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ABSTRACT 
We give a new interpretation to the concept of “landscape”. This 
allows us to develop a new theoretical model to study search 
algorithms. Particularly, we are able to quantify the amount and 
quality of “information” embedded in a landscape and to predict 
the performance of a search algorithm over it. We conclude 
presenting empirical results for a simple genetic algorithm which 
strongly support this idea.   

Categories and Subject Descriptors 
F.2.0 [Theory of Computation]: Analysis of algorithms and 
problem complexity. 

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Fitness landscape, Genetic Algorithm, Theory 

1. Introduction 
During the last 20 years many algorithms (metaheuristics) have 
been proposed to explore search spaces in an efficient way [1]. 
Usually a search algorithm tries to infer the position of good new 
solutions in the search space based on previously sampled 
solutions.  
Many metaheuristics are inspired by powerful natural or physical 
processes. Ant Colony Optimization (ACO), Evolutionary 
Computation (EC) and Simulated Annealing (SA) are examples of 
such algorithms. ACO and EC are inspired by nature; SA is 
inspired by the annealing process of metals and glass.  
These and other metaheuristics have been applied successfully to 
an ever increasing number of hard combinatorial optimization 
problems such as TSP, vehicle routing, job shop scheduling, and 
bin packing. However, in many cases, their remarkable empirical 
success is not associated to corresponding robust theoretical 
foundations. This, in turn, makes it difficult to match efficiently 
the right algorithm with the right problem or even to tune the 
parameters of a search algorithm in an optimal way without the 
need of extensive preliminary experimentation. 
Metaheuristics are typically used in a black-box scenario. The 
analysis of black-box optimization algorithms usually follows one 
of two approaches. The first approach is the study of the 

properties of a particular algorithm and, so, it is algorithm-
specific. The second approach, instead, focuses more on the 
problem itself, and in particular on the notion of fitness landscape. 
In the next subsections we exemplify these two approaches 
focusing, for the sake of brevity, on the Genetic Algorithm (GA). 
Since this is one of the most popular metaheuristics we think this 
is an interesting case-study. 

1.1 Algorithm-specific approaches 
During the last decade there have been several attempts to 
characterize GA behavior. The Building Block (BB) hypothesis 
[2] states that a GA tries to combine low, highly fit schemata. 
Following the BB hypothesis the notion of deception [2,3] has 
been defined. Epistasis variance [4] and epistasis correlation [5] 
try to assess the GA-hardness of problems from a theoretical 
genetics perspective. Sitewise optimization [6], a generalization of 
a fitness distance correlation (more on this below) and epistasis, 
was suggested as well. None of these methods has fully succeeded 
in giving a reliable measure of GA-hardness [6][7][8][9].  
Fundamentally, the reason for this is that the intrinsic complexity 
of modern metaheuristics makes it difficult to explore their 
dynamics theoretically. Indeed, recent work published in the EC 
field suggests that, due to lack of proper general classification 
methods, empirical results should be used instead of theory [8][9]. 

1.2 Fitness landscape approaches 
The second approach studies the properties of the fitness 
landscape. The notion of fitness landscape was introduced in 
theoretical genetics [10] as a way to visualize evolution dynamics. 
The intuition behind it is that fitness can be thought of as a 
“height function”, orthogonal to the genome space and hence high 
fitness points are located in “peaks” and low fitness points in 
“valleys”.   
The landscape connects to an algorithm via the neighborhood 
structure. Properties of the landscapes are expected to affect the 
performance of the algorithm because the algorithm uses the same 
neighborhood structure to conduct its search. So, in theory one 
could infer GA hardness from these properties.  
Isolation [3] and multimodality [4] were perhaps the first attempts 
to connect the fitness landscape to the complexity of a problem. 
Isolation might be sufficient but is not a necessary condition for a 
difficult landscape. Multimodality is neither necessary nor 
sufficient for a landscape to be difficult to search [13].  
Fitness distance correlation [14] measures the hardness of a 
landscape according to the correlation between the distance from 
the optimum and the fitness of the solution. Despite good success, 
fitness distance correlation is not able to predict performance in 
some scenarios [15][6]. 
NK landscapes [16],[17] use the idea of epistasis in order to 
create artificial, arbitrary landscapes with a tunable degree of 
difficulty. However, even though NK landscapes are interesting 
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from theoretical genetics point of view, their practical use is 
questionable [8]. 
To the best of our knowledge at present there is no measure of 
landscape difficulty which is able to capture precisely the 
hardness of the search. In our opinion, linking the properties of a 
fitness landscape with search hardness is problematic for various 
reasons.   
Firstly, the main perspective when considering a fitness landscape 
should be the information that is available to the search algorithm 
in order to conduct the search. The needle in a haystack, for 
example, is considered to be a very difficult problem because it 
does not contain any information to guide the search. Intuitively it 
is arguable that the quantity of information available to an 
algorithm is very important in determining its performance. This, 
of course, cannot be the only factor. For example, even if there is 
a lot of information in a landscape, this information can be such to 
deceive an algorithm steering it away from global optima more 
often than not. Conversely, we can have a situation, e.g. in the 
case of a unimodal fitness function, where the information 
available rapidly and invariably guides the search towards good 
solutions. So, the quality of the information available to an 
algorithm is also crucial in determining performance. A limitation 
of the original fitness landscape approach is that it does not 
provide a way to quantify the amount of information available in a 
landscape nor to asses its quality. This is why there is a big gap 
between the notion of fitness landscape and the notion of search 
hardness. In this paper we will propose a solution to this problem 
based on a redefinition of the notion of landscape. 
Secondly, the analysis of the fitness landscape assumes that the 
neighborhood structure and the fitness function are sufficient to 
describe the properties of the landscape. This is of course true, but 
the final goal when assessing search hardness is to describe the 
properties (e.g. the performance) of the search not those of the 
problem. Because different search algorithms use different 
operators which induce different landscapes [18] and sample 
those landscapes in different ways, evaluating the difficulty of the 
search without considering the details of the algorithm being used 
seems hard if not impossible.  
This is what led Stadler and Stephenes to state [19] “Hill climbing 
on a static fitness landscape is an adequate metaphor in the case of 
evolution dominated by selection. We have emphasized in this 
paper that when this is not the case, then the utility of the 
landscape concept is much diminished.” 
Finally, the information given in a fitness landscape is redundant, 
at least for some of the modern metaheuristics. For example, often 
GAs use tournament selection as the selection paradigm. In such a 
case the absolute fitness of solutions is of no relevance to the 
algorithm: only the relative order between individuals is. So, 
analyses based on the full fitness landscape may end up being 
overly complicated.  

1.3 A black box model of performance 
As we discussed above, on the one hand the use of the concept of 
a fitness landscape to assess problem difficulty is problematic. On 
the other hand, there has also been a relative lack of success in 
constructing useful algorithm-specific theoretical models even 
when full knowledge of an algorithm and the problem at hand is 
available. This suggests that it might be more constructive to treat 
the search algorithms itself as a black box.   

In this framework, the fitness function is the search algorithm, the 
input of the search algorithm is a fitness landscape (i.e. search 
space, neighborhood structure, and a fitness function) and the 
output is the performance of the search algorithm over the 
particular fitness landscape (figure 1). 
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Figure 1. (a) The traditional black box model. (b) Our model: 
considering the search algorithm as a black box. 
 
More formally, we consider the performance function 

: , ,P f X χ → ℜ  where X is a search space of a particular 
size, χ is the neighborhood structure which is defined over 

X and f is a fitness function defined over X . The performance 
function is related to an unknown search algorithm. P is any given 
measure of performance (e.g., the average number of fitness 
evaluations required to find the optimum).  
In order to simplify the model we study the measure of 
performance for a search space of a given size, and for a particular 
neighborhood structure. This does not affect the generality of our 
model because both the size and the neighborhood structure are 
arbitrary. 
It is important to emphasize that unlike the traditional black-box 
model, we are not particularly interested in optimization, i.e. in 
trying to find the fitness landscape (input) which provides 
maximum performance (output). Rather we are interested in 
analyzing the properties of the search algorithm.  
The paper is organized as follows. In the next section we give a 
new interpretation to the traditional concept of a landscape. Since 
this is based on the quantity and quality of the information 
available to the search algorithm we call this landscape an 
information landscape. In section 3, an approximation measure to 
the performance function P is computed. We call this 
approximation a performance landscape. We conclude with 
empirical results and a discussion. 

2. Information landscapes 
A fitness landscape (X, χ , f ) is traditionally defined by 
specifying its three basic ingredients [19]: 
1. a set X of configurations 
2. a notion χ of neighborhood, nearness, distance or 

accessibility on X, and 

3. a fitness function ℜ→Xf :  

As stated in the introduction, given the disadvantages of the 
existing concept of a landscape we suggest a new concept which, 
in our opinion, is able to capture in a better way the knowledge 
that the algorithm actually uses in a black box scenario. Our new 
perspective is based on the following simple observations. 
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The objective of a search algorithm is to find fit solutions in the 
search space. In order to do so, it has to sample the objective 
function. Algorithms that use tournament or rank selection use the 
fitness function only in order to choose, out of two or more 
tentative solutions, the one that will be the basis of the next step 
of the search.  
The dynamics of search algorithms is often governed by one 
simple rule: the higher the fitness of a solution the higher the 
probability that it can lead the algorithm to other solutions (e.g., 
the offspring of such a solution) with similar or higher fitness. 
The underlying heuristic/assumption of the algorithm is that 
applying the search operators on solutions with high fitness values 
(as opposed to ones with low fitness) is more likely to yield 
solutions which are closer to the optimum (we only consider 
optimization problems). That is, implicitly we assume that the 
neighborhood structure has certain properties. In particular, that 
close solutions (defined by χ ) have similar fitness. 

Consider a hill climber on a unimodal landscape. The closer the 
initial search point to the optimum (w.r.t to the neighborhood 
structure) is, the better the performance of the algorithm will be. 
In other words, applying the search operator of a hill climber on a 
point which is closer to the optimum will give better results. In 
this scenario the distance from the optimum is a sufficient 
indicator to the performance of the algorithm.  
This is not the case for more complex algorithms. For example, in 
certain cases a crossover operation can construct the optimum 
even if both parents are far away from the optimum. In these 
cases, the performance of a search algorithm depends on the 
neighborhood induced by the search operator (not any other 
notion of neighborhood which may have been provided with the 
fitness landscape). The performance of a memetic algorithm on 
the other hand, depends on both the search operators and the 
neighborhood structure. Generally, the performance is a function 
of the search operators and the values of various parameters 
controlling the algorithm.  
Informally we refer to the chance of finding the optimum by 
applying the search operators on a point as the effective distance 
of that point from the optimum. For example, in the case of GA, 
given a particular population, the effective distance of a string 
from the optimum is related to the probability that given that this 
string is selected into the mating pool, the optimum will be found 
during the run. The higher the probability the smaller the effective 
distance will be. It is important to note that the effective distance 
is a function of the search operators, the parameters and the target 
solution (the optimum). It is not related, in any way to the fitness 
of the solution1. 
This leads us to the following conclusion: 
1. Search algorithms based selection use the fitness function as 

a tool to compare solutions. (Naturally, this is true for 
algorithms using tournament selection or rank selection. We 
argue that this is approximately the case also for other 
selection schemes.) So, for a search space of size |X| the 
fitness function can be decomposed into |X|2 values 
representing the outcome of a comparison between every 

                                                                 
1 The effective distance depends to some extent on the different 

solutions present in a particular population. However, on 
average the dependency is null.  

possible pair of solutions. This captures, in many cases, all 
and only the information that the search algorithm uses. 

2. The fitness of a solution is not related to the effective 
distance of the solution from the optimum. However, the 
algorithm uses the fitness value as an indicator for such a 
distance. The performance of the algorithm depends 
therefore, on the correlation between the relative fitness (i.e. 
the information given by the fitness function) and the 
effective distance from the optimum. 

The performance of an algorithm is therefore only a function of a 
|X|×|X| matrix M, in which each entry mi,j represents the relative 
order of solutions “i” and “j”. We are now in a position to 
introduce our notion of information landscape. 
Formally, an information landscape is the triple (X, χ , t) 
including 
1. a set X of configurations 
2. a notion χ of neighborhood, nearness, distance or 

accessibility on X, and 

3. A stochastic information function : [0,1]t X X× → . 

For every pair ( , )i jx x of elements in X, t gives the probability 

that ix is superior to jx . The value of the function t can be 

viewed as the outcome of a stochastic tournament selection with 
tournament size two. Naturally, the function t can be represented 
as an || X x || X  information matrix M with 

entries , ( , )i j i jm t x x= . Note that when X is implied we can 

use the term information landscapes to denote M without 
ambiguity.  

When a fitness function f is available, normally:  

 

1 ( ) ( )
( , ) 0.5 ( ) ( )

0

i j

i j i j

if f x f x
t x x if f x f x

otherwise

>
= =


 (1) 

However, if the fitness function is noisy, t can take values other 
than 0, 0.5 and 1. In the rest of the paper we use the terms 
problem and landscape interchangeably. By landscape we mean 
an information landscape.  

Given an information landscape we can construct the following 
rank-based fitness function: 

 ,( )rank k j
j

f k m=∑  (2) 

It is important to mention that not all the information landscapes 
can be associated to a fitness function (the information matrix 
may not induce a partial order). We will call invalid those 
information landscapes that can not be derived form a 
corresponding fitness landscape.  
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Gene Fitness Gene 000 001 010 011 100 101 110 111

000 6 000 1 1 1 1 1 1 0

001 5 001 0 0.5 1 1 1 1 0

010 5 010 0 0.5 1 1 1 1 0

011 3 011 0 0 0 1 1 1 0

100 2 100 0 0 0 0 1 0.5 0

101 1 101 0 0 0 0 0 0 0

110 2 110 0 0 0 0 0.5 1 0

111 7 111 1 1 1 1 1 1 1
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Figure 2. Three ways of representing the information given to 
a search algorithm: a) a fitness function (represented as a 
vector) b) a graph, representing topological properties (fitness 
landscape) and c) a matrix representing the outcome of all 
possible comparisons between solutions (information 
landscape). The matrix presents symmetries with respect to 
the diagonal; the gray area marks the distinct elements.  
Figure 2 gives an example of a fitness function, a fitness 
landscape and the matrix which represents our information 
landscape for a bit-string configuration space.  
At this stage we consider only optimization problems with one 
global optimum. The objective of the search is to find it. For the 
purpose of this study we assume that the algorithm has a way of 
identifying the optimum (e.g., from its fitness) when this gets 
sampled. Further, we assume that once the optimum is found the 
search stops. Therefore, the entries of the information landscape 
which correspond to the optimum are of no relevance to the 
search. For this reason we exclude those entries from the 
information landscape (figure 2). More formally, only the set 

arg\{ }t etX X is being considered.  

Since ( , ) 1 ( , )i j j it x x t x x= − , the matrix (figure 2) presents 

symmetries with respect to the diagonal; the gray area marks the 
distinct elements of the information landscape. Diagonal elements 
(omitted for clarity) are all 0.5. In order to account for all this in a 
simple way we use a vector to store the relevant (above diagonal) 
entries in the matrix: 

              1 2 1,2 1,3 | | 1,| |( , ,..., ) ( , ,..., )n X XV v v v m m m −= =  

where ( 1)( 2) / 2V n X X≡ = − − . 

2.1 Quantity and Quality of Information 
In the previous section we gave a formal definition of the 
information landscape. In this section we define a distance 
between two landscapes. From this we derive measurements of the 
quality and the quantity of information embedded in a landscape. 
These measurements are the main contribution of the information 
landscape compared with the traditional fitness landscape.  

Let 1V , 2V be two information landscapes. The distance between 
them is defined as: 

 1 2 1 2
1( , )

i i
D V V V V

n
= −∑  (3) 

The distance defined in equation 3 is linearly dependant on the 
number of differing entries in the two landscapes. Figure 3 
illustrates how the distance between two landscapes can be 
interpreted. Figure 3.A shows unimodal and bimodal landscapes. 
Figure 3.B gives the “bimodal” information landscape. The gray 
area represents the entries in the “bimodal” information landscape 
which differ from those of the unimodal one. 
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A
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6
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3
Target

Solution

Difference from A2

i/j 1 2 3 4 5 6 7777
1 0.5 0 0 0 0 0 0
2 0.5 1 1 0 0 0
3 0.5 1 0 0 0
4 0.5 0 0 0
5 0.5 0 0
6 0.5 0
7777 1 1 1 1 1 1 0.5

Infomration
Landscape

of A1

B

21

Figure 3.  (A) Bimodal and unimodal fitness landscapes; seven 
points are shown. (B) The bimodal information landscape 
(A1). The gray area indicates where the bimodal information 
landscape is different from the unimodal one. 
In order to understand how the quality of the information can be 
quantified, consider the performance of a hill climber on these 
two landscapes. Note that for a hill climber, under this 
representation, the distance (as defined by the neighborhood 
structure) and the effective distance of a solution from the 
optimum coincide.  
Consider the entry m3,4  in figure 3(b), the value 1 indicates that 
solution “3” wins in a comparison between “3” and “4”. The 
underlying assumption of the algorithm is that a solution with 
higher fitness is more likely to lead eventually to the optimum. In 
this example, this piece of information is misleading.  The same 
entry for the unimodal landscape (Figure 3.A.2) is 0, which 
indicates that  “4” has a better chance of leading to the global 
optimum than “3”.  
Under ideal conditions, an algorithm would want to choose the 
solutions on which to base the next step of the search according to 
their effective distance from the optimum. In practice, this 
information is not available and so the algorithm chooses 
according to their fitness. The assumption being the higher the 
fitness, the closer the global optimum. Thus, when evaluating 
whether to choose solution j or solution i, if mi,j>0.5, the search 
algorithm will pick i, the assumption being that i is effectively 
closer to the optimum than j. That is, the information landscape 
has a dual interpretation. On the one hand it simply represents the 
relative order of the solutions w.r.t the fitness. On the other hand, 
it represents a table of assumed relative effective closeness to the 
optimum. Naturally (as illustrated in the previous example), not 
all assumptions will be correct. We expect the performance of the 
algorithm to correlate with the number of correct assumptions. 
In order to define the quality of the information we make a 
distinction between positive information and misleading one. 
Positive information refers to a tournament which returns the 
solution effectively closer to the optimum. 
Following this reasoning, there is a landscape which contains only 
correct assumption. The distance from this landscape will give the 
amount of negative information embedded in any other landscape. 

(a) 

(b)

(c)
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Different search algorithms have different optimal landscapes, 
hence, once the optimal landscape is known, this method can be 
applied to any search algorithm. In [20] we used this notion in 
order to develop a measure of GA hardness. 
Naturally, when the outcome of the tournament is random (i.e. an 
entry in the information landscape equals 0.5) the information is 
neither positive nor negative: it is absent. The amount of 
information available to an algorithm is defined therefore, as the 
fraction of entries, in the information landscape which differ from 
0.5.  
We refer to this amount as the degree d0.5 of the information 
landscape. Formally, it is the distance between a landscape and 
the landscape where all matrix elements are 0.5, normalized to the 
range [0,1]:  

 0.5 2( ) 0.5id V v
n

= −∑  (4) 

If there is no information in a landscape, a search algorithm is not 
expected to perform better than random search. The degree to 
which it can outperform random search depends on the amount of 
information. This can be measured using equation 4.  
The information however can be either positive or negative. The 
amount of negative information can be measured by the distance 
from an optimal landscape. If such a landscape is not available an 
approximation of the information landscape of an empirically 
known easy problem can be used for this purpose. 

3. Performance landscape  
Given the definition of the information landscape, we can now 
define P, in a proper way. We consider the performance function 

: , , ,trgtP V X X χ → ℜ  where X is a search space of a 

particular size, χ is the neighborhood structure which is defined 

over X and V is the information landscape. Since by definition 
the information landscape does not include the entries related to 
the target solution (optimum) argt etX  we have to supply this 

value separately. The value of P is a measure of performance (e.g. 
the number of average fitness evaluations it takes in order to find 
the optimum). 

Since in this paper we assume that everything but V  is constant, 
P can be written as :P V → ℜ . Our objective in this section is 
to build a useful approximation of the performance function. 
P is a complicated function of n variables for which we have no 
explicit formulation. However, this function can be estimated 
using machine learning techniques if a suitable training set is 
available. A train set would have to be made up of pairs of the 
form (V, P) where V is a particular (input) information landscape 
and P is the target performance measure. This can be estimated by 
averaging the performance recorded by running an algorithm a 
suitably large number of times over the particular landscape in 
question. Naturally, for this approach to work the training set 
should include a representative set of problems, that is, it should 
include easy, difficult and random problems.  
To illustrate this approach, in this paper we consider the simplest 
possible approximation. We start by assuming that P is a linear 
function of the n variables in V (the entries of the information 
matrix). Using empirical results over a sample of the possible 

information landscapes as observations, we can apply a 
multivariate linear regression in order to estimate the performance 
function: 

 0( ) i iP V c c v≅ + ∑  (5) 

In many cases a linear dependency for the specific algorithm 
might not hold over the whole space of possible information 
matrices. In that case, assuming that P is differentiable, we can 
use a truncated Taylor expansion in order to approximate P in the 
neighborhood of any reference information landscape 0V . That is: 

 
0

0 0( ) ( ) ( ) ( )
V V

P V P V P V V V
=

≅ + ∇ −  (6) 

Therefore: 

 0 0( ) ( )
ii iP V c c v v≅ + −∑  (7) 

where 

0

( )
i

i V V

P Vc
v

=

∂=
∂

and 0 0( )c P V= is the performance 

of the algorithm on the reference landscape 0V .  

From a practical point of view, even when using multivariate 
linear regression, we will use equation 7 with 0 0.5

i
v = . This is 

done for two reasons, Firstly, in our framework, the value 0.5 
indicates the lack of information for a particular entry. However, 
when computing the performance landscape (see below), it is 
more convenient to use 0 as such an indicator. Secondly, it 
illustrates the performance of the algorithm on any particular 
problem w.r.t. a random problem, or a random landscape.2  
Whether using multivariate linear regression or the Taylor 
expansion around a reference landscape, the performance P 
depends on  the coefficients ci. We denote the vector ( )iC c=  
(or its corresponding matrix form) as the performance landscape. 
The importance of the linear approximation of P is twofold. 
Firstly, it gives us a simple model to predict the performance of 
search algorithms in general. Secondly, it can be used to make 
prediction about the performance of a search algorithm on an 
unseen problem. This, in turn, may make it possible to classify 
problem hardness, under some conditions.  
From equation 7 the following observations can be made:  

• If 0ic = then the entry in the information matrix 

represented by iv is not relevant to the search.  

• If 0ic >  then max( ( )) (1 )
i ii i o i oc v v c v− = − and 

this is achieved for 1iv =  

                                                                 
2 In principle this represents a flat landscape. However, in 

practice, it means that each solution has an equal probability to 
win or loose a tournmanet. In [21] we showed that the 
performance on a radom landscape is different from the 
performance on a flat landscape. Therefore, rather than using a 
flat landscape, we use a random one. 
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• If 0ic <  than max( ( ))
i ii i o i oc v v c v− = −  and 

this is achieved for 0iv = . 
 

So, for a given performance landscape C we should expect our 
algorithm to provide best performance on the following 
information landscape: 

 ( )max arg max [ ( )]
i iv i i oV c v v= −  (8) 

Moreover, when 0.5oV ≡ , we should expect to see symmetry in 
the performance of the algorithm with respect to its performance 
on a random problem as stated in the following 

Theorem: Let 1  be an information landscape with all (above 

diagonal) entries equal to 1, and 0V be an information landscape 
with all entries equal to 0.5.  The negation of an information 
landscape V is defined as:  

 1V V≡ −  (9) 

Then : 

 0 0( ) ( ) ( ) ( )P V P V P V P V− = −  (10) 

Proof: In a neighborhood of 0V  

 
0

0

0 0 0

( ) ( ) ( 0.5)

( ) ( ) ( 0.5) ( 0.5)

(1 1 0.5) ( 0.5)

( ) ( 0.5) ( ) ( ) ( )

i i

i i i i

i i i i

i i

P V P V c v

P V P V c v c v

c v c v

P V c v P V P V P V

≅ + − ⇒

− ≅ − − = − +

= − − + = −

= + − − = −

∑
∑ ∑

∑ ∑
∑

  

 
Interestingly the approximate performance of a search algorithm 
on an information landscape can be interpreted as the scalar 
product of the information landscape and the performance 
landscape. (The former represents the search problem, the latter 
the performance characteristics of the search algorithm.) 
Indeed, in the case of the Taylor expansion,  

0

0 0

constant

( ) ( 0.5)

constant
i

i i
i

i i i
i i

P V c c v

c v c c v C V

≅ + − =

= + − = +

∑

∑ ∑ �
14243

 

In the case of multivariate linear regression 

( ) constant constanti iP V c v C V≅ + = +∑ �  

The scalar product interpretation can help us visualize the 
connection between the information landscape and the 
performance landscape. To a first order approximation, the 
performance is simply the magnitude (with sign) of the projection 
of one vector onto the other. V represents the information on a 
problem. C represents the sensitivity of the search algorithm to 

different pieces of information.  Figure 4 shows how this can be 
used to compare the performance of different search algorithms on 
a particular problem (Figure 4.A) and the performance of a search 
algorithm on different problems (Figure 4.B). 

Information Landscape 
C

Information landscape 
A

Performance landscape

Information Landscape 
BPerformance Landscape 

B

Performance Landscape 
A

Information landscape

A B

 
Figure 4. (a) The information landscape represents a 
particular problem. The two thick lines represent the 
performance of two different search algorithms on this 
problem. (b) The performance landscape represents a 
particular search algorithm. The solid lines represent the 
performance of the algorithm on 3 different problems. 

4. Empirical Results 
Giving empirical support to our ideas is not simple. For example, 
in order to do so, one must analyze the performance of an 
algorithm over all possible landscapes which is practically 
impossible except for landscapes of a very small size. In the 
following subsections we give an exhaustive analysis for a small 
landscape (8 possible solutions) for a simple GA, we corroborate 
theorem 1 and we give empirical evidence that it holds for also in 
more realistic scenarios.  

4.1 Exhaustive analysis 
We used a simple GA with onepoint crossover used with 100% 
probability. Due to the small size of the landscape, we had to 
choose a measure of performance which is highly sensitive. We 
chose the takeover time (i.e. the time require for the entire 
population to converge to the target solution) as the performance 
measure. We used a population size of 14. The maximum number 
of generations was 500. The search on each landscape was 
repeated 1000 times. The results are the average of those runs. 
The target solution (global optimum) was excluded from the first 
generation.  
In a first experiment, we measured the mean takeover time for all 
possible valid landscapes of degree 1. It is important to 
emphasize that the target solution is fixed. Therefore, we were 
measuring the performance of a GA on all possible landscapes 
given that the optimum is at a particular position in the search 
space. Since the size of the landscape is 8, overall we have (8-1)! 
=5040 possible landscapes. 

In order to estimate the performance landscape (equation 7) we 
used multivariate linear regression on the results obtained from 
running the GA over all such landscapes. Figure 5 plots the 
predicted line against the empirical results. For easier 
visualization landscapes were ordered on the basis of their 
predicted performance (from best to worst). The correlation 
coefficient between observed and predicted performance is 0.935, 
which indicates that a linear approximation to the performance 
function is actually rather accurate. 
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Figure 5. The predicted performance against the empirical 
performance of a GA on all possible valid landscape of size 8. 

In order to verify whether the linear approximation to P(V) 
generalizes well, we sampled 1000 additional landscapes out of 
the entire space of possible information landscapes (i.e. including 
invalid landscapes). Figure 6 plots the predicted performance 
(using the formerly calculated coefficients) against the empirical 
results for the new landscapes. The correlation between prediction 
and observation is still very high (0.923), suggesting good 
generalization.
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Figure 6. The predicted performance against the empirical 
performance of the test group (1000 random valid and invalid 
landscapes). In both cases the empirical plot is sorted. For each 
landscape represented by the empirical plot, the black solid 
curve shows the value predicted by the linear model. 

Finally, figure 7 plots the performances of the different landscapes 
sorted from the worst to the best against the performance of the 
negation of those landscapes.  We can clearly see the symmetry 
predicted by theorem 1 with respect to the performance over a 
random landscape ( 0( )P V  in equation 10). This was measured as 
the average performance of 100 random landscapes. The 
correlation between the landscapes and their negations is -0.775.  
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Figure 7. Empirical plot of the performance over all possible 
valid landscapes. The continuous line represents landscapes. 
The dotted line gives the performance on the negated 
information landscape for each point in the previous line. 

4.2 Realistic scenario 
In the previous subsection we conducted a through analysis, but 
on a very small landscape. The results strongly support the 
theorem developed in the previous section. In this subsection we 
verify that these results hold for a more realistic scenario. 

The size of the search space in this experiment is 16 bits (65,536 
points), the mutation rate is 0.15, the population size is 200 and 
the maximum number of generations is 600. This time as a 
performance measure we use the average number of generations 
required to find the global optimum.  

Naturally, for a landscape of such a size we could not repeat the 
previous experiment where we explored all possible information 
landscapes. However, we can still verify whether theorem 1 holds. 
In order to do so, we measured the performance of a GA over 100 
problems with an increasing level of difficulty (multi modality). 
For each level of difficulty (number of local optima), figure 8 
plots the average of 500 different problems against the average of 
the negation of those problems. Theorem 1 (equation 10) predicts 
a symmetry between a landscape and its negation with respect to 
the performance over a random landscape. The performance over 
a random landscape was measured as the average of 20 random 
landscapes of the same size. The correlation coefficient, -0.96,  
clearly shows that the symmetry exists. 
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Figure. 8. Empirical plot of the performance over 100 selected 
problems. The dotted line represents landscapes. The solid line 
gives the performance on the negated landscape for each point 
in the previous line. 

5. Discussion 
A search algorithm uses a priori knowledge or assumptions about 
a problem in the hope to solve it in an efficient way. If a problem 
is not consistent with those assumptions, the performance cannot 
be expected to be good. Our notions of performance and 
information landscapes allow us to make this intuition explicit. A 
search algorithm is an information processing procedure, a 
problem (information landscape) is its input and a solution is its 
output. If the problem does not have enough information, the 
search algorithm will not be able to perform, to some degree, 
better than random search. If the problem has useful information 
(to guide the algorithm) the search algorithm will perform better 
than random search.  Deceptive information (one that leads the 
algorithm away from the global optimum) will cause the 
performance to be worse than random search.3  

                                                                 
3 Any realistic landscape is far too big to be searched exhaustively. 

Usually, only a logarithmic fraction of it is actually sampled. Deceptive 
information may lead the search away from the global optimum for 
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The information landscape was introduced as a new concept of 
landscape. It enables to measure explicitly the amount of 
information present in a landscape through a simple notion of 
distance. Furthermore, given an “optimal” (or alternatively an 
empirically known easy) landscape, the amount of positive 
information can also be measured. 
To emphasize one of the most important differences between 
fitness landscapes and information landscapes we quote Stadler 
and Stephens [19] again: “When considering evolution under the 
effect of multiple genetic operators the fitness that traditionally 
appears in a mathematical representation of selection is survival 
fitness or viability. Its role and importance relative to other 
operators, such as mutation and recombination, must be carefully 
considered”. Unlike the fitness landscape, our information 
landscape framework explicitly separates the selection operator 
from the others. The role of selection is to choose between one or 
more competing solutions according to the probability that the 
combined effect of the other operators using this solution as an 
input will provide (eventually) the optimum. 
The information landscape throws away some of the information 
available in the fitness landscape. In particular it ignores the 
absolute fitness values. However, the information matrix 
represents a partial relative order of the search space. It includes, 
for example, all the information necessary to do selection for 
tournament selection with tournaments size 2. Also when the 
information landscape is induces by a fitness function, the matrix 
defines implicitly the absolute rank of each solution and so it 
includes all the information available to tournament selection with 
other tournaments size as well as rank selection. We postulate that 
an information landscape is also a good first-order approximation 
of the information available to search algorithms that use absolute 
fitness values, like a GA with fitness-proportionate selection. 
An information landscape represents a problem. A problem can be 
difficult for one search algorithm and easy for another. The 
performance landscape represents an algorithm. It can be used in 
order to interpret the information embedded in the information 
landscape. It also indicates that the quality of the information is a 
“subjective”  measurement. We gave an empirical method to 
calculate the performance landscape for any algorithm. This in 
turn enabled us to accurately predict the performance of a GA 
over all possible (small) landscapes using a very simple model – 
without running the GA. 
Clearly, the performance landscape cannot be calculated for any 
realistic problem. However, in [21] we showed that even a 
performance landscape of a small size is sufficient in order to 
infer general properties of a search algorithm. In particular by 
clustering the coefficients in the performance landscape we can 
derive the effective neighborhood structure of an algorithm.  
Moving toward realistic landscapes in [20] we developed a GA-
hardness measure based on the information landscape alone. That 
is, we predicted the GA hardness of a problem without having to 
go through the computationally expensive process of calculating 
the performance landscape. In particular, we estimated the optimal 
(easiest) problem for a 12 bit landscape. The distance from this 
landscape was used as an indicator to the hardness of a problem.  
                                                                                                           

most initial starting points. So, from the fitness evaluations point of 
view, averaged over multiple runs, an algorithm’s performance can be 
worse than the performance of random search. 

In future work we intend to extent this framework to deal with 
landscapes with more than one global optimum. Furthermore, we 
intend to explore how the quality of the prediction will change for 
different target solutions.  
The growing number of new metaheuristics makes it more and 
more difficult to choose between them. We believe the robust and 
general definition of problem that the information landscape 
supplies will allow us to use this framework to compare different 
algorithms in a consistent way. This will also be the subject of 
future work. 
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