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ABSTRACT 
In this paper, we apply a Genetic Network Programming (GNP) 
Architecture using Automatically Defined Groups (ADG) to a 
multi-agent problem where cooperation of agents are required. 
GNP is a kind of evolutionary methods inspired from Genetic 
Programming (GP). While GP has a tree architecture, GNP has a 
network architecture with which an agent works in the virtual 
world. In GNP with ADG, each agent is assigned to a group 
according to its role to complete some task of a cooperative 
problem. We consider two types of problems in this paper: one 
problem is to assign an appropriate role to each agent according to 
its ability, and the other is to assign a proper role to each agent 
with the same ability. While the first problem has the specific 
conditions as for the ability of an agent, the latter is a general 
problem. We show the effectiveness of GNP with ADG through 
computer simulations on the two types of load transportation 
problems. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems 

General Terms 
Algorithms, Performance. 

Keywords 
Genetic Network Programming, cooperation, role assignment. 

1. INTRODUCTION 
Recently many researchers have investigated on automatic design 
of complex systems using evolutionary computation (EC) 
techniques. Genetic Programming [9] is one of well-known EC 
techniques that uses a tree structure to describe solutions of 
numeral problems, combination optimization problems, and 
action control problems for agents. However, GP is known to 
have difficulty to converge in one near-optimal solution or to 

search an optimal structure efficiently due to its large solution 
space. When it is applied to dynamic problems such as action 
control problems, some actions should be selected in a chain of 
actions. That is, an action should be selected not only by the 
current situation but also by the actions already taken. If a 
designer of GP notice the necessity of that issue, s/he can try to 
define appropriate nodes to utilize previous information. However, 
it is difficult to define appropriate nodes in advance even if s/he 
knows its importance. 

In order to cope with such problems, a new architecture called 
Genetic Network Programming (GNP) has been proposed [7]. It is 
inspired from GP, but it does not have a tree architecture, but has 
a network architecture. While Evolutionary Programming (EP) [1] 
also has a network architecture, it may be difficult to predefine all 
transitions in advance. GNP can work with only problem-
dependent nodes like GP so that the designer predefine only a 
small number of types of nodes. PDGP [13] was also proposed to 
represent graph-like structures, however, it can not represent the 
repetition of actions since connections among nodes are restricted 
only to upwards or the adjacent. 

In GNP [7], every agent takes actions according to an identical set 
of rules. It is called a homogeneous model. In GP research works, 
however, various methods have been proposed for heterogeneous 
model [10,4,6]. Luke and Spector [10] showed that the 
heterogeneous model performs better than the homogeneous 
model because the ability of agents becomes higher and agents 
perform more complex cooperative behaviors. However, the 
search efficiency for GP becomes worse in the heterogeneous 
model as its searching space increases. While these previous 
studies [10,6] considered the heterogeneous model, the number of 
agents was restricted to two to four. We consider 20 agents in this 
paper. 

In order to obtain multiple roles for a number of agents, Hara and 
Nagao [2,3] have proposed a combined model of the 
homogeneous and the heterogeneous model. That is, they 
assigned a role to a class of agents. They developed several trees 
for classes of agents by GP, and the agents with the same role 
refer the same tree. Their model is called Automatically Defined 
Groups (ADG) [2]. In their ADG model, the number of roles does 
not have to be predefined, but it is obtained automatically through 
evolutionary process. They showed their effectiveness for a load 
transportation problem [2,3] and the tile world problem [14]. 

We have combined GNP and ADG for developing control rules 
for multiple agents [11] (for details, see [12]). In this paper, we 
evaluate the performance of GNP with ADG by applying it to two 
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types of problems: one problem is to assign an appropriate role to 
each agent according to its ability, and the other is to assign a 
proper role to each agent where all agents have the same ability. 
While the first problem has the specific conditions as for the 
ability of an agent, the latter has few conditions as a general 
problem, so that the problem has larger solutions space to be 
searched. We show the effectiveness of GNP with ADG through 
computer simulations on these two problems. 

2. GENETIC NETWORK PROGRAMMING 
2.1 Basic Architecture of GNP 
In this section, we describe the basic architecture of GNP [5,7,8]. 
GNP uses a network architecture instead of using a tree 
architecture. Fig. 1 shows the basic structure of GNP. In GNP, we 
have three types of nodes: start node, judgment node and 
processing node. In Fig. 1, the start node, the judgment node and 
the processing node are denoted by a square, a diamond and an 
open circle, respectively. The start node is like a root node in GP. 
The other two nodes, the judgment node and the processing node, 
correspond to the function node and the terminal node, 
respectively. Therefore we can employ the same function node 
and the terminal node used in GP as the judgment node and the 
processing node in GNP. Main difference between GP and GNP 
lies in the terminal node or the processing node. As shown in Fig. 
2, the terminal node of GP can not have a further connection. That 
is the reason why it is called as “terminal” node. On the other 
hand, the processing node in GNP can connect other nodes as 
shown in Fig. 1. 

The difference between GNP and GP lies only in their 
architectures, but it brings great difference between them. For 
example, because the action of an agent is determined only in the 
terminal node in GP, the agent should return to the root node to 
take a next action. On the other hand, an agent in GNP acts when 
it finds a processing node, and it does not have to return to the 
start node after making decision.  

As for another disadvantage of GP, the performance of the tree 
may change greatly if the sub tree is exchanged by genetic 
operations at the node near to the root node in GP. On the other 
hand, the node exchange in GNP does not have such a great 
influence on the performance of the network. 

2.2 Chromosome Representation 
In order to generate a network as an individual in GNP, we assign 

1+N  nodes for one network randomly. The representation of 
each node is shown in Fig. 3. Each node has its ID number i 
( Ni ,...,2,1,0= ). As shown in Fig. 3, each node consists of two 
parts: node gene and connection gene. In the node gene, iNT  
shows the type of the node i: “0” denotes the processing node and 
“1” denotes the judgment node. iID  indicates the function of the 
node. If we assume that there are P types of the processing node, 

iID  varies from 0 to 1−P . When there are J types of the 
judgment node, iID  varies from 0 to 1−J . The function of the 
node i is defined according to the values of iNT  and iID . As for 
the start node, we do not assign 0NT  and 0ID  in the node gene. 

In the connection gene, ijC  indicates the j-th connection from the 
node i, and ark

in  shows the number of connections from the node 
i. If 0=iNT , 1=ark

in  because the processing node has only one 
connection. When 1=iNT , 2≥ark

in  because a judgment node 

has several connections according to its condition. The value of 
the ijC  indicates the ID number of the node connected from the 
node i. 

In the initial generation, we first generate N  nodes by assigning 
iNT  and iID  for Ni ,...,1=  randomly. After that we copy the set 

of generated N  nodes for popN  individuals. To the N  nodes in 
each individual, we randomly assign the connection gene ijC  for 
each individual to form a population with the specified number of 
individuals. Therefore, the node gene of each individual has the 
same iNT  and iID , but the connection gene has different 
connections among N  nodes. 

2.3 Genetic Operations for GNP 
GNP has the two types of genetic operations: crossover and 
mutation. Fig. 4 shows an example of the crossover operation for 
GNP. The procedure of the crossover is as follows: 

[Crossover in GNP] 
Step 1: Using the tournament selection, select two networks for 

crossover (Parents 1 and 2 in Fig. 4). 
Step 2: Select nodes randomly in one network (closed and 

slashed circles and diamonds). 
Step 3: Exchange the selected nodes between two networks 

(right side of Fig. 4). 
Step 4: Repeat Step 1 through 4 until the prespecified number 

of offspring is generated. 
 

 

 

 

 

 

 

 

 

start node 

judgment node  processing node  
 

Figure 1.  Basic Structure of GNP. 
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Figure 2. Basic Structure of GP. 
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Figure 3. Representation for the node. 
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Figure 4. Crossover in GNP. 

 
 Parent 

 

  

 

  

 

Offspring 

 

  

 

  

  
Figure 5. Mutation for connection gene in GNP. 

 
As shown in Fig. 4, the connections of the randomly selected four 
nodes are exchanged by this crossover. 

Fig. 5 shows a mutation operation for connection gene. The 
procedure of the mutation for the connection gene is as follows: 

[Mutation in GNP] 
Step 1: Select a network randomly. 
Step 2: According to the mutation probability mP , select a 

connection (Closed circle and diamonds). 
Step 3: Turn the value of the selected connection to another 

node ID. 

Since these genetic operations modify the network among the 
nodes, all network generated by them have the same number of 
nodes. 

2.4 Algorithm of GNP 
Using the initialization process and the genetic operations in 
Subsections 2.2 and 2.3, we form the following algorithm for 
GNP. 

[GNP Algorithm] 
Step 1 (Initialization) 

Initialize the population with popN  individuals. 
Step 2 (Fitness evaluation) 

Calculate the fitness value of each individual, and find an elitist 
individual with the best fitness value in the population. 

Step 3 (Genetic operations) 
Step 3-1 (Selection): Select parents for crossover by the 

tournament selection. 
Step 3-2 (Crossover): Apply the crossover operator to the 

selected parents. 
Step 3-3 (Mutation):  Apply the mutation operator to the 

connection genes. 
Step 3-4 (Elite strategy): Preserve the elitist individual found 

in Step 2 or Step 5. 
Step 4 (Replacement) 

Replace the newly generated population with the previous 
population. 

Step 5 (Fitness evaluation) 
Calculate the fitness value of each individual, and find an elitist 
individual with the best fitness value in the population. 

Step 6 (Termination Condition) 
Terminate the algorithm if the specified condition is satisfied. 
Otherwise return to Step 3. 

3. GNP with the ADG MODEL 
3.1 Automatically Defined Groups 
We employ the Automatically Defined Groups (ADG) model 
[2,3] for developing several roles of agents and assigning them to 
one of the roles. According to its role, each agent refers to the 
action control rules described by GNP. In the concept of the ADG 
model, each agent has its own role, and the agents with the same 
role take actions under the identical set of rules. This is likened to 
social insects such as bees and ants. They have several specialized 
classes among them such as queens, drones, workers and so on. It 
is considered that a number of workers take action under the 
identical rules. While these rules of a class are developed by GP 
in [2,3], we have introduced this model into GNP [11,12]. In the 
ADG model, a set of several classes is considered as one 
individual to be governed by genetic operations. That is, a set of 
several networks of GNP is considered as an individual. We refer 
this individual including several networks as an ADG individual 
in this paper. 

In our ADG model, each agent belongs to one of the classes of the 
network. Therefore each ADG individual has three pieces of 
information: the class structure, a network structure for each class, 
and the class IDs for all agents. 

3.2 Genetic Operations for the ADG Model 
Genetic operations for the ADG model aim to acquire several 
classes according to the number of roles of agents. There are two 
tasks to attain this aim: 
1) Acquire the number of roles, and develop a network of GNP 

for each role. 
2) Assign an appropriate role to each agent. 
In order to attain these tasks, Hara and Nagao [2,3] proposed a 
group mutation and a crossover for ADG individuals. They 
proposed a group mutation to change the members of a class (or a 
group) as follows: 

[Group Mutation in ADG] 
Step 1: According to the group mutation probability gmP , select 

an ADG individual. 
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Step 2: For the selected ADG individual, select an agent, and 
identify the class (or the group) of the selected agent. 

Step 3: Change the class ID of the selected agent randomly. 
Step 4: If the class ID specified in Step 3 is the same class ID to 

which the agent belonged, generate a new network only 
for the selected agent. The structure of the newly 
generated network is the same one to which the agent 
belonged. Then go to Step 5. If the class ID chosen in 
Step 3 is different, go to Step 5. 

Step 5: Return to Step 1 until the mutation is applied to all the 
ADG individuals. 

By this mutation, the class structure (i.e., the number of classes 
and assigned agents to each class) is modified before the 
crossover operation. 

After applying the group mutation to each ADG individual, the 
following crossover is applied to the ADG population. 

[Crossover in ADG] 
Step 1: According to the crossover probability gcP , select two 

ADG individuals among the ADG population. 
Step 2: Select one agent randomly. 
Step 3: Identify the network of GNP to which the selected agent 

refers in each of the selected ADG individuals. Let Net  
and tNe ′  denote each network of the selected ADG 
individuals, respectively. 

Step 4: Identify the set of agents )(NetA  that refer to the 
network Net  as action control rules. Identify )( tNeA ′ , 
too. 

Step 5: Apply the crossover operator for GNP (see Subsection 
2.3) to the selected networks Net  and tNe ′ . 

In Step 5, the following three relations between )(NetA  and 
)( tNeA ′  are examined and the merger or the division of the 

classes is implemented before applying the crossover operator. 
(Type a) )()( tNeANetA ′= , 
(Type b) )()( tNeANetA ′⊂  or )()( tNeANetA ′⊃ , 
(Type c) Otherwise. 
In the case of Type a, the crossover for GNP is applied to Net  
and tNe ′  without the merger or the division of the classes. If 

)(NetA  and )( tNeA ′  are in the relation of Type b, the division of 
the class is occurred in the larger set. On the other hand in Type c, 
the merger of the classes is taken place when )(NetA  and 

)( tNeA ′  are neither the same set nor in the inclusion relation. 
Using Figs. 6 - 8, we explain these three cases. 

In Figs. 6 - 8, two ADG individuals are already selected for the 
crossover operator, and Agent 2 is selected in Step 2 of the 
crossover operation for the ADG model. 

(Type a) 
Fig. 6 shows an example of this case. In this case, there is no 
change among the class structure in an ADG individual since 
Agent 2 is a member of the set {1, 2} in both the ADG individuals 
in Fig. 6. Apply the crossover for GNP in Subsection 2.3 to the 
selected networks. 

(Type b) 
When Agent 2 is selected in Step 2, it is a member of the set {2} 
in the left parent, and a member of the set {1, 2, 3, 4} in the right 

one in Fig. 7. If the network for the set {1, 2, 3, 4} in the right 
parent is modified with the network in the left by the crossover, 
Agents 1, 3, 4 are also influenced by the modification. In order to 
restrict the influence of the network for Agent 2 in the left parent, 
the same network of {1, 2, 3, 4} is newly generated in the right 
and Agent 2 is assigned to the newly generated network. After 
that, apply the crossover to the network of the left parent and the 
newly generated network in the right parent. 

(Type c) 
As shown in Fig. 8, Agent 2 is included in {1, 2} in the left 
parent, and in {2, 3} in the right one. Since these two sets are not 
included each other, the union of these two sets is assigned to the 
networks generated by the crossover. 

 

 agent 
1,2 3 3,44 1,2 

1,2 3 3,44 1,2 

{1,2} = {1,2} 

Crossover 

agent 

agent agent 

 
 

Figure 6. Crossover for ADG in the case of )()( tNeANetA ′=  
(Type a). 

 

 agent 
1 3 

2

4 1,2,3,4

{2} ⊂  {1,2,3,4} 

Crossover 

agent 
2

agent 
1 3 4 2 1,3,4 

agent 

 
 

Figure 7. Crossover for ADG in the case of )()( tNeANetA ′⊂  
or )()( tNeANetA ′⊃   (Type b). 
 

 agent 
1,2 3 1,44 2,3 

1,2,3 4 4 1,2,3 

{1,2} ⊂  {2,3}
{1,2} ⊃  {2,3}

Crossover 

agent 

agent agent 

 
 

Figure 8. Crossover for ADG in the case of no inclusion of 
)(NetA  and )( tNeA ′   (Type c). 
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3.3 Overall Algorithm of GNP with ADG 
Using the ADG model, we develop networks of GNP by the 
following algorithm: 

[Algorithm for GNP with ADG] 
Step 1 (Initialization) 

Initialize the population with ADG
popN  ADG individuals. 

Step 2 (Fitness evaluation) 
Calculate the fitness value of each ADG individual, and find an 
elitist individual with the best fitness value in the population. 

Step 3 (Genetic operations) 
Step 3-1 (Group Mutation): Select 1−ADG

popN  ADG individuals 
by the tournament selection, and apply the group mutation to 
ADG individuals according to the group mutation probability. 

Step 3-2 (Crossover): Apply the crossover operator in 
Subsection 3.2 to the selected parents. 

Step 3-3 (Mutation):  Apply the mutation operator for 
GNP in Subsection 2.3 to the connection genes. 

Step 3-4 (Elite strategy): Preserve the elitist individual 
found in Step 2 or Step 5. 

Step 4 (Replacement) 
Replace the newly generated population with the previous 
population. 

Step 5 (Fitness evaluation) 
Calculate the fitness value of each ADG individual, and find an 
elitist individual with the best fitness value in the population. 

Step 6 (Termination Condition) 
Terminate the algorithm if the specified condition is satisfied. 
Otherwise return to Step 3. 

4. LOAD TRANSPORTATION PROBLEM 
In this section, we employ a simple load transportation problem 
[2,3] to show the effectiveness of GNP comparing to GP. Later, 
the effectiveness of the ADG model is shown by comparing it 
with the heterogeneous model using the same problem. We 
consider two types of problems: one problem is to assign an 
appropriate role to each agent according to its ability, and the 
other is to assign a proper role to each agent with the same ability. 

4.1 Problem Settings 
In the load transportation problem [2,3], there are two types of 
loads that differ in weight. Each of the two types loads is placed 
in a point in a two-dimensional grid world ( 1011× ). That is, the 
heavy loads are placed at one point (10, 9) in the environment, 
and the light ones are placed at the other point (0, 9). These loads 
are inexhaustible in this problem settings. The number of agents is 
20. The aim of this transportation problem is to carry as many 
loads as possible to the goal point (5, 0) within a limited duration. 
The fitness of a team of 20 agents is measured by how many loads 
are transported to the goal point within the allotted time. The 
score of a heavy load is 5 and that of light one is 1. We allow 100 
time steps for each agent. During that time steps each agent can 
bring a load back to the goal point three times if it moves along 
with a short way between the goal and load places. 

We consider two types of settings for this transportation problem. 
In the first problem, there are only five agents that can bring either 
load among them. The other 15 agents can carry only a light load. 

The aim of this problem can be said that to find the five agents 
with the ability to carry heavy loads first and to assign them that 
task. And the task to carry light loads is assigned to the other 
agents. 

In the other problem settings, we have 20 agents that have the 
same ability. But still we have two places where there are loads. 
In order to carry all the loads in two places, the agents should be 
divided to be assigned to one of load places. This problem has 
many solutions to assign role to each agent, but it may become a 
bit difficult since the search space becomes larger than the first 
one. We call the first problem as Ability-Based Role Assignment 
Problem, and the second one as General Role Assignment 
Problem. 

4.2 Ability-Based Role Assignment Problem 
4.2.1 Comparison Between GNP and GP 
In this section, we compare the performance of GNP with GP 
using the load transportation problem, that is the role assignment 
problem according to agents’ ability. We employed the 
homogeneous model in this section. That is, the algorithm in 
Subsection 2.4 is used for GNP. In order to compare the 
performance of GNP with GP, we employ the same judgment 
(function) and processing (terminal) nodes in both the algorithms. 
Table 1 shows two judgment nodes and four processing nodes. 
These nodes are commonly used in GNP and GP. We did not 
employ “Prog N” node to concatenate processing nodes in GP. If 
we employ “Prog N” nodes in GP, there is a possibility to enhance 
the performance of GP. 

Since we prepare five nodes for each node type, each initial 
individual for GNP consists of 30 nodes with a start node. In 
order to use the same number of nodes in GP, we specified the 
maximum depth of the tree was five. 

 

Table 1. Nodes used for GNP and GP. 
 

Name Description 

if_carrying_load Carry load or not 
if_load_here There is a load or not 
Pick_up Pick up load at the current position 
Move_goal Move to the goal point 
Move_heavy_load Move to the heavy load point 
Move_light_load Move to the light load point 

 
 

Table 2. Parameter Specifications in GNP and GP. 
 

Parameter Value 

Population Size (Common) 200 
Tournament Size (Common) 5 
Elite Size (Common) 1 
Crossover Rate (Common) 0.9 
Mutation Rate (Common) 0.01 
Group Mutation Rate (GNP with ADG) 0.9 
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Table 3. Results of GNP and GP. 

 
Fitness GNP GP 

Average 105.8 75.0 
Standard Deviation 7.19 0.00 
Max 120 75 
Min. 75 75 

 

Table 2 shows the parameter specifications specified for all the 
algorithms by preliminary experiments. We applied the genetic 
operations with 500 generations in each trial of GNP and GP. In 
this problem, the best fitness of a team, 3)15155(120 ××+×= , 
is attained by assigning appropriate roles to five agents to carry 
the heavy loads and the other 15 agents to carry light loads. Figs 9 
and 10 show the maximum, minimum and average fitness over 
100 trials by GNP and GP. From these figures, we can see that 
GNP can find the network that enables agents to perform with the 
best fitness. On the other hand, GP could not find the best fitness 
120 from the 100 trials. 

Table 3 shows the statistical result of 100 trials at the final 
generation. According to the results, we can see that GP could not 
find the tree structure that enables agents to get the highest fitness 
value while GNP could obtain the network to attain the maximum 
fitness value. Figs 11 and 12 show the tree and the network 
structure obtained by GP and GNP, respectively. In these figures, 
the nodes that have no effect in the decision making of an agent 
are omitted. From Fig. 11, we can see that GP could produce the 
tree which enables only five agents to carry heavy loads. This tree 
is the optimal tree generated by GP with the five types of nodes 
shown in Table 1. On the other hand, GNP could produce the 
network if an agent can not carry the heavy load, it will move to 
the place with light loads. This result clearly shows the 
effectiveness of GNP. 

4.2.2 Performance of GNP with ADG 
In this section, we compare the performance of GNP with ADG 
against that of GNP using the heterogeneous and homogeneous 
model. GNP with the homogeneous model is the same algorithm 
we have already examined in Subsection 4.2.1. In the 
heterogeneous model, every agent has its own network for its 
action control rule. 

Fig. 13 shows that the average results obtained by these three 
models. We can see that GNP with ADG could obtain the best 
fitness faster than the other two models. As for GNP with the 
heterogeneous model, it could obtain better results than the 
homogeneous model at the final generation, but the convergence 
speed was slower than the homogeneous model. This deterioration 
of the heterogeneous model can be also seen in Table 4. Table 4 
shows the statistical result of 100 trials at the final generation by 
the three models. We can see in this table that GNP using the 
ADG model obtained the highest fitness value in all the trial. On 
the other hand, GNP using the heterogeneous model could not 
find the highest. Furthermore, the best result obtained by the 
heterogeneous model was worse than that obtained by the 
homogeneous model while the average of the heterogeneous 
model is higher than the homogeneous. These results clearly show 

that the difficulty of the heterogeneous model due to its large 
solution space. 

Fig. 14 shows the number of classes in GNP with ADG. We can 
see that the number of classes is converged to two by GNP with 
ADG. 
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Figure 9. Maximum, minimum and average performance over 
100 trials by GNP.  
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Figure 10. Maximum, minimum and average performance 
over 100 trials by GP.  
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Figure 11. The best tree obtained by GP. 
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Figure 12. The best network obtained by GNP. 

 

 

Table 4. Results of the ADG and the heterogeneous model 
(Ability-Based Role Assignment Problem). 

 
Fitness ADG Hetero Homo 

Average 120.0 110.9 105.8 
Standard Deviation 0.00 3.50 7.19 
Max 120 118 120 
Min 120 99 75 
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Figure 13. Average performance over 100 trials by GNP with 
ADG, Heterogeneous, and Homogeneous models (Ability-
Based Role Assignment Problem).  
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Figure 14. The number of classes in GNP with ADG. 
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Figure 15. Average performance over 100 trials by GNP with 
ADG, Heterogeneous, and Homogeneous models (General Role 
Assignment Problem). 
 
 
Table 5. Results of the ADG and the heterogeneous model 
(General Role Assignment Problem). 

 
Fitness ADG Hetero Homo 

Average 59.60 55.03 51.80 
Standard Deviation 2.81 1.84 6.23 
Max 60 59 60 
Min 40 50 40 

 

 

4.3 General Role Assignment Problem 
We also apply the GNP with ADG to a different settings of the 
load transportation problem: General Role Assignment Problem. 
In this problem settings, we consider only the light loads, and 
every agent has the same ability to carry a load. We place 30 light 
loads in each of two load positions. Therefore there are 60 light 
loads in total, so that the highest fitness value becomes 60 in this 
problem. Since each agent can go and return three times within 
the limited duration, 20 agents should be divided into two classes 
to attain the highest score. 
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Figure 16. An individual with the best fitness for General Role 
Assignment Problem.  
 

Fig. 15 shows the average results obtained by GNP with ADG 
model, the heterogeneous model, and the homogeneous model. 
From this figure, we can see that the similar results to Fig. 13. 
Table 5 shows the results obtained at the final generation. From 
these figure and table, we can see that GNP with ADG could not 
find the highest fitness value in all the trials. However, the 
performance of GNP with ADG was the best comparing to the 
other two models. 

Fig. 16 shows an example of the individual with the best fitness 
value for the General Role Assignment Problem. In this individual, 
we can see that 20 agents are divided into two classes (The head 
part of each class indicates the IDs of agents which are assigned to 
that class). And agents in one class move to the first load place, 
and the other move to the other load place. From this figure, we 
can see that the 20 agents could develop their work sharing in 
order to attain the best score. 

5. CONCLUSION AND FUTURE WORKS 
In this paper, we examine the performance of the GNP 
architecture with the ADG model. By computer simulations, we 
clearly show the better representation ability of GNP than that of 
GP. We also showed that GNP with the ADG model could find 
appropriate roles of agents according to their ability by the load 
transportation problems. Through the computer simulations, we 
could see the difficulty of the heterogeneous model. That model 
allows to generate complicated systems but it may be time 
consuming because the search space of that problem is so huge. 

As for further research topics, we need to investigate a way to 
reduce the redundant nodes in the networks developed in GNP. 
As shown in Fig. 16, the network obtained for each class was not 
optimized with respect to the number of nodes. We can continue 
to work to refine the structure of obtained networks. 
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