes were allowed to 
compete and adapt, constructional selection might prove 
advantageous. In this situation, as in nature, there are no partial 
solutions; all so-called intermediate stages must be fit to survive 
and adaptations are explained in terms of “immediate selective 
advantage” [19] to the individual rather than “the ultimate 
benefits” they might confer to future individuals. Nevertheless, it 
seems there are limits to self-assembly in nature and “the larger-
scale structures require the differential activation of genes, in 
time and space” [19] which in artificial systems could be 
provided in part by meth. 

There are several roles open to meth in adaptation: as a 
mechanism to backtrack from a decision made earlier, a way to 
store alternate solutions for the future and preserve the diversity 



of the gene pool, a way to regulate genes, a mechanism to effect 
phenotypic polymorphism [19], or as a “suppressor mutation” in 
the ‘parliament of genes’ [19]. To some extent, this paper has 
exploited meth in the last sense. This was unplanned; and an 
important pre-condition to make this possible is N >> |G|. The 
impact of redundant representation on GAs is discussed in [20]. 
Runs without meth and N = 32 produced random and constructed 
genotypes with higher average fitness values than runs without 
meth and N = 100, but these values were lower than the average 
fitness values produced by runs with meth and N = 100 (compare 
Tables 8, 5A and 3C). Average fitness of runs with meth and N = 
32 were also lower than that of runs with meth and N = 100 by 
about 6 standard deviations. In each of the four problems, MGG-
GA with meth produced the best average population fitness. meth 
had a smaller impact when N = 32. While the average population 
fitness was improved approximately 11 standard deviations when 
N = 100, it only improved by about 4 standard deviations when N 
= 32. The many possible roles of meth would be an interesting 
subject for future investigations.  

Table 8. Averages and standard deviations of population 
fitness for six independent runs on each problem at iteration 

800 with Pm = 0.006 and N = 32.  

s rGA r_meth No. std devs MGG-GA c_meth 

0 1.2256 
0.0037 

1.2331 (j) 
0.0053 (k) 

5.7736  
(h-j)/k 

1.2220 
0.0059 

1.2320 
0.0046 

1 1.1252 
0.0073 

1.1545 
0.0029 

13.4828 1.1253 
0.0065 

1.1546 
0.0046 

2 1.1866 
0.0053 

1.2310 
0.0075 

1.1867 1.1823 
0.0059 

1.2311 
0.0096 

5 1.1738 
0.0088 

1.1887 
0.0037 

3.8108 1.1723 
0.0038 

1.1880 
0.0052 

  Average 6.0635   
 

Finally, there are several unexplored areas in the parameter 
space of MGG-GA. These include: |G| > |F|, |G| < |F|, making 
some genes position-dependent and taking into account the 
contributions of duplicate genes so that the frequency with which 
an allele appears in a genotype is significant.  
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