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ABSTRACT
Evolutionary Algorithms (EAs) have been largely applied to
optimisation and synthesis of controllers. In spite of several
successful applications and competitive solutions, the sto-
chastic nature of EAs and the uncertainty of the results have
considerably hindered their use in industrial applications. In
this paper we propose a Genetic Algorithm (GA) for tun-
ing controllers for classical first and second order plants with
actuator nonlinearities. To increase the robustness of the al-
gorithm we introduce two features: 1) genetic operators that
perform directional mutations, 2) selection tournaments or-
ganized by genome vicinity. The experiment results show
that the proposed GA is able to guarantee high performance
and low variance in the results from different runs. The in-
creased reliability, compared to the results from a classical
GA, seems to favour particularly the application of Evo-
lutionary Computation (EC) in tuning of control systems,
where, thanks to this approach, a large search space can be
searched repeatedly with high consistency in the solutions.

Categories and Subject Descriptors: I.2.8 [Problem
solving, Control Methods and Search] - Control Theory;
G.1.6 [Optimization] - Constrained Optimization.

General Terms: Algorithms, Design, Reliability

Keywords: Control Systems, Design and Tuning, Genetic
Algorithms, Nonlinear Control

1. INTRODUCTION
Evolutionary computation (EC) techniques have been ap-

plied to control system problems of different nature, from
classical analogue/digital control, to fuzzy and neural con-
trol [7, 9, 10, 11, 15, 16, 21, 22, 19, 20, 5, 8, 13, 12, 4, 14]. A
considerable effort has been made trying to identify which
evolutionary algorithm better suits a given control problem
[6]. Most EA approaches to the synthesis and tuning of
control systems focus on the performance of the obtained
solutions in comparison to the ones provided by traditional
techniques. However, in spite of considerable improvements
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that EC techniques have shown in particular control prob-
lems [15, 16, 21, 22, 8, 14], traditional and well known ap-
proaches described in control textbooks [18, 2, 17, 1], often
supported by mathematical proofs of stability, are still pre-
ferred for most control tasks. This is mainly due to the
stochastic nature of EC search processes that do not guar-
antee a minimum performance in their outcomes. Lack of
theoretical justifications and simulation risks also represent
an obstacle. These facts have considerably limited the use
of EC techniques for the design of online optimisation and
safety- or mission-critical systems.

The GA proposed in this paper tackles the issue of provid-
ing a reliable algorithm that minimises the effect of EAs’ sto-
chastic nature and the high variance of solutions provided by
different runs. The problem on which the algorithm is tested
consists of tuning feedback controllers for first and second
order plants that present actuator nonlinearities. The al-
gorithm allows the synthesis of robust, linear and nonlinear
bang-bang control using a PID core, a pre-filter, an anti-
windup device and additional filters on the feedback. The
tuning is extended to all the controller parameters and is
not limited to just three PID values as in [12]. The ap-
proach presented in [19, 20], which proposes the tuning of a
controller for a second order plant with actuator nonlineari-
ties, was adopted and enhanced to tackle the search process
effectiveness and reliability.

To pursue this task, two features were added to a stan-
dard GA. The first is the use of a set of genetic operators
that perform directional mutation. Individuals store a copy
of their parents’ genotype in their own genotype. Success-
ful individuals can therefore identify a promising climbing
direction and generate their offspring according to that in-
formation. A second characteristic involves organising selec-
tion tournaments based on the genotype vicinity. Although
a speciation mechanism is not implemented, the approach
is meant to preserve separate groups of individuals that are
climbing different areas of the search space. The population
diversity is also better preserved.

The results outline how these features adopted in a stan-
dard GA can considerably affect the performance of the
search process in terms of computational efficiency but, above
all, results quality and reliability.

2. METHODS
In this section we first describe the control problems used

as bench marks for the GA. Following, we describe 1) the
use of tournaments organised by genome proximity, 2) the
use of GA operators that apply directional mutation and the
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interaction of the two. Finally, we describe the general GA
architecture used in the experiments.

2.1 The Control Problems
The plants chosen to run the optimisation on controllers

are expressed by the transfer functions

G1(s) =
K

(τs + 1)
, (1)

G2(s) =
K

(τs + 1)2
, (2)

G3(s) =
K

(as + 1)(bs + 1)
. (3)

The transfer functions represent, in the frequency domain,
the linear systems expressed respectively by the differential
equations

A1

dy(t)

dt
+ y(t) = Ku(t) , (4)

B2

d2y(t)

dt2
+ B1

dy(t)

dt
+ y(t) = Ku(t) , (5)

C2

d2y(t)

dt2
+ C1

dy(t)

dt
+ y(t) = Ku(t) , (6)

where A1 = τ , B2 = τ 2, B1 = 2τ , C2 = ab, C1 = a + b.
Detailed descriptions of physical models represented by the
previous linear equations are proposed in control textbooks
[2, 18]. In the experiment shown in this paper, mathemat-
ical models are used for the simulation without addressing
particular physical systems.

Equation 1 is a first order plant with gain K and a single
pole in 1/τ . Equation 2 represents a second order plant
with coincident poles in 1/τ as described in [2] and later
used as bench mark for EAs in [10, 11, 19]. Equation 3
is a second order plant with distinct poles in 1/a and 1/b.
In order to obtain robust control, as in [19, 10, 11], the
simulation of the controlled systems is carried out for the
four states corresponding to the four combinations of the
values K = 1, 2 and τ = 0.5, 1.

The linear plants as described by the previous equations
do not constitute a particular challenge in control engineer-
ing. Methods for the synthesis and tuning of such con-
troller are presented in traditional control textbooks [2, 18,
1]. When actuator nonlinearities are introduced though,
the control becomes nonlinear and the synthesis and tun-
ing more difficult. In this experiment, we set a limitation
of the control variable to ±10 Volts and a rate limit of
1000Volts/sec for the plant of equation 1; saturation ±40
Volts and rate limit 10,000 Volts/sec for the plants of equa-
tions 2 and 3. Overshoot within 2% is also required.

The control problem of equation (2) is followed, in [2,
pages 697-700], by a traditional method of synthesis for a
PID with prefilter. The control variable is unconstrained
and the design is linear and time-optimal with respect to the
time domain index ITAE, the integral of the time-weighted
absolute error

ITAE =

Z t2

t1

|e(t)| · tdt , (7)

where e(t) is the error between the reference signal and the
plant output. The ITAE index is used as the main perfor-
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Figure 1: Directional mutation after random mu-
tation in combination with local tournament selec-
tion. Representation in a two-dimensional fitness
landscape.

mance indicator in the experiments presented in this paper.
In section 2.4.1, a detailed description of the fitness function
is given.

2.2 Selection Tournaments Organised by Genome
Vicinity

Ill-behaved fitness landscapes are likely to present several
hills, different climbing directions and local optima. When
the search space is also very large, the initial distribution of
the population can greatly affect the final solution. For our
control problems, preliminary experiments have shown that
the quality of the initial population, randomly generated or
seeded with known solutions, can considerably change the
quality and characteristic of the outcome. It was observed
that during the initial generations, good quality seeds in the
population were taking over, destroying all the randomly
generated individuals. Although a low selection pressure
could work in this case, we attributed the problem to the
competition between individuals that are far located in the
search space.

To avoid this problem, we implemented a tournament se-
lection that gathers individuals in groups by genotype prox-
imity. Thus, the selection pressure is increased among indi-
viduals in the same search space area, and decreased among
individuals far located. This way diversity is well preserved.
The difference with a speciation mechanism is that the pop-
ulation eventually converges automatically without imple-
menting extinction. Clustering is performed by considering
the normalised distances from one individual to the others,
gathering the closest k, where k is the size of the tourna-
ment, and repeating the operation starting from the k+1 th
individual until the whole population is covered.

2.3 Directional Exploration
Gradient information is used when performing three dif-

ferent special operators that implement directional mutation
after random mutation, directional mutation after crossover
and global directional mutation as explained as follows.

2.3.1 Directional Mutation after Random Mutation
As shown in figure 1, the idea is to use a successful mu-

tation that has brought a fitness increment in the previous
generation and to explore the search space in the same di-
rection. In the figure, x1 and x2 are two dimensions of a
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Figure 2: Directional mutation after crossover.
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Figure 3: Global directional mutation.

search space, the point vi,k represents the individual i in
the population at generation k and vi,k+1 a mutation of vi

at generation k + 1. The new offspring vi,k+2 is generated
by applying the same mutation that had brought a fitness
improvement. To make it more effective, a random pertur-
bation is applied and two offspring are generated. When the
selection mechanism exerts selection pressure on individuals
with similar genome, as explained previously in section 2.2,
it is likely that one of the two siblings will win over the other.
In this way, a successful path will likely follow the gradient,
driving the search in the steepest direction.

2.3.2 Directional Mutation after Crossover
When the individual is generated from two parents, a sim-

ple mechanism can be applied. The vector that identifies the
difference between the child and one parent is taken as mu-
tation vector and applied again to the child. In the experi-
ment we have chosen to consider the parent that is closer to
the child. A more complex mechanism that considered both
parents and a linear combination of the respective distances
was also experimented with. However, the results did not
justify the implementation of such a complex operator and
the first solution was maintained. The situation is pictured
in figure 2.

2.3.3 Global Directional Mutation
When the population is distributed on one side of a hill,

or the landscape presents a slope, it is possible to identify a
direction along which there is a steady fitness gradient. The
direction can be identified by summing all the vectors rep-
resenting the difference between two individuals where the
first has a better fitness than the second. Different methods

can be used to compute an average fitness gradient. Here we
simply sort the individuals from the best to the worst and
sum the n-1 vectors obtained by subtracting two successive
individuals:

m =

n−1X
i=1

(vi − vi+1), (8)

where n is the population size.
It is important to notice that if the population does not

present a fitness gradient, for example because it is dis-
tributed symmetrically around an optimum, the summation
should provide a small, near to zero vector. In that case,
the application of this vector as mutation has little effect
on the individuals. Hence, the average directional muta-
tion becomes active only when the population is placed as
in figure 3, while it remains inactive when the population
is distribute around a maximum or on an ill-behaved land-
scape. The global directional mutation, as just explained,
can be also computed for sub-populations with the aim of
providing more local information to groups of individuals
localised in certain areas of the landscape. For simplicity, in
this experiment, the global directional mutation was com-
puted for the overall population only.

2.4 The GAs Used for the Experiment
Two different GAs were used to tune the controllers for

the plants previously presented. A Standard GA (SGA) and
an Enhanced GA (EGA) were tested both on performance
of the solutions and their consistency in several runs. EGA
implements directional mutation and localised tournaments
as described above in section 2.2 and 2.3 whereas SGA does
not.

Both algorithm ran on a population of 400 individuals
randomly initialised. The selection mechanism was based
on a tournament selection of size 10. When applied, muta-
tion acted on each gene with probability 0.5 and applied a
uniformly distributed random mutation in the range ±4%
of the gene value. Mutation and crossover were applied to
20% and 70% of the population. The tournament winners
(10%) were kept unmodified in the population as the elite.

In the enhanced GA, mutated individuals formed only
10% of the population. Crossover was applied to 60% and
the special operators for directional mutation to 20% of the
population. The new operators were applied as follows: di-
rectional mutation after random mutation or after crossover
to 15% of the population and global mutation to 5%. Note
that since it is not known a priori whether the individual
chosen for reproduction comes from one parent, two par-
ents, or elitism, it is not always possible to apply the desired
operator for directional mutation. For instance, directional
mutation after random mutation can be applied if mutation
itself was successful to a certain degree during the previous
generation. If no individuals generated by mutation are se-
lected, directional mutation cannot be applied. In this case,
random mutation or crossover are applied. In this way, the
mechanism favours the application of operators that had
better results in the previous generation.

The GAs make use of Matlab and Simulink for running
both the evolutionary computation and simulating the sys-
tem respectively.

Figure 4 shows the Simulink structure used. The genotype
is an array composed of 10 values, where the position of each
can be identified in figure 4. By means of 10 parameters, the
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Figure 4: Simulink model used by the genetic algorithm. The plant reported in the picture is the second
order plant with coincident poles. For the simulation of each plant, the block called PLANT was modified
according to the required transfer function.

GAs tune a feed-forward block (or prefilter), the three PID
parameters, a first order filter on the derivative, a feedback
gain and a two pole low-pass filter on the feedback signal.
The anti-windup system, as shown in the block diagram, was
realised using a standard method as described in [3, pages
423-427].

The search space was defined by the following range of
values for the alleles of each gene

N1 = [0,1000]; D1 = [0,10]; D2 = [0,200];

Kp = [0,2000]; Ki = [0,3000]; Kd = [0,1000];

Kf = [0.1,10]; DerFac = [0,3000];

p1 = [0,3000]; p2 = [0,3000].

2.4.1 Fitness Function
The fitness was evaluated for the system undergoing a step

reference signal from 0 to 1 Volt. The main performance in-
dex considered was the ITAE between the reference signal
and the plant output as expressed by equation 7. Since the
plants were simulated in four different parameter configu-
rations, four ITAE values were added. In the ITAE mea-
surement, the simulation time plays an important role: the
error between the reference signal and the plant output is
weighted on time which means that a long simulation time
will amplify a non perfect alignment of reference and output
signal. In most cases, errors smaller than 0.1% are irrelevant
to the correct behaviour of the controlled system, however,
a long simulation will cause the ITAE index to grow indefi-
nitely. For this reason, the ITAE indices reported in tables
are relative to the simulation time indicated for each plant.

The behaviour of the output variable alone, as described
by the ITAE index, is however not descriptive of the overall
system dynamics. The control variable has to be monitored

as well to avoid oscillations and instability. To avoid oscilla-
tions, a penalty was added when the number of peaks in the
control variable exceeded a maximum value of 6. To favour
a smooth response, a penalty was added when, after the first
peak, the output variable was moving ± 2% away from the
reference value.

3. RESULTS

3.1 First Order Plant
A SGA and EGA were run on the plant of equation 1 for

50 generations. The final simulation time was set to 0.5 sec.
The outcome of the evolutionary process is the best indi-

vidual of the last generation characterised by its genotype
and the ITAE performance index. The performance of so-
lutions obtained from 10 distinct runs are reported in table
1 (left columns). To test the algorithms’ robustness, 20 ad-
ditional runs were performed for both EGA and SGA. The
average performance, together with the standard deviation,
are reported at the bottom of table 1. Two solutions (best
individuals at the end of a run) are shown in table 2. Figure
5 shows the output of the plant and the saturated control
variable for K = 1, τ = 1 and K = 2, τ = 0.5. The nonlinear
saturated control causes the plant to react faster when the
gain is high (K = 2) and the time constant low (τ = 0.5).

3.2 Second Order Plant with Linear Control
The plant of equation 2 was simulated to tune a con-

trol system that emulates the linear control as proposed
by the traditional method of synthesis in [2, pages 597-
600]. The traditional method gives optimal linear control
with a maximum measured value of the control variable of
24.6Volts and a maximum derivative of the control variable
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Figure 5: Plant output and control variable of the
controller for the first order plant.

1st order plant 2nd order plant
run EGA SGA EGA SGA

1 4.36 14.31 191.3 192.6
2 4.85 174.50 195.6 255.8
3 5.21 101.23 194.8 195.7
4 4.63 188.87 194.0 199.0
5 5.95 13.49 189.0 288.5
6 4.18 5.80 191.2 717.8
7 4.77 13.05 196.0 255.8
8 4.53 9.08 192.9 201.1
9 4.26 1038.41 205.4 197.5

10 5.03 30.3 192.8 303.3

Average of 30 runs including the previous 10 runs
4.46 114.860 194.39 259.07

Standard deviation of ITAE indices
0.75 272.42 4.76 142.75

Table 1: Sum of the four ITAE values (in mVolts ·
sec2) for the first order saturated controlled system
and second order linear controlled system evolved by
the enhanced GA (EGA) and standard GA (SGA)

Controller 1 Controller 2
N1 1000 1000
D1 0.93 0.294
D2 65.91 28.19
Kp 138.21 902.69
Ki 117.02 142.7
Kd 6.26 971.07
Kf 0.76 0.21
DerFac 1589 0.007
p1 20.37 1636
p2 1681 1743

Performance indices
ITAE (mVolts·sec2) 2.42/0.75a 2.23/0.81
Settling time (msec) 94/63 101/70

aThe values are reported here as x1/x2, where x1

refers to the plant with K=1,τ = 1 and x2 to the
plant with K=2,τ = 0.5

Table 2: Two saturated controllers for the first order
plant

of 495Volts/sec. The sum of the four ITAE values given for
the four combinations of K and τ was measured as 193.7
mVolts·sec2.

To test both the GAs, we set a maximum allowable con-
trol variable to 25 Volts and its maximum derivative to 500
Volts/sec: i.e. slightly higher than what was measured for
the traditional controller. Thus, we expected the GAs to
find solutions with performance around the optimal pro-
vided in [2]. Table 1 (right columns) shows the ITAE values
recorded by the enhanced GA and standard GA in 10 runs.
Simulation time was set to 1.4 sec.

Figure 6 shows the plant output and the control variable
of the traditional controller and an EGA controller tuned
in one of the run. The ITAE index, as shown in table 1,
rise time and settling time of the optimal traditional con-
troller are repeatedly reached by the GA tuned controllers.
However, the behavioural similarity among different EGA
tuned controllers do not correspond to a genotypical simi-
larity: different runs produce very different controllers. The
traditional optimal controller proposed in [2] can be simu-
lated with the Simulink model of figure 4 given the genotype:
[42.67 1 11.38 136.36 512 12 1 2000 2000 2000]. Two near
optimal solutions obtained by the EGA have the following
genotypes: [352.81 7.67 86.85 693.11 363.76 61.238 0.10745
740.25 614.1 256.04] and [287.83 6.0574 70.089 1116.7 3.8536
99.299 0.1 461.5 999.79 236.16], where the order of the pa-
rameters is as in table 2.

3.3 Second Order Plant with Actuator
Nonlinearities

The plant of equation 2 was simulated to obtain saturated
control as well and reproduce the results presented in [19].
In the experiments here, however, we focus on the reliability
of the algorithm to discover repeatedly near optimal solu-
tions. In table 3 (left columns), the performance of solutions
obtained by the EGA and SGA algorithms are reported for
10 runs. The termination criterion was set to 50 generations.
The controllers provided by the 30 runs recorded an average
settling time of 302ms for K = 1, τ = 1, and 131ms for K
= 2,τ = 0.5. The average performance reproduced the best
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Figure 6: Plant output and Control variables of the
optimal and GA controllers for the second order
plant.

result proposed in [20] and confirmed the improvement with
respect to the GP controller for the same plant proposed in
[10, 11].

3.4 Second Order Plant with Distinct Poles
and Actuator Nonlinearities

For the plant of equation 3, the controller was tuned to
achieve nonlinear control. Two distinct poles were chosen for
a=0.5 and b=1. Ten runs of both the EGA and SGA gave
the ITAE values reported in table 3 (right columns). Thirty
runs gave the average and standard deviation reported at
the bottom of the table. The final simulation time was 0.5
sec. Figure 7 shows the plant outputs and the control vari-
ables for the best individual of a run. Note that the con-
trol variable reaches both extremes of saturation and shows
a complete bang-bang control (the actuator usage is max-
imised and the maximum power is delivered to the plant to
achieve time optimality) in both the cases where K = 1 and
K = 2.

3.5 Performance of Directional Mutation and
GA Process Analysis

In a further experiment, we wanted to evaluate the effect
of having directional mutation in the search process. There-
fore, we added localised tournaments to the SGA and we
compared the solutions with those obtained with the EGA.
We simulated the second order plant with coincident poles

Coincident poles Distinct poles
run EGA SGA EGA SGA

1 38.2 40.0 12.98 12.54
2 36.4 61.3 12.00 13.43
3 36.4 46.4 12.24 18.12
4 35.9 65.8 11.16 13.93
5 33.7 57.3 11.16 25.26
6 35.2 165.5 12.16 18.67
7 37.3 40.8 12.06 15.78
8 36.2 75.4 11.25 12.17
9 33.0 46.1 11.19 15.38

10 37.6 61.3 11.83 12.54

Average of 30 runs including the previous 10 runs
36.1 62.3 11.84 17.49

Standard deviation of ITAE indices
1.93 30.77 1.21 10.33

Table 3: Sum of the four ITAE values (in
mVolts·sec2) for the second order plants with co-
incident and distinct poles and with actuator non-
linearities

and nonlinear actuator. We verified the capability of both
algorithms for delivering a minimum quality solution in a
limited time of 50 generations. The termination criterion
was to reach an ITAE value of 40 mVolts·sec2 with a sim-
ulation time of 1 sec. We performed 20 runs. The EGA
reached the target ITAE in all 20 runs in an average of 27
generations. The SGA with localised tournaments reached
the target ITAE in 14 runs in an average of 35 generations
and failed in 6 runs.

Directional mutation therefore seems to benefit the search
process. To have a better insight on the effect of directional
mutation we investigated the effectiveness of the new oper-
ators by considering an efficiency index. Given a class of
individuals characterised by being generated by means of a
certain operator, we define the efficiency index of that op-
erator as the ratio of the percentage of selected individuals
belonging to the considered class over the percentage in the
whole population. If x% of a population was generated by
applying the operator a, we expect a similar percentage (ef-
ficiency around 1) with that origin to be part of the selected
individuals (parents for the next generation). If none or
few individuals generated by the operator a are selected, we
infer that the operator a did not perform well in that gen-
eration. If, on the other hand, the percentage of selected
individual that were generated by the operator a is higher
than the percentage of the same individuals in the previous
generations, we conclude that operator a performed better
than other operators and gave high quality offspring.

Figures 8 and 9 plot the efficiency of directional mutation,
global directional mutation and crossover for a single run.
The efficiency of operators tends to decrease at the end of
the computation since elitism becomes very efficient when
the offspring do not bring any improvement. Finally, we
looked at the dynamic of the fitness improvement during
a run for the EGA and SGA with localised tournaments.
Figure 10 shows that the EGA starts slower than the SGA
but eventually proceeds with a steep uphill climb whereas
the SGA decreases its climbing speed.
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Figure 7: Plant outputs and control variables of the
controller for the second order plant with distinct
poles and actuator nonlinearities.

4. DISCUSSION AND CONCLUSION
The experiment results outlined that both the SGA and

EGA obtained good solutions for the chosen control prob-
lems. Linear and nonlinear control are achieved equally
without modification in the application or in the search
space. Tables 1 and 3 show that the EGA and the SGA
reach solutions of similar qualities in certain runs. However,
the EGA has shown to steadily obtain high quality solutions
with a very low variance. The SGA on the other hand, does
not seem to guarantee a minimum quality outcome.

For the first order plant, the SGA recorded a best perfor-
mance of ITAE = 5.80 mVolts·sec2, very close to the best
solution of the EGA (4.18 mVolts·sec2). On the other hand,
the worst performance of EGA is 5.95 mVolts·sec2 versus
1083.41 mVolts·sec2 for the SGA, indicating the nature of
the variability in the outcomes as also highlighted by the
standard deviation measurements.

The experiment for the second order linear plant was
meant to provide a verification of the GA potential when
trying to approximate an optimal solution from a control
textbook [2]. The SGA reached optimality in some of the
runs (1, 3 and 9 from table 1) while EGA reached high qual-
ity solutions in all the runs. The same consideration can be
made for the nonlinear second order plants with coincident
and distinct poles. The 10 runs data presented in tables
1 and 3 are a sample of a set of 30 runs executed to give
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Figure 8: Efficiency of operators crossover and di-
rectional mutation after random mutation.
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Figure 9: Efficiency of operators crossover and
global directional mutation.

statistical significance to the results. The diversity in the
genotypes, even maintaining near optimal performance (see
table 1 left columns), indicates that the optimal solution
given by the traditional method is only one out of many
possible. This suggests that a GA could be employed to ex-
plore the feasibility of controllers designed within a stricter
search space that might satisfy some technical or environ-
mental requirements.

Section 3.5 tries to give an insight into the GA process
and explains how EGA obtains better results. From figures
8 and 9 we can infer that directional mutation operates in an
unsteady way by performing well in some generations and
very poorly in others. In particular, from figures 8 and 9 it
is evident that directional mutation has efficiency 0 during
certain generations (i.e. none of the offspring generated by
global directional mutation are selected to become parents).
In other generations, however, the operator shows to have
efficiency much greater than 1. Being highly efficient in
some generations, directional mutation is seen to have a very
high speculative ability in driving the population towards a
fruitful part of the search space.

Finally, from figure 10, we can see that the EGA is able
to steadily climb the fitness landscape throughout all the 50
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Figure 10: Average fitness for a run of the EGA and
SGA.

generations while the SGA seems to settle around a local
optimum and slowly improves it. A drop in population di-
versity seems a major cause for SGA’s inability to improve
the fitness after a certain number of generations. The EGA,
on the other hand, works around this cause and continu-
ally improves the fitness, indicating the fact that the idea of
having directional mutation is promising.

The characteristics of the results presented in this pa-
per suggest that GAs can be designed to be both effective
in the search and consistent in successive runs. Different
controllers were tuned for plants with different characteris-
tics and constraints. The proposed EGA is shown to be a
promising tool in control system optimisation. The increase
in reliability and efficiency of the search (see experiment
with target ITAE in section 3.5) opens the possibility of
using a GA for online tuning, for systems with minimum
requirements in performance and for adaptive control.
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