
Breeding Swarms: A GA/PSO Hybrid

Matthew Settles
sett4263@uidaho.edu

Terence Soule
tsoule@uidaho.edu

Department of Computer Science
University of Idaho
Moscow, ID 83843

ABSTRACT
In this paper we propose a novel hybrid (GA/PSO) algo-
rithm, Breeding Swarms, combining the strengths of parti-
cle swarm optimization with genetic algorithms. The hybrid
algorithm combines the standard velocity and position up-
date rules of PSOs with the ideas of selection, crossover and
mutation from GAs. We propose a new crossover opera-
tor, Velocity Propelled Averaged Crossover (VPAC), incor-
porating the PSO velocity vector. The VPAC crossover op-
erator actively disperses the population preventing prema-
ture convergence. We compare the hybrid algorithm to both
the standard GA and PSO models in evolving solutions to
five standard function minimization problems. Results show
the algorithm to be highly competitive, often outperforming
both the GA and PSO.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms

Keywords
Breeding Swarms, Particle Swarm Optimization, Genetic
Algorithms, Function Minimization

1. INTRODUCTION
Genetic Algorithms (GA) and Particles Swarm Optimiza-

tion (PSO) are both population based algorithms that have
proven to be successful in solving a variety of difficult prob-
lems. However, both models have strengths and weaknesses.
Comparisons between GAs and PSOs have been performed
by Eberhart and Angeline and both conclude that a hybrid
of the standard GA and PSO models could lead to further
advances [1, 3]. In previous research, a comparison of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

two algorithms on recurrent artificial neural networks has
led us to the same conclusions [11]. In this paper we present
a novel hybrid GA/PSO algorithm, Breeding Swarms (BS),
combining the strengths of GAs with those of PSO. The hy-
brid algorithm is compared to the standard GA and PSO
models in evolving solutions to five standard function mini-
mization problems.

The PSO algorithm is conceptually simple and can be im-
plemented in a few lines of code. A PSO individual also
retains the knowledge of where in the search space it per-
formed the best, a memory of a past experience. In a GA
if an individual is not selected for elitism or crossover, the
information contained by that individual is lost. However,
without a selection operator PSOs may waste resources on
poor individuals. A PSO’s group interactions enhances the
search for an optimal solution, whereas GAs have trouble
finding an exact solution and are best at reaching a near
optimal solution [3]. Hybrid GA models incorporating a
hill climbing element are often used to overcome this prob-
lem [9].

Our hybrid algorithm combines the standard velocity and
position update rules of PSOs with the ideas of selection,
crossover and mutation from GAs. The algorithm is de-
signed so that the GA facilitates a global search and the
PSO performs a local search. Results show the Breeding
Swarm algorithm to be highly competitive, often outper-
forming both the GA and PSO.

The next section discusses previous research and gives an
overview of the standard GA and PSO models. Section 3
presents the Breeding Swarm model developed in this re-
search. Section 4 describes the test problems used, initial-
ization methods and results. Finally section 5 discusses the
results and presents some conclusions.

2. BACKGROUND
Other hybrid GA/PSO algorithms have been proposed

and tested on function minimization problems [8] and [10].
Lvbjerg incorporated a breeding (arithmetic crossover) op-
erator into the PSO algorithm, where breeding occurred in-
line with the standard velocity and position update rules.
Results using this implementation yielded little improve-
ment over the standard PSO algorithm. Robinson tested
a hybrid which used the GA algorithm to initialize the PSO
population and another in which the PSO initialized the
GA population. This approach yielded a small improvement
when the GA was used to initialize the PSO algorithm and
no improvement when using the PSO to initialize the GA.

In previous work, a GA and PSO were tested and com-

161

pared when evolving the weights for a fixed topology Recur-
rent Artificial Neural Network (RANN) [11]. Both the GA
and PSO were successful in evolving weights for a RANN
that produced a periodic output in response to a fixed in-
put signal. However, the algorithms produced different re-
sults for different network sizes. Thus, demonstrating that
they implement different search strategies. We believe that
the correct combination of both models has the potential to
achieve better results faster and to work well across a wide
range of problems.

Initial research in designing an algorithm which incorpo-
rated elements of both GA and PSO showed promising re-
sults [12]. The initial hybrid algorithm was able to out-
perform both the GA and PSO in evolving the weights for
the same fixed topology RANN. This research expands upon
our previous research by more fully integrating the two al-
gorithms.

2.1 Genetic Algorithms
Genetic algorithms were first introduced by Holland in the

early 1970’s [6] and have been widely successful in optimiza-
tion problems, especially those in the discrete domain.

A real-valued generational Genetic Algorithm(GA) is used
in these experiments. The GA uses a chromosome consist-
ing of real values. The two best individuals are copied into
the next generation (elitism). Tournament selection is used,
with a tournament of size 3. Gaussian mutation was used,
with mean 0.0 and variance reduced linearly each genera-
tion from 1.0 to 0.1. Each weight in the chromosome has
probability of mutation 1/dimensions.

The crossover operator chosen for use in this experiment
was blended crossover (BLX-α) [4]. In blended crossover,
two parents are selected using some selection scheme. Each
gene in the offspring is then calculated by randomly choosing
a position in the range [mini −∆ ·α : maxi +∆ ·α]. Where
mini = min(xi, yi), maxi = max(xi, yi) and ∆ = |xi − yi|.
In this experiment α was chosen to be 0.1. The crossover
rate is 0.8.

2.2 Particle Swarm Optimizers
As described by Eberhart and Kennedy, the PSO algo-

rithm is an adaptive algorithm based on a social-psychological
metaphor; a population of individuals (referred to as parti-
cles) adapts by returning stochastically toward previously
successful regions [7].

During each generation each particle is accelerated toward
the particle’s previous best position and the global best posi-
tion. At each iteration a new velocity value for each particle
is calculated based on its current velocity, the distance from
its previous best position, and the distance from the global
best position. The new velocity value is then used to cal-
culate the next position of the particle in the search space.
This process is then iterated a set number of times, or until
a minimum error is achieved.

In the inertia version of the algorithm an inertia weight,
reduced linearly each generation, is multiplied by the cur-
rent velocity and the other two components are weighted
randomly to produce a new velocity value for this particle,
this in turn affects the next position of the particle during
the next generation. Thus, the governing equations are:

~vi(t) = w · ~vi(t − 1) + c1ϕ1(~pi − ~xi(t − 1))

+c2ϕ2(~pg − ~xi(t − 1)) (1)

~xi(t) = ~xi(t − 1) + ~vi(t) (2)

The constriction coefficient version of the algorithm, de-
veloped by Clerc [2], uses a constriction coefficient to control
the convergence of the algorithm, described below.

~vi(t) = χ[~vi(t − 1) + c1ϕ1(~pi − ~xi(t − 1))

+c2ϕ2(~pg − ~xi(t − 1))] (3)

~xi(t) = ~xi(t − 1) + ~vi(t) (4)

χ =
2���2 − ϕ −
p

ϕ2 − 4ϕ
��� , where ϕ = c1 + c2, ϕ > 4 (5)

Where, ~xi is particle i’s position vector, ~vi is particle i’s
velocity vector, ~pi is particle i’s previous best position vec-
tor and ~pg is the global best particles position vector. The
parameter w is the inertia weight and χ the constriction co-
efficient. Variables c1,c2, ϕ1 and ϕ2 are social parameters
and random numbers in the range [0.0,1.0], respectively.

Clerc, et al., found that by modifying ϕ, the convergence
characteristics of the system can be controlled [2]. For this
test ϕ was set to 4.1, thus χ = 0.73. Using the recommen-
dations of Shi [13], A limit on the velocity parameter, Vmax,
was set to half the search space.

3. THE BREEDING SWARM MODEL
Both Angeline and Eberhart have suggested that a hybrid

combination of the GA and PSO models could produce a
very effective search strategy [1,3]. Our goal is to introduce
an adjustable hybrid GA/PSO model. Our results show that
with the correct combination of GA and PSO, the hybrid can
outperform, or perform as well as, both the standard PSO
and GA models.

The hybrid algorithm combines the standard velocity and
position update rules of PSOs with the ideas of selection,
crossover and mutation from GAs. An additional parameter,
the breeding ratio (Ψ), determines the proportion of the
population which undergoes breeding (selection, crossover
and mutation) in the current generation. Values for the
breeding ratio parameter range from (0.0:1.0).

In each generation, after the fitness values of all the in-
dividuals in the same population are calculated, the bot-
tom (N · Ψ), where N is the population size, are discarded
and removed from the population. The remaining individ-
ual’s velocity vectors are updated, acquiring new informa-
tion from the population. The next generation is then cre-
ated by updating the position vectors of these individuals
to fill (N · (1 − Ψ)) individuals in the next generation. The
(N ·Ψ) individuals needed to fill the population are selected
from the individuals whose velocity is updated to undergo
VPAC crossover and mutation and the process is repeated.
For clarity, the flow of these operations is illustrated in Fig-
ure 1 where k = (N · (1 − Ψ)).

The crossover operator used here was developed to utilize
information available in the Breeding Swarm algorithm, but
not available in the standard GA implementation. The new
crossover operator, Velocity Propelled Averaged Crossover

162

Table 1: Table of parameters for GA, PSO and BS.

Parameter GA PSO BS

Population size 125 125 125
elitism 2 best N/A N/A
Selection type tournament N/A tournament
Tournament size 3 N/A 3
Crossover rate 0.8 N/A N/A
Mutation Rate 1/dimensions N/A 1/dimensions
Mutation Variance 1.0 → 0.1 N/A 1.0 → 0.1
Social N/A 2.0 2.0
Inertia N/A 0.9 → 0.2 0.9 → 0.2

P1 ···· Pk Pk+1 ···· PN

Ind. ? ···· Ind. ? Ind. ? ···· Ind. ?

Ind. P1 ···· Ind. Pk Ind. Pk+1 ···· Ind. PN

Velocity Update

Position Update

Tournament

Selection
VPAC Crossover

Mutation

Discard

Old Population

New Population

Generation N

Generation N + 1

Parents
Offspring

Rank

Figure 1: Flow of the Breeding Swarm Algorithm.

(VPAC), incorporates the PSO velocity vector. The goal is
to create two child particles whose position is between the
parent’s position, but accelerated away from the parent’s
current direction (negative velocity) in order to increase di-
versity in the population. Equations 6 show how the new
child position vectors are calculated using VPAC. Towards
the end of a typical PSO run, the population tends to be
highly concentrated in a small portion of the search space,
effectively reducing the search space. With the addition of
the VPAC crossover operator, a portion of the population is
always pushed away from the group, increasing the diversity
of the population and the effective search space.

c1(xi) =
p1(xi) + p2(xi)

2.0
− ϕ1p1(vi)

c2(xi) =
p1(xi) + p2(xi)

2.0
− ϕ2p2(vi) (6)

Where, c1(xi) and c1(xi) are the positions of child 1 and
2 in dimension i, respectively. p1(xi) and p2(xi) are the
positions of parents 1 and 2 in dimension i, respectively.
p1(vi) and p2(vi) are the velocities of parents 1 and 2 in
dimension i, respectively. ϕ is a uniform random variable in
the range [0.0:1.0]. The child particles retain their parent’s
velocity vector, c1(~v) = p1(~v),c2(~v) = p2(~v).The previous
best vector is set to the new position vector, restarting the
child’s memory, c1(~p) = p1(~x),c2(~p) = p2(~x).

The Breeding Swarm algorithm is tested using both iner-
tia and constriction coefficient in order to see if there is a
performance difference using either technique. The velocity
and position update rules remain unchanged from the stan-

dard implementation of the PSO. The social parameters are
set to 2.0, inertia is linearly decreased from 0.9 → 0.2.

The breeding ratio was set to an arbitrary 0.5, with the
expectation that the best results would be with an even mix
of the GA and PSO. However, this need not be the case
and other values for the breeding ratio may provide better
results. All other parameters in the hybrid were kept con-
sistent with the implementations of GA and PSO to remove
any bias. Tournament selection is used, with a tournament
size of 3, to select individuals as parents. Gaussian mutation
was used, with mean 0.0 and variance reduced linearly each
generation from 1.0 to 0.1. Each weight in the chromosome
has probability of mutation = 1/dims. Parameters used are
summarized in Table 1

4. EXPERIMENTAL RESULTS
Five numeric optimization problems were chosen to com-

pare the relative performance of the Breeding Swarm algo-
rithm to GA and PSO. These functions are standard bench-
mark test functions and are all minimization problems.

4.1 Test Problems
The first two functions are unimodal, while the remaining

three are multimodal. All functions are designed to have a
global minima near the origin.

The first test function is the Ellipsoidal function given by
the equation:

f1(x) =

nX
i=1

ix2
i (7)

x is a real-valued vector of dimension n and xi is the ith el-
ement in the vector. The second function is the Rosenbrock
function given by:

f2(x) =
nX

i=1

(100(xi+1 − x2
i)

2 + (xi − 1)2) (8)

The third test function is the generalized Rastrigin func-
tion:

f3(x) =

nX
i=1

(x2
i − 10 cos(2πxi) + 10) (9)

The fourth function is the generalized Griewank function:

163

Table 2: Initialization ranges for test problems.
Symmetric Asymmetric

function Initialization Range Initialization Range
f1 (−100, 100) (50, 100)
f2 (−30, 30) (15, 30)
f3 (−5.12, 5.12) (2.56, 5.12)
f4 (−600, 600) (300, 600)
f5 (−32.768, 32.768) (16.384, 32.768)

f4(x) =
1

4000

nX
i=1

x2
i −

nY
i=1

cos

�
xi√

i

�
+ 1 (10)

The final function is the Ackley function:

f5(x) = 20+e−20e−0.2
√

1

n

P
n

i=1
x2

i −e
1

n

P
n

i=1
cos(2πxi) (11)

These functions have been widely used in a number of
different studies involving evolutionary optimization (see [1],
and others.)

4.2 Initialization Method
Often in comparative experiments, researchers choose to

set the initial population uniformly distributed about the
search space and usually symmetric about the origin. Fur-
thermore, many test functions have global optima at the
origin, including those used in this experiment. Fogel and
Beyer has shown that this method of initialization can give
a false impression in relative performance [5]. Given that
the location of the global optima is generally not known,
they suggest that the initialization range not include the
global optima. For this experiment tests were performed
using both symmetric and asymmetric initializations. A de-
tailed description of the initialization parameters for all test
function are shown in Table 2.

Each function is ran for 50 trials. Tests using 10 dimen-
sions were allowed to run for 1000 generations. Tests using
20 dimensions were allowed to run for 1500 generations. Fi-
nally tests using 30 dimensions were allowed to run for 2000
generations.

4.3 Results
Tables 3 and 4 show the mean best fitness value along with

the standard deviation for each test case using symmetric
initialization and asymmetric initialization, respectively.

In many test cases the PSO algorithm was able to find
near optimal solutions in a majority of trials. For the ma-
jority of these cases the population would converge on a sub-
optimal solution preventing the population from improving.
BS did not have this problem, the GA inspired VPAC oper-
ator prevented the population from converging on a subop-
timal solution by constantly pushing members of the popu-
lation away from the global best particle.

Figures 2, 3, 4, 5 and 6 show the results of each algo-
rithm in 30 dimensions, using both symmetric initialization
and asymmetric initialization. In general the GA performed
poorly when using asymmetric initialization. However, us-
ing symmetric initialization the GA was able to outperform
at least one of the PSO versions in a number of cases, in par-
ticular function f3 in all dimensions and function f4 in all

dimensions (see Table 3). PSO with constriction was able to
outperform PSO with inertia in the unimodal test cases, f1

and f2. PSO with inertia performed better than PSO with
constriction in test case f3 and the two performing equally
well on the remaining test cases f4 and f5.

In general, both versions of the BS algorithm, constriction
and inertia, outperformed the GA algorithm in every test
case. Likewise, the Breeding Swarm algorithm was able to
improve on its PSO counterpart in every test case. However,
the BS with constriction version was able to perform as well
as, or better than BS with inertia in all test cases.

5. CONCLUSIONS
As the results above demonstrate, the performance of

Breeding Swarms is competitive with both the GA and PSO.
The Breeding Swarm algorithm was able to locate an opti-
mal, or near optimal, solution significantly faster than either
GA or PSO. This is most likely due to the VPAC crossover
actively dispersing the population, allowing the population
to cross greater distances in the search space faster.

The Breeding Swarm algorithm developed here is highly
customizable in order to allow future researchers large lat-
itude in implementing the algorithm. Future research will
include investigation into different selection types, crossover
types and different values for the breeding ratio parameter
for its effects on performance. The use of a other mutation
operators also needs to be investigated.

An additional advantage of the Breeding Swarm algorithm
may be the ability to implement a variable length string
to represent potential solutions, a trait not available in the
standard PSO implementation. Through the crossover op-
erator, the individual may be allowed to grow or shrink de-
pending on its needs, such as in GAs. Further research will
look into this possibility.

6. ACKNOWLEDGMENTS
This work is supported by NSF EPSCoR EPS-0132626.

These experiments were performed on a Beowulf cluster
built with funds from NSF grant EPS-80935 and a gener-
ous hardware donation form Micron Technologies. Thanks
to Dr. Hiromoto of the University of Idaho for a conversa-
tion that sparked many of these ideas.

7. REFERENCES
[1] P. Angeline. Evolutionary optimization versus particle

swarm optimization: Philosophy and performance
differences. In V. W. Porto and et al., editors,
Evolutionary Programming, volume 1447 of Lecture
Notes in Computer Science, pages 601–610. Springer,
1998.

[2] M. Clerc. The swarm and the queen: Towards a
determininistic and adaptive particle swarm
optimization. In Congress on Evolutionary
Computation (CEC99), pages 1951–1957, 1999.

[3] R. Eberhart and Y. Shi. Comparison between genetic
algorithms and particle swarm optimization. In e. a.
V. William Porto, editor, Evolutionary Programming,
volume 1447 of Lecture Notes in Computer Science,
pages 611–616. Springer, 1998.

[4] L. Eshelman and J. Schaffer. Real-coded genetic
algorithms and interval-schemata. In L. D. Whitley,

164

Table 3: Symmetric initialization results. Summary of mean best results in the final generation for each trial.
PSO PSO BS BS

GA inertia constriction inertia constriction
Problem Dims Gens Mean Best Mean Best Mean Best Mean Best Mean Best

(std-dev) (std-dev) (std-dev) (std-dev) (std-dev)

2.43E-05 1.12E-46 0 0 0
10 1000 (1.12E-05) (3.80E-46) (0) (0) (0)

0.0001172 2.17E-39 1.37E-45 1.69E-40 0
f1 20 1500 (3.37E-05) (5.54E-39) (1.96E-46) (5.81E-40) (0)

0.000271 3.59E-27 1.68E-45 2.99E-30 5.33E-46
30 2000 (7.01E-05) (1.30E-26) (5.61E-46) (8.65E-30) (9.25E-46)

6.041 2.386 0.6022 0.1374 3.71E-06
10 1000 (1.319) (2.114) (1.128) (0.8999) (2.92E-06)

25.86 30.36 9.517 7.412 0.1431
f2 20 1500 (22.99) (42.41) (16.05) (1.867) (0.5608)

38.81 57.52 20.18 32.3 6.248
30 2000 (23.74) (47.46) (24.18) (24.1) (4.211)

0.001106 1.592 2.349 0 0
10 1000 (0.0004573) (1.053) (1.614) (0) (0)

0.002937 10.51 20.95 0.4179 0
f3 20 1500 (0.0008124) (3.337) (6.808) (0.6) (0)

0.004746 24.74 46.17 1.91 1.78E-16
30 2000 (0.001144) (5.708) (10.83) (1.721) (6.41E-16)

0.03553 0.06262 0.05525 0.05099 0.01512
10 1000 (0.03697) (0.02384) (0.02063) (0.09193) (0.0195)

0.01952 0.026 0.02581 0.003152 0.006055
f4 20 1500 (0.0236) (0.02631) (0.02332) (0.006287) (0.009193)

0.003944 0.01495 0.01105 0.003989 0.01749
30 2000 (0.005308) (0.01623) (0.0148) (0.006765) (0.01986)

0.003014 3.11E-15 3.32E-15 2.34E-16 4.06E-16
10 1000 (0.0005979) (2.37E-30) (8.44E-16) (1.07E-15) (1.60E-15)

0.003292 7.09E-15 5.67E-15 3.25E-15 3.11E-15
f5 20 1500 (0.000591) (2.09E-15) (1.60E-15) (9.64E-16) (6.96E-16)

0.003587 1.57E-14 0.2991 1.93E-14 5.74E-15
30 2000 (0.000474) (5.83E-15) (0.5584) (5.95E-14) (3.50E-15)

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(a)

 0

 20000

 40000

 60000

 80000

 100000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(b)

Figure 2: Results for Ellipsoidal function (f1) in 30 dimensions: (a) Performance of the each algorithm using
symmetrical initialization. (b) Performance of each algorithm using asymmetrical initialization.

165

Table 4: Asymmetric initialization results. Summary of mean best results in the final generation for each
trial.

PSO PSO BS BS
GA inertia constriction inertia constriction

Problem Dims Gens Mean Best Mean Best Mean Best Mean Best Mean Best
(std-dev) (std-dev) (std-dev) (std-dev) (std-dev)

2.52E-05 0 0 0 0
10 1000 (-1.11E-05) (0) (0) (0) (0)

5.328 3.10E-39 1.12E-45 1.48E-40 2.80E-47
f1 20 1500 (14.56) (1.11E-38) (5.61E-46) (6.61E-40) (1.96E-46)

4788 4.66E-27 1.60E-45 6.44E-29 7.85E-46
30 2000 (1078) (2.74E-26) (4.86E-46) (3.74E-28) (1.38E-45)

16.77 8.081 6.622 1.121 0.0117
10 1000 (1.543) (10.23) (11.55) (3.914) (0.05151)

17.24 22.75 11.46 19.32 1.75
f2 20 1500 (1.726) (26.93) (26.83) (54.09) (3.686)

17.12 50.19 27.01 36.2 11.93
30 2000 (1.647) (48.57) (33.51) (34.47) (24.26)

0.001149 1.935 3.741 0 0
10 1000 (5.236E-4) (1.197) (1.873) (0) (0)

1.576 9.213 23.54 0.7363 1.07E-16
f3 20 1500 (1.816) (2.93) (8.73) (1.224) (4.22E-16)

10.13 23.28 67.48 2.149 1.07E-16
30 2000 (4.469) (5.582) (21.86) (1.704) (4.22E-16)

150.3 0.05795 0.05426 0.04 0.01334
10 1000 (6.373) (0.01963) (0.02393) (0.03556) (0.01118)

416.9 0.0268 0.02493 0.00467 0.007278
f4 20 1500 (11.17) (0.02205) (0.02464) (0.009937) (0.01246)

708.8 0.01549 0.0117 0.003202 0.01797
30 2000 (14.81) (0.01718) (0.01477) (0.006865) (0.01885)

19.78 2.009 0.7799 2.03E-17 2.64E-16
10 1000 (0.04309) (6.028) (3.821) (1.30E-15) (1.52E-15)

19.81 2.801 5.086 3.25E-15 3.39E-15
f5 20 1500 (0.0249) (6.943) (8.583) (9.64E-16) (1.15E-15)

19.83 5.604 11.9 9.86E-15 6.38E-15
30 2000 (0.0218) (8.987) (9.473) (9.52E-15) (2.56E-15)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(b)

Figure 3: Results for Rosenbrock function (f2) in 30 dimensions: (a) Performance of the each algorithm using
symmetrical initialization. (b) Performance of each algorithm using asymmetrical initialization.

166

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(b)

Figure 4: Results for Griewank function (f3) in 30 dimensions: (a) Performance of the each algorithm using
symmetrical initialization. (b) Performance of each algorithm using asymmetrical initialization.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(a)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(b)

Figure 5: Results for Rastrigin function (f4) in 30 dimensions: (a) Performance of the each algorithm using
symmetrical initialization. (b) Performance of each algorithm using asymmetrical initialization.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(a)

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

GA
PSO inertia

PSO constriction
BS inertia

BS constriction

(b)

Figure 6: Results for Ackley function (f5): (a) Performance of the each algorithm using symmetrical initial-
ization. (b) Performance of each algorithm using asymmetrical initialization.

167

editor, Foundations of Genetic Algorithms 2, pages
187–202. Morgan Kaufmann, San Mateo, CA, 1993.

[5] D. Fogel and H. Beyer. A note on the empirical
evaluation of intermediate recombination.
Evolutionary Computation, 3(4):491–495, 1996.

[6] J. Holland. Adaptation in Natural and Artificial
Systems: 2nd ed. University of Michigan Press, Ann
Arbor, MI, 1992.

[7] J. Kennedy and R. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers, Inc., San Francisco,
CA, 2001.

[8] M. Lvbjerg, T. Rasmussen, and T. Krink. Hybrid
particle swarm optimiser with breeding and
subpopulations. In Proceedings of the Genetic and
Evolutionary Computation Conference –
GECCO-2001, LNCS. Springer-Verlag, 2001.

[9] G. Mahinthakumar and M. Sayeed. Hybrid genetic
algorithm - local search approaches for groundwater
source identification problems. Special Issue on
Evolutionary Computation, ASCE Jounal of Water
Resources Planning and Management, In Press, 2004.

[10] J. Robinson, S. Sinton, and Y. Rahmat-Samii. Particle
swarm, genetic algorithm, and their hybrids:
Optimization of a profiled corrugated horn antenna.
In IEEE Antennas and Propagation Society
International Symposium and URSI National Radio
Science Meeting, San Antonio, TX, 2002.

[11] M. Settles, B. Rodebaugh, and T. Soule. Comparison
of genetic algorithm and particle swarm optimizer
when evolving a recurrent neural network. In
E. Cantú-Paz and et. al., editors, Genetic and
Evolutionary Computation – GECCO-2003, volume
2723 of LNCS, pages 148–149, Chicago, 12-16 July
2003. Springer-Verlag.

[12] M. Settles and T. Soule. A hybrid ga/pso to evolve
artificial recurrent neural networks. In C. Dagli and et.
al., editors, Intelligent Engineering Systems Through
Aritificial Neural Networks (ANNIE-2003), volume 13,
pages 51–56, St. Louis, 2-5 Nov. 2003. ASME Press.

[13] Y. Shi and R. Eberhart. Parameter selection in
particle swarm optimization. In V. W. Porto and
et al., editors, Evolutionary Programming, volume
1447 of Lecture Notes in Computer Science, pages
591–600. Springer, 1998.

168

