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ABSTRACT
Embedded Cartesian Genetic Programming (ECGP) is an
extension of Cartesian Genetic Programming (CGP) that
can automatically acquire, evolve and re-use partial solu-
tions in the form of modules. In this paper, we introduce
for the first time a new multi-chromosome approach to CGP
and ECGP that allows difficult problems with multiple out-
puts to be broken down into many smaller, simpler problems
with single outputs, whilst still encoding the entire solution
in a single genotype. We also propose a multi-chromosome
evolutionary strategy which selects the best chromosomes
from the entire population to form the new fittest individ-
ual, which may not have been present in the population. The
multi-chromosome approach to CGP and ECGP is tested on
a number of multiple output digital circuits. Computational
Effort figures are calculated for each problem and compared
against those for CGP and ECGP. The results indicate that
the use of multiple chromosomes in both CGP and ECGP
provide a significant performance increase on all problems
tested.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, Embedded Cartesian Ge-
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Defined Functions, Evolution, Digital Circuits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
For years researchers have been looking to biology for in-

spiration in finding new ways to increase the performance of
Genetic Programming (GP) [8], so that it might be capable
of solving larger, more complex problems. One technique
called Cartesian Genetic Programming (CGP), which rep-
resents programs as directed graphs (rather than trees as in
GP) has been shown to be more computationally efficient
than GP on a series of problems [13, 12]. Recently CGP has
been developed further to form Embedded CGP (ECGP),
which is capable of constructing and evolving modules (sim-
ilar to Automatically Defined Functions in GP [9]) that are
called from the main CGP program. ECGP has been shown
to be more computationally efficient and to scale better with
problem complexity than CGP on a number of problems [22,
24, 23]. In this paper, we propose a multi-chromosome ap-
proach to CGP and ECGP, which allows complex problems
with multiple outputs to be broken down into many, smaller
problems with single outputs that are co-evolved, whilst rep-
resenting the entire problem in a single genotype. We also
introduce a multi-chromosome evolutionary strategy which
behaves similarly to an intelligent crossover operator.

The plan for the paper is as follows: section 2 is an
overview of CGP, ECGP and other related work. In sec-
tion 3 we describe the proposed multi-chromosome appro-
ach. The details of our experiments are shown in section 4
followed by the results and comparisons for all of the exper-
iments in section 5. Section 6 gives conclusions and some
suggestions for future work.

2. BACKGROUND

2.1 Cartesian Genetic Programming (CGP)
CGP was invented by Miller and Thomson [13] for the

purpose of evolving digital circuits and represents a pro-
gram as a directed graph (that for feed-forward functions is
acyclic). Originally CGP used a program topology defined
by a rectangular grid of nodes with a user defined number
of rows and columns. However, later work on CGP, gave
better results when the number of rows was chosen to be
one. In CGP, the genotype is a fixed length representation
and consists of a list of integers which encode the function
and connections of each node in the directed graph. How-
ever, the number of nodes in the program (phenotype) can
vary but is bounded, as not all of the nodes encoded in the
genotype have to be connected. This allows areas of the
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Figure 1: A CGP genotype and corresponding phe-
notype for the 2-bit multiplier (4 inputs, 4 out-
puts). The underlined genes in the genotype en-
code the function of each node, the remaining genes
encode the node inputs. The function lookup ta-
ble is: AND(0), XOR(2), OR(3). The index labels
are shown underneath each program input and node
in the genotype and phenotype. The inactive areas
of the genotype and phenotype are shown in grey
dashes.

genotype to be inactive and have no influence on the phe-
notype, leading to a neutral effect on genotype fitness called
neutrality. This unique type of neutrality has been investi-
gated in detail [13, 25] and found to be extremely beneficial
to the evolutionary process on the problems studied.

Each node is encoded by a number of genes. The first
gene encodes the function the node represents and the re-
maining genes encode where the node takes its inputs from.
The nodes take their inputs in a feed forward manner from
either the output of a previous node or from the program
inputs (terminals). Also, the number of inputs that a node
has is dictated by the arity of its function. The program
inputs are numbered from 0 to n-1 where n is the num-
ber of program inputs. The nodes in the genotype are also
numbered sequentially starting from n to n+m-1 where m
is the user-determined upper bound of the number of nodes.
If the problem requires k program outputs then k integers
are added to the end of the genotype, each one encoding a
pointer to the output of a node in the graph where the pro-
gram output is taken from. These k integers are initially set
as pointers to the outputs of the last k nodes in the geno-
type. Fig. 1 shows a CGP genotype and how it is decoded
(a 2-bit digital multiplier circuit).

2.2 Embedded Cartesian Genetic
Programming (ECGP)

ECGP is currently being developed by Walker and Miller
[22] and incorporates ideas from a technique known as Mod-
ule Acquisition [1] with CGP. This allows for the automatic
acquisition, evolution and re-use of partial solutions (re-
ferred to as modules) in CGP. This paper only gives a brief
overview of ECGP, as there is inadequate space to fully ex-
plain the technique. For more information on ECGP, please
refer to [22, 24, 23].

The ECGP genotype still consists of a list of integers that
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0:0 50:0 43:0 2:0 51:0 50:0 50:0 52:0 53:0 4:0
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4 5
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CGP genotype:

Same CGP genotype represented as an ECGP genotype:

Figure 2: Examples of CGP and ECGP genotypes
encoding the same phenotype for the 2-bit multiplier
problem (4 inputs, 4 outputs). For each encoded
ECGP node, the underlined gene encodes the func-
tion and node type, the remaining genes encode the
node inputs. Every node encoded in the CGP geno-
type represents a single output primitive function,
therefore every node encoded in the ECGP geno-
type is of node type 0 (see the text for explanation)
and the second integer of each pair encoding the
node inputs is always 0. The node index is under-
neath each node.

encode the connections and functions of each node of the
directed graph. However, the ECGP genotype is now a vari-
able length representation (in terms of genes) in which the
number of genes in the graph is bounded. The number of
genes in the ECGP genotype varies as a result of the com-
pression and expansion of modules (how modules are cre-
ated and destroyed), the re-use of modules elsewhere in the
ECGP genotype and the module mutation operators alter-
ing the number of module inputs.

Another structural difference is that now each gene is en-
coded by a pair of integers. For each node encoded in the
ECGP genotype, the first integer pair encodes the primi-
tive function or module (by their unique identifier) that the
node represents and the node type. Node types allow the
identification of nodes encoded in the genotype as follows:
primitive functions (node type 0), modules that contain an
original section of the genotype (node type I) and modules
that contain a re-used section of the genotype (node type
II). Different node types need to be identified, as genetic
operators act differently on the nodes encoded according to
their type. The remaining integer pairs encode the inputs of
each node. The first integer of each pair encodes the index
of the node or program input (terminal) in the genotype and
the second integer encodes the output of the node (nodes in
ECGP can have multiple outputs). The number of inputs
and outputs that a node has is dictated by the arity of its
function. In Fig. 2, an example of how to convert from a
CGP to an ECGP genotype is shown.

2.2.1 The Use of Modules in Embedded Cartesian
Genetic Programming

A module is represented as a bounded variable length
genotype that has the same characteristics as an ECGP
genotype. The module genotype consists of a list of inte-
gers and is split into two parts: the module header and the
module body. The module header defines the structure of
the module and consists of four integers which encode the
module identifier, the number of module inputs, the number
of nodes contained in the module and the number of module
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Figure 3: The genotype and corresponding pheno-
type of a module representing a half adder. The
first section of the genotype is the module header.
The underlined genes in the module body encode
the function of each node, the remaining genes en-
code the node inputs. The function lookup table
is: AND(0), XOR(2), OR(3). The index labels are
shown underneath each module input and node in
the genotype and phenotype. The inactive areas
of the genotype and phenotype are shown in grey
dashes. The dotted box represents the edges of the
module.

outputs respectively. The module body defines the connec-
tivity of the module by encoding the connections and func-
tions of the nodes contained in the module and the module
outputs (similar to program outputs) in the same manner
as an ECGP genotype. An example of a module genotype
and corresponding phenotype is shown in Fig. 3.

The size of a module genotype is determined by the num-
ber of nodes and module outputs that it encodes. The num-
ber of module inputs, nodes contained in the module and
the number of module outputs that a module can have is
restricted between a lower and upper bound. More details
about these restrictions can be found in [22, 24, 23]. In its
current form, ECGP only allows modules to contain nodes
representing primitive functions rather than nodes repre-
senting other modules. The nodes contained inside the mod-
ule are immune from the genotype point mutation operator,
but the module itself is allowed to be mutated by the module
mutation operators (including operators for module point
mutation, adding/removing module-inputs and adding/re-
moving module-outputs. Further details on the module mu-
tation operators can be found in [22, 24, 23]).

Modules are created by the compress operator by encapsu-
lating all the nodes between two random points in the geno-
type (in accordance with the module restrictions). Modules
can also be destroyed by the expand operator, which re-
inserts the contents of a module into the genotype, replac-
ing the node representing the module. More information on
both of these operators can be found in [22, 24, 23]. Module
genotypes are stored in a non-restricted, dynamic module
list. The module list is updated every generation with the
module list of the fittest individual in the previous genera-
tion. This creates a regulatory control of the module list, so
that bloat never occurs. The module list is an extension of
the primitive function list, in which any node in a genotype
could be mutated to to use any available module (allowing
the re-use of code elsewhere in the genotype, from different
chromosomes in the same genotype) or primitive function

(providing that the rules on node type are obeyed. See [22,
24, 23] for more information on node types).

2.3 Multiple Chromosomes in Genetic
Programming

There have been several previous approaches which can
be said to have used multiple chromosomes within GP [7,
11, 2, 18, 15]. One problem encountered when reviewing
the published work on multi-chromosome approaches is the
differing definitions of a chromosome. Therefore the section
starts with publications in which the authors explicitly de-
fine as being multi-chromosomal, and then discusses other
approaches which may be viewed as being implicitly multi-
chromosomal.

Hillis was one of the first to mention multiple chromo-
somes within the literature in a paper on co-evolving par-
asites [7]. This paper is mostly cited for its use of co-
evolution, but tucked away in the text is a description of
how each individual in his system is composed of fifteen pairs
of chromosomes. The co-evolved sorting networks which he
produces perform well, outperforming the previous human-
designed best networks available.

Multiple chromosomes have also been used in other ways
within GP. Rick Chow’s work on evolving genotype-phenot-
ype mappings [4], described a data chromosome and a map-
ping chromosome. The mapping chromosome is a permu-
tation of the numbers 0 to n, where n is the length of the
chromosomes. The mapping chromosome is then used to
order the data chromosome to produce the final phenotype.
The authors’ found it effective at solving deceptive problems
and some problems which have been identified as GA-hard.
Similarly, [5] used an approach which applied a multiploid
genotype with a mapping chromosome to the multiple knap-
sack and set covering problems. However, in this approach
the mapping chromosome is used to determine which chro-
mosome each gene in the expressed genotype is taken from.

More recently Mayer investigated how two part crossover,
seen in natural systems when multiple chromosomes are
used, affected search [11]. The genotype was split up into
many chromosomes and a two stage crossover comprising of
a standard multi-point crossover and a chromosome shuffling
stage was introduced. Chromosome shuffling involves imple-
menting a mixing up of the chromosomes that the child gets
from each of the parents, so it may receive chromosomes 1
and 4 from parent 1 and the rest from parent 2. This system
was tested on a range of symbolic regression problems and
whilst the multi-chromosomal system performed better on
some problems, overall there was no clear advantage.

The number of chromosomes which are optimal for a prob-
lem has also been investigated [2, 3] and the results on a
simple symbolic regression problem seemed to indicate that
not only were multiple chromosomes an advantage within
the system but having multiple copies of each chromosome
also aided evolution.

In addition to those instances where multiple chromo-
somes have been explicitly used, there are also several sys-
tems which could be viewed in a multi-chromosomal way.

Much work has recently been done on the problem of
evolving teams of individuals to perform a particular task
[10]. Initially work concentrated on traditional team-based
problems, like predator-prey problems with multiple preda-
tors working together [6]. However, more recently, the prob-
lem base has been extended to include symbolic regression
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problems and other less obvious problems for teams [18, 19].
When all the members of a heterogenous team are evolved
as parts of a single entity, then it seems to be merely a dif-
ference in terminology between one that calls these parts the
chromosomes in a larger genotype or one that calls them in-
dividuals who are part of a larger genotype. Therefore the
success of teams across a range of problems, demonstrates
the ability of multi-chromosomal systems to be valuable [18,
6, 19].

Another approach which can be viewed within the multi-
chromosomal paradigm is that of Multi Expression Pro-
gramming [15]. Within this system collections of statements
are evolved as linear genetic programs. Each statement may
call on the previous statements within the genotype to build
up more complex expressions, however the fitness of the in-
dividual is not predefined to come from the result of any one
of the statements. Instead the fitness of every statement is
evaluated and the fitness of the individual is taken as being
the best of these values. This technique has been used to
evolve digital circuits for simple adders and multipliers [14]
and the knapsack problem [16].

3. A MULTI-CHROMOSOME APPROACH
TO STANDARD AND EMBEDDED CAR-
TESIAN GENETIC PROGRAMMING

3.1 Multi-chromosome Representation
The difference between CGP or ECGP genotype (describ-

ed earlier in 2.1 and 2.2) and a Multi-chromosome CGP
or Multi-chromosome ECGP genotype, is that the Multi-
chromosome CGP or Multi-chromosome ECGP genotype is
divided into a number of equal length sections called chro-
mosomes. The number of chromosomes present in the geno-
type of an individual is dictated by the number of program
outputs required by the problem, as each chromosome is
connected to a single program output. This allows large
problems with multiple outputs (normally encoded in a sin-
gle genotype) to be broken down into many smaller problems
(each encoded by a chromosome) with a single output. The
idea is that this approach should make the problem easier
to solve. Already, evolving the outputs to a problem incre-
mentally has been shown to improve evolvability [20], but
in this paper we are evolving all of the outputs simultane-
ously. By allowing each of the smaller problems to be en-
coded in a chromosome, the whole problem is still encoded
in a single genotype but the interconnectivity between the
smaller problems (which can cause obstacles in the fitness
landscape) has been removed.

Each chromosome contains an equal number of nodes, and
is treated as a genotype of an individual with a single pro-
gram output. The inputs of each node encoded in a chro-
mosome are only allowed to connect to the output of earlier
nodes encoded in the same chromosome or any program in-
put (terminals). This creates a form of compartmentaliza-
tion in the genotype which supports the idea of removing
the interconnectivity between the smaller problems encoded
in each chromosome. An example of a Multi-chromosome
CGP genotype for the 2-bit multiplier problem is shown in
Fig. 4. The 2-bit multiplier problem has four outputs, so
it is broken down into four smaller problems. Each of the
smaller problems has one output and is encoded in a single
chromosome.
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154 203

0 1 3 2 41 22

104 153

1 3 2 0 11 42

54 103

0 0 2 2 24 5

4 53

21 95 142 201
oc0

c3

c2c1c0

oc1
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oc3

Figure 4: A Multi-chromosome CGP genotype en-
coding a 2-bit multiplier (four outputs, oc0−oc3) con-
taining four chromosomes (c0 − c3), each consisting
of fifty nodes

The multi-chromosome approach to CGP and ECGP sha-
res some similarities with another GP technique known as
Parisian GP [17], which is inspired by the Michigan Appro-
ach to Classifier Systems, in that both techniques form a so-
lution to a problem from sub-solutions. However, in Parisian
GP, an individual only represents part of a solution, and the
whole solution is made up of a set of individuals from the
population. This differs from the multi-chromosome appro-
ach to CGP and ECGP, as each chromosome encodes a solu-
tion to a distinct sub-problem and the solution to the entire
problem is contained in a single individual, which consists
of a number of chromosomes, each encoding a different sub-
problem. Another difference between the two techniques is
that Parisian GP uses two separate fitness functions; a local
fitness function to assess each individuals contribution and a
global fitness function to evaluate how well the set of individ-
uals solves the problem. Whereas the multi-chromosome ap-
proach to CGP and ECGP uses a single fitness function (see
Section 3.2) to evaluate how well each chromosome solves
the sub-problem it has been assigned. When all of the sub-
problems are solved, the entire problem is also solved.

All the chromosomes for an individual are contained in
a single genotype, therefore a single module list is used
in Multi-chromosome ECGP, which stores modules created
in any chromosome contained in the genotype (rather than
having an individual module list for each chromosome, which
we will investigate in future work). This allows the shar-
ing and re-use of genetic information associated with high
fitness, between the chromosomes in the genotype of an in-
dividual. Therefore a partial solution which is present in
all of the chromosomes, only needs to be constructed in one
chromosome, and then re-used in the other chromosomes.
In theory, this could re-introduce the interconnectivity be-
tween the smaller problems encoded in each chromosome,
by exploiting the similarities between the chromosomes. Re-
using relevant information from one chromosome in a differ-
ent chromosome is the same concept as connecting a section
of one sub-problem to another sub-problem in the single
chromosome approach, but at the same time keeping each
of the chromosomes separate.

3.2 Fitness Function and Multi-chromosome
Evolutionary Strategy

The fitness function used in multi-chromosome approach
is the same as the fitness function used in single chromo-
some approach except for one small change. The output
of each chromosome in multi-chromosome approach is cal-
culated and assigned a fitness value based on the hamming
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Figure 5: The (1 + 4) multi-chromosome evolution-
ary strategy used in Multi-chromosome CGP and
Multi-chromosome ECGP. px,g - parent x at gen-
eration g, cy - chromosome y, f(px,g, cy) - fitness of
chromosome y in parent x at generation g, f(px,g) -
fitness of parent x at generation g.

distance from the perfect solution of a single output, whereas
in ECGP a fitness values is assigned to the whole geno-
type based on the hamming distance from the perfect so-
lution over all the outputs (a perfect solution has a fitness
of zero). Therefore, the multi-chromosome approach has n
fitness values, where n is the number of program outputs,
per individual. This allows each chromosome of an indi-
vidual to be compared with the corresponding chromosome
of other individuals in the population by using a (1 + 4)
multi-chromosome evolutionary strategy.

The (1 + 4) multi-chromosome evolutionary strategy se-
lects the best chromosome at each position from all of the
individuals in the population and generates a new best of
generation individual containing the fittest chromosome at
each position. The new best of generation individual may
not have existed in the population, as it is a combination of
the best chromosomes from all the individuals, so it could be
thought of as a “super” individual. The multi-chromosome
version of the (1 + 4) evolutionary strategy therefore be-
haves as an intelligent multi-chromosome crossover opera-
tor, as it selects the best parts from all the individuals. The
overall fitness of the new individual will also be better than
or equal to the fitness of any individual in the population
from which it was generated. An example of the multi-
chromosome evolutionary strategy is shown in Fig. 5.

An outline of the (1 + 4) multi-chromosome evolutionary
strategy is shown below:

1. Randomly generate an initial population of 5 geno-
types and select the fittest.

2. Carry out point-wise mutation on the winning parent
to generate 4 offspring.

3. Construct a new generation with the winner and its
offspring.

4. Generate a winner from the current population using
the following rules:

(a) Select a winning chromosome at each position us-
ing the following rules:

i. If offspring chromosome has a better fitness,
the best becomes the winner.

ii. Otherwise, an offspring chromosome with the
same fitness as the best chromosome is ran-
domly selected.

iii. Otherwise, the parent chromosome remains
the winner.

(b) Go to step a) until all chromosomes are evaluated.

5. Go to step 2 unless the maximum number of genera-
tions is reached or a solution is found.

4. EXPERIMENT DETAILS
The performance of both the multi-chromosome and sin-

gle chromosome versions of CGP and ECGP were tested on
a number of multiple output problems shown in Table 1.
The parameters used for the multi-chromosome and single
chromosome versions of CGP and ECGP are shown in Ta-
ble 2. The probability values chosen for the operators were
taken from [24]. The digital multiplier and Arithmetic Logic
Unit problems used function set 1, whilst the other problems
used function set 2.

5. RESULTS
Computational effort figures were calculated using the for-

mula found in [8] with z=99% and data from fifty indepen-
dent runs of each problem. The computational effort figures
for both the multi-chromosome and single chromosome ver-
sions of CGP and ECGP are shown in Table 3.

For all problems tested over fifty runs, CGP, ECGP, Multi-
chromosome CGP and Multi-chromosome ECGP produced
100% successful solutions except for the Arithmetic Logic
Unit, where CGP and ECGP failed to find a solution after
twenty million generations, thus indicating how difficult it is
to evolve a solution to the Arithmetic Logic Unit problem.
The computational effort figures in Table 3 for CGP and
ECGP applied to the Arithmetic Logic Unit are a measure
of the computational effort required to find the best possi-
ble solution when the runs were stopped after twenty million
generations.

Comparing the results for CGP and Multi-chromosome
CGP, it is clear to see the use of multiple chromosomes to
break down the test problems into smaller, simpler problems
provides a distinct advantage. Multi-chromosome CGP sig-
nificantly outperforms CGP on all of the problems tested.
Multi-chromosome CGP improves performance of between
approximately, 3 and 392 times when compared with CGP
(see Table 3). It is also worth noting that the speedup in-
creases with problem complexity on the adder and multi-
plier problems, implying that Multi-chromosome CGP may
perform even better on larger, more complex problems of
this nature. A similar trend is also noticed when compar-
ing the computational effort figures for ECGP and Multi-
chromosome ECGP, with a performance increase of between
approximately, 1.3 and 80 times. The variance between
the speedup times for multi-chromosome CGP and multi-
chromosome ECGP (compared with CGP and ECGP) for
different problems, appears to be related to the number of
problem outputs. Notice how the speedup increases be-
tween the 2-bit and 3-bit adder and multiplier problems,
as the number of outputs increase on both problems. The
biggest speedup recorded was found on the 4x1-bit com-
parator problem, which is also the problem with the most
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Table 1: The experimental problems used to test the performance of the single and multi-chromosome versions
of CGP and ECGP.

Problem Inputs Outputs Description
2-bit Adder 5 3 The sum of two 2-bit numbers
3-bit Adder 7 4 The sum of two 3-bit numbers

2-bit Multiplier 4 4 The product of two 2-bit numbers
3-bit Multiplier 6 6 The product of two 3-bit numbers

3:8-bit De-multiplexer 3 8 Uncompresses a compressed 3-bit signal into its eight components
4x1-bit Comparator 4 18 Compares all combinations of inputs for <, =, >

Arithmetic Logic Unit 8 17 Performs addition, subtraction, multiplication & protected division

Table 2: The parameters used for the single chromosome and multi-chromosome versions of CGP and ECGP
Parameter Value

Population size 5
Initial chromosome size 100 nodes (300 genes)

Initial genotype size Initial chromosome size x No. of chromosomes
Function set 1 AND, AND (one input inverted), OR, XOR
Function set 2 AND, NAND, OR, NOR

Genotype point mutation rate 3% (9 Genes)
Genotype point mutation probability 1

Compress/Expand probability 0.1/0.2
Module point mutation probability 0.04

Add/Remove input probability 0.01/0.02
Add/Remove output probability 0.01/0.02

Maximum module size 5 nodes
Module list initial state Empty

Table 3: The computational effort and speedup figures for CGP, ECGP, Multi-chromosome CGP (MC-CGP)
and Multi-chromosome ECGP (MC-ECGP)

Problem CGP ECGP MC-CGP MC-ECGP Speedup Speedup Speedup
(1) (2) (3) (4) (1) Vs. (3) (2) Vs. (4) (3) Vs. (4)

2-bit Adder 469,200 311,200 140,800 242,000 3.33 1.29 0.58
3-bit Adder 8,190,400 2,166,000 1,286,000 1,230,400 6.36 1.76 1.05

2-bit Multiplier 52,000 42,000 11,200 22,400 4.64 1.88 0.50
3-bit Multiplier 18,509,600 7,103,600 873,600 867,600 21.19 8.19 1.01

3:8-bit De-multiplexer 75,200 48,400 4,400 6,400 17.09 7.56 0.69
4x1-bit Comparator 3,922,000 1,548,600 10,000 19,200 392.20 80.66 0.52

Arithmetic Logic Unit 100,000,000 100,000,000 1,908,000 1,548,800 52.41 64.57 1.23
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outputs. This suggests problem complexity and the num-
ber of program outputs are directly linked, implying the
multi-chromosome approach is less affected by an increase
in problem complexity than the single chromosome appro-
ach.

The noticeable speedup caused by the use of multiple
chromosomes clearly indicates that by breaking down these
complex, difficult problems into smaller, simpler problems,
where all interconnections between the smaller problems
have been severed, makes the whole problem much easier
to solve. The multi-chromosome approach could therefore
be used to evolve much harder, multiple-output problems
(such as digital circuits), which CGP and ECGP currently
fail to solve. The only downside of the multi-chromosome
approach is the solutions are much larger (in terms of num-
ber of gates used) than the optimal solution (however, our
objective in this paper is not to find efficient solutions, our
main concern is with improving performance). This appears
to be a result of severing the interconnections between the
smaller problems, as early sections of the evolved solution
which are normally re-used later in the solution are being
replicated. A possible approach to reduce the size of the
evolved solution is explained in Section 6.

Comparing the results of Multi-chromosome CGP and
Multi-chromosome ECGP, shows Multi-chromosome ECGP
performs worse than Multi-chromosome CGP on some of
the problems where ECGP performs better than CGP. This
suggests breaking problems down into smaller problems, re-
duces the complexity of the problem by such a degree that
the overhead of module acquisition in Multi-chromosome
ECGP increases the time taken to find a solution. A sim-
ilar trend is observed for simple problems in ECGP [24,
23]. However, the computational effort figures show Multi-
chromosome ECGP does perform better than Multi-chrom-
osome CGP, when a problem reaches a higher level of diffi-
culty (for example the 3-bit multiplier). This suggests the
sharing of information between chromosomes is beneficial
to the performance of multi-chromosome ECGP. Therefore,
even if each sub-problem was encoded in a separate CGP
program, and all of the programs were evolved in parallel,
multi-chromosome ECGP would still perform better due to
the re-use of partial solutions between chromosomes.

To see how much of an impact the multi-chromosome evo-
lutionary strategy had on the results, further experiments
were carried out using Multi-chromosome CGP, Multi-chro-
mosome ECGP and a standard (1 + 4) evolutionary strat-
egy on the 2-bit and 3-bit adder problems. The results
clearly show the use of a standard (1 + 4) evolutionary strat-
egy with Multi-chromosome CGP and Multi-chromosome
ECGP, does not perform as well as Multi-chromosome CGP
and Multi-chromosome ECGP with the multi-chromosome
evolutionary strategy. This implies the use of the multi-
chromosome evolutionary strategy to select the fittest in-
dividual in the population (by selecting the fittest chromo-
somes from each position), is beneficial to the performance
of Multi-chromosome CGP and Multi-chromosome ECGP,
in contrast to the selection of the fittest individual based on
the individual’s overall fitness (the sum of all of its chro-
mosome fitness values). However, Multi-chromosome CGP
and Multi-chromosome ECGP with a (1 + 4) evolution-
ary strategy does perform marginally better than the single
chromosome versions of CGP or ECGP with a (1 + 4) evolu-
tionary strategy respectively. Therefore implying the multi-

chromosome evolutionary strategy is not solely responsible
for the improvement in performance, but the use of a multi-
chromosome representation, as opposed to a single chromo-
some representation (as in CGP and ECGP), also improves
the performance of both CGP and ECGP.

6. CONCLUSION AND FUTURE WORK
We have presented for the first time a multi-chromosome

approach to CGP and ECGP and the use of a multi-chromo-
some evolutionary strategy. The use of multiple chromo-
somes in both CGP and ECGP has been shown to signifi-
cantly speedup performance, when compared with the single
chromosome versions of CGP and ECGP on all of the prob-
lems tested. This shows that breaking down a large, com-
plex problem into many smaller, simpler problems makes it
easier to solve the whole problem. However, in this paper
each sub-problem was assigned to a chromosome. In our fu-
ture work, we intend to allow the number of chromosomes
used, and the splitting of the problem into sub-problems, be
determined by evolution.

The size of the evolved solutions using multi-chromosome
CGP and ECGP, tend to be larger than those found with
CGP. However, one advantage of the representation used
in the multi-chromosome approach is the whole solution is
present in a single genotype, which can be easily converted
to a single chromosome genotype (as in CGP or ECGP), by
removing the chromosome restrictions. This feature of the
representation allows us in our future work to investigate
the use of Multi-chromosome CGP and Multi-chromosome
ECGP to evolve efficient solutions, using the technique from
[21]. Once a solution is found, the fitness function is changed
to minimise the total number of nodes used in the pheno-
type of the solution (either by minimising each chromosome
phenotype or the phenotype of the whole solution). This al-
lows the evolved solutions from multi-chromosome CGP and
ECGP, to be minimised to a size comparable to those found
using CGP or ECGP. Alternatively, the multi-chromosome
approach in this paper could also be applied to GP, so that
it can be applied to complex, multiple-output problems.

We also intend to investigate the use of neutrality in the
Multi-chromosome approach, in which it is possible to have
active and inactive chromosomes (for example, on a problem
with four outputs, twenty chromosomes could be allowed in
the genotype, but only four of them would be used simulta-
neously).
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