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ABSTRACT

A need for solving more and more complex problems drives
the Evolutionary Computation community towards advanced
models of Evolutionary Algorithms. One such model is the
island model which, although the subject of a variety of
studies, still needs additional fundamental research. In this
paper we have experimentally studied the influence of var-
ious migrations sizes and intervals on island models using
a set of special functions. One of the surprising observa-
tions from these experiments is that the migration interval
seems to be a dominating factor, with migration size gen-
erally playing a minor role with regard to the best solution
found. Additional experiments measuring genetic diversity
show that too frequent migrations cause islands to dominate
others and lose global diversity before they are able to ex-
change solutions to produce better results. Also, we observe
that even small migrations already make a significant impact
on the behavior of an island model and therefore the effects
are comparable to those of bigger migrations. On the other
hand rare migrations cause a degraded performance due to
the slow convergence. Collectively, these observations pro-
vide useful guidance for island model applications.

Categories and Subject Descriptors: 1.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search
— heuristic methods; 1.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence; G.1.6 [Numerical Analysis]:
Optimization — global optimization

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: evolutionary computation, island model, mi-
gration, migration size, migration interval, test suite

1. INTRODUCTION

The interest of the Evolutionary Computation commu-
nity in more and more complex problems requires the use
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of advanced models of Evolutionary Algorithms (EAs), be-
cause standard models are not powerful enough. One family
of such models are island models, in which individuals are
split into subpopulations (islands), evolving on their own,
and from time to time exchanging individuals by migrations.
In addition to the obvious property of distributing computa-
tions, island models generally behave qualitatively different
than simpler models and therefore are able to solve certain
problems that standard models cannot [14, 17].

Although island models have been used many times in
the past and there are different studies focusing on certain
features, there is still no good understanding of the role of
the basic parameters. Because there are so many possible
parameter settings for an island model, it is important to
understand what influence each parameter has and how it
interacts with other parameters.

Two very basic and important parameters of island mod-
els are migration sizes and intervals, denoting how many
individuals migrate and how frequently migrations occur.
In this paper we study in a systematic experimental way
how the behavior of an island model changes in reaction to
changes in these two parameters, and how they are related.

We start with a brief introduction to island models in
section 2. In section 3 we state the goals of our study. Then,
in section 4 we describe the experiments we did and present
the test suite of eight functions that was used. In section
5 we present the results of our experiments and make some
analysis of them. Finally, in section 6 we summarize our
work, try to answer the questions set in the goals section,
and point out some possible future work.

2. BACKGROUND

Previous studies of island models have been both theoret-
ical and experimental in nature. Strict mathematical anal-
ysis (using e.g. Markov chains) of island models is difficult
due to their complexity. Consequently, in order to obtain
any results, researchers are constrained to simplified mod-
els (for example takeover time was analyzed by Sprave [15]
and Rudolph [12]). By contrast, experimental studies are
generally performed on the island models themselves, but
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analyzing particular features such as the number of popula-
tions and their sizes analyzed by Whitley [18] or Cantu-Paz
[3, 5].



The main difference between an island model and a single-
population model is the separation of individuals into is-
lands. The islands interact by means of migration, and this
is the only means of communication between them. If there
is no migration, an island model is nothing more than a set
of separate runs. Therefore migration is very important.
Migrations were also studied by Cantu-Paz [4].

The standard way of implementing migration assumes
sending some number of individuals (migration size) every
certain number of generations (migration interval). The mi-
gration size and interval are arguably the two most impor-
tant migration parameters, controlling the quantitative as-
pect of migration (the total number of individuals sent in
a run of the EA). There exist models where migrations are
triggered when certain criteria are met (Branke [2]), how-
ever fixed schedules are much more popular and easier to
analyze. The level of migration for specific context of agent
individuals was studied by Krink [10]. Although different
aspects of migration size and interval were studied, we are
unaware of any work studying directly the influence on these
parameters on the behavior of GA island models, as done in
this paper. There exists a similar study done for GP [7, 9].

Another migration parameter defines what is being sent
(migration policy). A common policy is to choose the best
individuals from the source population and replace the worst
individuals in the target population (we refer to it as best-
worst policy). However, as shown by Cantd-Paz [4], this
leads to an increased selection pressure in the system. An-
other possibility is to choose a random individuals and re-
place random individuals (random-random policy). Such
policy should not increase the selection intensity, and thus
seems appropriate for studying other migration parameters.
Other policies are also possible.

The migration topology describes which islands send indi-
viduals to which islands. The most often used topologies are:
an array, a ring, a grid, a star or a fully connected topol-
ogy. Sparser connected topologies allow for slower spread
of information in the system. Recently Sekaj performed a
detailed study analyzing different island model parameters
including topology [13].

Multi-machine implementations of island models allow the
possibility of islands running asynchronously. In particu-
lar, researchers focusing on the use of island models for dis-
tributing computations over many machines have studied
the properties of asynchronous models [1]. However, a syn-
chronous model seems better for theoretical studies, because
experiments are then not dependent on external factors and
thus are repeatable. Also, in the case of identical islands,
we don’t expect to see big qualitative differences in behavior
between the two models.

Island models have also been studied outside of computer
science. In fact one of the first publications on subpopula-
tions comes from Wright in 1932 [19]. An interesting theory
is the punctuated equilibria theory [8] stating that subpopu-
lations remain in equilibria, unless a change in environment
causes a rapid evolutionary process. Migration can serve as
such a trigger [6].

3. RESEARCH GOALS

Whereas it’s obvious that the lack of migration results in
no cooperation between islands, it is not so obvious how the
behavior of an island model changes when we are increasing
the size and/or changing the frequency of migrations.
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The goal for the experiments presented in the paper was
to clarify this matter, by answering as many of the following
questions as possible:

1. Does the behavior of an island model (i.e. the average
performance) depend only on the total number of mi-
grants (no matter in how many, how big and how fre-
quent migrations), or can we approximate it with such
model? For example: do frequent and small migra-
tions have a similar effect to rare and big migrations?
Can we divide the migration size-interval plane into
regions where there is too much of migration, good
amount of migration and too little of migration?

If it’s more complex, how complex is it with regard to
migration size and interval? How do particular param-
eters influence the observed performance?

Can some setups of an island model achieve better
results than the panmictic setup with one big popu-
lation, or the setup with islands separated from each
other (which is equivalent to restarting a single popu-
lation as many times as there are islands)?

What settings of these parameters cause island models
to succeed?

What settings of migration size and interval cause is-
land models to fail?

What are the underlying causes that result in some
settings being better than others? How is it related to
the content of populations?

4. EXPERIMENTAL METHODOLOGY

To thoroughly study the influence of migration sizes and
intervals on the behavior of island model EAs we fixed all
other island model parameters and performed experiments
for all combinations of these two parameters within certain
ranges. This allowed us to draw charts representing average
EA performance as a function of migration size and interval
and see how they are related. The experiments were pre-
ceded by manually choosing other parameters in such a way
that the problems used were semi-difficult. This allowed for
observing improvements and degradations of the algorithm.

4.1 Experimental details

In the experiments we used a model with identical islands
(the same parameters) evolving synchronously. We have ex-
perimented with setups of 2 and 5 islands. The total number
of individuals in the system was set to 100. This matched
the problems used (described in the next subsection) so that
they were still relatively difficult. Using a smaller number
would cause probably too high granularity of each island.

The EA used in islands was a standard one, so that the
results could later be used as a guidance for using island
models. A real valued representation was used (one gene
for each argument of the given test function). We used one-
point crossover at a rate of 0.7 (otherwise cloning). The
mutation was Gaussian with a self-adapting sigma, and the
mutation rate was 1/L. The EA was generational (non-
overlapping) with the exception of the best individual car-
ried over (elitism). The ranked selection strategy was chosen
as a good balance in terms of selection pressure.



Each island was run for for a maximum of 500 generations;
however runs were stopped earlier in case of detecting a
convergence, which was measured by computing the global
level of diversity. In fact only around 1% of runs reached
the limit.

Migrations occurred every migration interval number of
generations for each island, and their size was migration size.
The experiments were run with a random-random policy, in
which a group of migrants is chosen at random from the
source population (without repetition) and random individ-
uals are replaced in the target population. This policy which
was chosen because it doesn’t change the selection intensity
and thus a comparison between settings with different level
of migrations is more meaningful. Some experiments with
the best-worst policy (take the best, replace the worst indi-
viduals) suggested that the results described in later sections
are also valid for other policies. However, we didn’t perform
the full set of experiments for the best-worst policy.

A random (dynamic) topology was used [7]. Each time a
population was expecting a migration, the population was
randomly paired with another, from which individuals would
be migrated. Therefore the relations between any two pop-
ulations were identical, as opposed to the topologies like a
ring or torus, where some islands are direct neighbors and
some are more distant from each other. In the same time
the topology didn’t ”flood” the populations with migrants
(as it would be with the fully connected topology).

We varied the migration interval using the values of 1, 2,
3, 4, 5, 10, 15, 20, 25, 30. The migration size was varied
using the values of 1, 2, 4, 6, 8, 10, 12 14, 16, 18, 19, 20.
Because of the stochasticity of the process, for each combina-
tion of these two parameters we used at least 45 repetitions.
To make it easier to compare, for different combinations
the runs were starting from the same set of random seeds
(meaning that for different combinations of parameters, cor-
responding runs were identical until the first migration oc-
curred - which migration was naturally different for different
combinations)

The performance of the EA was measured with the best-
so-far value from all islands.

4.2 Test suite

A total number of eight functions was used. All of them
operate on real numbers and return a real value. The first
four of them (described below) are specially created func-
tions to study properties of island models. The task is to
maximize them. We tried to keep the functions as simple as
possible so that it can be easily understood what is driving
the algorithm. However, because island models are generally
more suitable for functions that are complex and not easily
solvable by standard EAs, we created the functions so that
they possess some features characteristic for more difficult
problems (e.g., IM2-IM4 require that islands cooperate to
find a good solution).

The remaining four functions are standard multimodal
test functions, known as Rosenbrock, Schwefel, Rastrigin
and Griewangk functions. The task is to minimize them.
Below we present the characterization of each function.

4.2.1 Function IM1

The goal of the first function was to see when too much
migration worsens the behavior of an island model. It con-
sisted of one wide low peak and one narrow and high peak.
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Figure 2: function IM2

If there is too much information exchange between the is-

lands, one can expect populations would drag each other

onto the wide deceptive peak. Because we are reporting the

best-so-far value from all islands, migration cannot improve

it — if one island finds the best solution, it will be reported.
The formula for the function is:

IM1(z1,z2) = max(0, —(2z1 — 1)2 — (222 — 1)2 +1,
—(5(z1 — 1)) — (5(z2 — 1))* + 1.25)
The domain for both arguments is [0, 1].

4.2.2 Function IM2

This function consists of two wide and one narrow peak,
reachable by a crossover of solutions from the wide peaks.
It is unlikely that the global solution is found without per-
forming this crossover, and thus without islands cooperat-
ing. Such cooperation was in fact observed in single prelim-
inary runs of an EA on this problem.

The formula for the function is:

T2 -1

2
1
1,

IM2(z1, 22) = max(0, —z7 — (

-1
~(F) el

—(30(x1 —1))* — (30(z2 — 1))* + 1.25)
The domain for both arguments is [0, 1].

4.2.3 Function IM3

This function is an n-dimensional equivalent of function
IM2 (we have used 10 dimensions). There are 2" — 1 peaks



in this function, located at points (z1,...,zn) : z; € {0,1}
(omitting (0,...,0)). The height of each peak depends on
the number of 1s in its location, more 1s giving higher
value. However, higher peaks are narrower and again it is
unlikely to find them without crossing over solutions from
lower peaks (function IM3 is an example of a hierarchical
function). The global optimum consists of all 1s. Because
of a bigger complexity than in function IM2, one would ex-
pect a bigger need for cooperation between islands to find
the global solution.
The formula for the function is:

IM3(z) = max peakp(x)

pe{0,1}n

where z = (21, ...,2n), and if p = 0 then

peaky(z) = 0
if >, pi =1 then
peaky(z) =
i=1
and if 3. p; > 1 then
1 —p)z;
peaky (2) > s =17 =

We have set n = 10, k = 100. The domain for all argu-
ments is [0, 1].

4.2.4 Function IM4

For this function better solutions are achieved by a com-
bination of not fully optimized local solutions. Overfitting
to a local solution results later in an unproductive crossover.
Therefore one would expect that a cooperation between is-
lands is needed to find the global solution — and must hap-
pen relatively often, before islands converge to locally ideal
solution. Such behavior is supposed to mimic the nature
of more complex real problems, for which we expect that
a repeated interaction between islands is required to find a
good solution.

The formula for the function is:

2r1 2x0

IM4(z1, z2) = max(decept( = ?)

4
+> idecept(2'(z1 — 2+ 277), 2% (s — 24+ 207Y)),

i=2
2 2
T + Ty
— 2
32 +0.25)
where
_ 2)2
decept(x1, z2) = max(—64(x1 + x2)* — w +1,
o2
—64(:B1 + 432)2 — ($1 $92 2) + 1,

—(x1 + 22+ 1)% — 100(z1 — x2 + 2)® + 2,
—(z1 + 22+ 1)* —100(z1 — 22 — 2)> +2)
The domain for both arguments is [-2, 2].
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Figure 3: function IM4

4.2.5 Rosenbrock function

The formula for the function is:

fl@n, . omn) =Y (100(z; — 27_1)" + (1 — z1)°)
1=2

The domain for all arguments is [-2.048, 2.048].

4.2.6 Schwefel function

The formula for the function is:

f(:El,...,

E —x; sin(

The domain for all arguments is [-500, 500].

Vi)

4.2.7 Rastrigin function

The formula for the function is:

f(z1, ... @) —10n+z

The domain for all arguments is [-5.12, 5.12].

— 10 cos(27x;))

4.2.8 Griewangk function
The formula for the function is:

:1+Zn:
=1

The domain for all arguments is [-600, 600].

flxa, ... xn)

o — cos(—%)
4000 1;[1 Vi

5. EXPERIMENTAL RESULTS

For all setups the results looked quite similar, which sug-
gested that there are certain types of dependencies between
migration parameters and island model EA performance
that are quite general.

5.1 Varying size and interval

Because of space limitations, on Fig.4 - Fig.11 we show
the best-so-far values achieved only in experiments with 5
islands. It seems that the regularities observed are better
visible for 5 island setups. In all charts the values are av-
eraged over multiple runs and are the final values after the
algorithm has converged.

The surprising observation from the experiments was that
the migration interval was playing much bigger role than the
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Figure 4: IM1, best-so-far fitness
(panmictic = 1.145, separated = 1.165)
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Figure 5: IM2, best-so-far fitness
(panmictic = 1.105, separated = 1.075)

[N -
ofFkPhFw
G ahawa

interval

Figure 6: IM3, best-so-far fitness
(panmictic = 1.184, separated = 1.12)
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Figure 7: IM4, best-so-far fitness
(panmictic = 2.843, separated = 3.111)

Figure 8: Rosenbrock function, best-so-far fitness
(panmictic = 8.652, separated = 3.437)

Figure 9: Schwefel function, best-so-far fitness
(panmictic = 259.7, separated = 738.9)

Figure 10: Rastrigin function, best-so-far fitness
(panmictic = 6.607, separated = 4.397)
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Figure 11: Griewangk function, best-so-far fitness
(panmictic = 0.101, separated = 0.038)
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Figure 12: TM3, best fitness in runs with different
intervals , size = 10

migration size, especially for short intervals, when we could
regularly observe a strong decrease in the performance. The
reason for that was populations ”overwriting” other ones
before a successful exchange and recombination of solutions
could be made. The behavior is deeper investigated in the
next section.

The size of migrations didn’t influence the behavior as
much, with the exception for the sizes equal to the size of
subpopulations (in our case equal to 20),when target popu-
lations are overwritten with source populations. One could
expect a little bit more sensitivity for small migration sizes,
which is however not observed.

The values plotted on the charts are the final ones, after all
populations having converged to the same solutions. How-
ever for different setups the convergence takes different time
and in particular it takes longer for infrequent migrations.
Therefore if resources are limited, one should avoid using too
rare migrations, because the island model will have no time
to benefit from exchanging solutions and the best fitness
will be worse than expected. Interestingly, for rare migra-
tions the convergence usually occurred faster for medium
sizes, than for big or small ones. Migrations close to sub-
population sizes probably make it difficult to mix the genetic
material, since they swap the contents of whole populations.
With very small migrations it is more probable that the mi-
grant will die without affecting the target population and
thus the longer average time to converge. Also it is possible
that a recombination of the old and new genetic material
may produce better results and extend the evolution.

Finally, in brackets under the graphs we show the best-
so-far fitness for the panmictic case, and for the separated
islands case. One can notice that the island model is very
often achieving better results.

5.2 Measuring diversity for selected runs

To understand better why we observe such a strong in-
fluence of the migration interval on performance, we felt it
was important to understand what was happening inside
the populations. In particular, we did additional experi-
ments measuring genetic diversity during selected runs. The
diversity was computed as standard deviation on genomes
[11].

First, we studied changes in diversity during runs with
migration size fixed (equal to 10). We show the fitness and
diversity plots for function IM3 in Fig. 12 - Fig. 14 (error
bars plot for confidence level 95%). The graphs clearly show
that frequent migrations lead to a fast drop of diversity. This
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Figure 13: IM3, average local diversity inside pop-
ulations in runs with different intervals , size = 10
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Figure 14: IM3, average global diversity in runs with
different intervals , size = 10
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Figure 15: IM3, average fitness in runs with differ-
ent sizes , interval = 20
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Figure 16: IM3, average local diversity inside pop-
ulations in runs with different sizes , interval = 20
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Figure 17: IM3, average global diversity in runs with
different sizes , interval = 20

is caused by individuals from one island dominating individ-
uals from another island. If one waits long enough before
migrating, the global diversity remain large, even though
individual island diversities drop. This means that different
islands converge to different peaks. Exchange of individuals
at this point results in better average fitness.

Later we studied the EA behavior with fixed interval (equal
to 20) and variable migration size (Fig.15 - Fig.17 show fit-
ness and diversity). The graphs show why migration size
may not be influencing the results so much. We observe
that a migration of even a single individual often quickly af-
fects the whole target population, which results in a diversity
drop and fitness increase comparable to the case in which
a large number of individuals migrate (Fig.17). Moreover,
for very small migrations we have sometimes observed an
increase in diversity in generations following a migration,
which suggests that a single individual is able to act as a
seed for changes in a stagnated population. Big migrations
tend to have an immediate effect on diversity simply because
of replacing a larger number of individuals. However they
diversity doesn’t change much in following generations.

One of the questions we wanted to answer was whether
setups with different migration intervals and sizes, but with
the same total number of migrants (on average per gener-
ation) will show the same behavior. For the experiments
we did, we observed that most of such setups converge to
relatively similar fitnesses, with exception of the extreme se-
tups. A plot for IM3 function is shown in Fig. 18. However,
in our experiments we observed little sensitivity to changes
in migration size and interval for moderate values of these
parameters. Studying diversity plots (Fig. 19) shows that
setup with bigger intervals and sizes need more time to con-
verge.

6. CONCLUSIONS AND FUTURE WORK

Let us try to summarize the results of experiments and
answer the questions posed in the section 3.

1. The experiments showed that for the chosen island
model it is not simply the total number of exchanged
individuals that is important, but rather the behavior
is a result of several phenomena. However, it is dif-
ficult to generalize and give a definite answer for any
island model.
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2. The performance of an island model is affected by
at least three factors, combined together (plus some
domain-specific behavior):

- For frequent migrations, the effects of the migration
interval are much stronger than the effects of migration
size. If the migration interval is too small, performance
drops drastically.

- There is a degradation in performance for migration
sizes approaching the subpopulation size.

- There may be a degradation in performance for large
migration intervals if the algorithm stops prematurely.

3. Comparing the best-so-far fitness from different setups
we observed that many of them achieved better results
than both panmictic and separated setup.

4. The best performance is achieved with moderate mi-
gration intervals and small migration sizes. Therefore
island models’ ”sweet spot” is not connected in pa-
rameter space to regions that would correspond to one
big population (frequent big migrations), nor to many
separated ones (rare and very small migrations). This
is in agreement with ”rules of thumb” existing in lit-
erature (for example stating that optimal migration
settings for island GP is 10% population every 5-10
generations [16]). However, we now know that the
island model behavior is very sensitive to small migra-
tion interval and therefore we must be careful to keep
it big enough. Moreover, our results suggest that a
migration size of 10% is unnecessarily big.

5. Too frequent migrations should be avoided, because
they make islands to exchange individuals so fast that
all islands start to share the same individuals. This
loss of diversity negatively affects performance. Al-
though we noticed a negative influence only of artifi-
cially big migrations (equal to subpopulation sizes), for
different policies (like best-worst) the influence may be
visible earlier also as a loss of diversity. In addition,
for more complex functions rare migrations may occur
too few times to be useful and should be avoided.

6. Our experiments showed the necessity of maintaining
diversity in the system to produce novel results and
the necessity for enough information exchange between
islands to combine partial results. Since these proper-
ties are not specific to EA or representation we used,
we believe that for other island model EAs we should
observe a similar dependency between migration size,
interval and EA performance.

There is a lot of future work with regard to island models
and migrations. The above observations together with the
diversity charts suggest a hypothesis that migrations should
occur only after the diversity in the system stabilizes (or
reaches appropriate level). This hypothesis could be studied
in the context of the punctuated equlibria theory [6].

We could get different results for finer-grained migration
sizes. Therefore studying bigger populations, allowing for
percent-wise smaller migrations could shed more light on
this matter. One can expect that there should be a sudden
drop in performance when shifting to tiny migrations that
are ultimately too weak to have any effect on the island
model.
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Finally, the functions studied here were relatively simple.
It would be worth seeing how the properties described in
this paper extend for even more complex problems.

7.
(1]
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