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ABSTRACT 
In this work we provide empirical evidence that shows how a 
variable-length genetic algorithm (GA) can naturally evolve 
shorter average size populations.  This reduction in chromosome 
length appears to occur in finite population GAs when 1) selection 
is absent from the GA (random) or 2) when selection focuses on 
some other property not influenced by the length of individuals 
within a population.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Genetic Algorithm, Variable Length, Random Selection. 

1. INTRODUCTION 
In [10], Wu and Stringer investigated the use of a new form of 
genetic algorithm (GA) to develop rule sets for autonomous micro 
air vehicles (MAVs).  This “Chunking GA” or ChGA combines a 
variable-length GA with a shared communal memory that allows 
evolution of both individual chromosomes and memory 
simultaneously.  Memory can be accessed by individuals in the 
population to improve their solutions over the course of a GA run.   

The ChGA exhibits a number of unique properties which warrant 
further investigation.  One of these is the way in which a ChGA 
evolves its memory contents to contain an optimal or near optimal 
solution.  The ChGA appears able to separate good genes from 
bad (or less good) and store them in the shared memory structure.  
In [8] the authors provide a more formal investigation of this 
“winnowing” effect and the relationship between memory 
capacity and solution size. 

A second unique property of the ChGA is its ability to reduce the 
size of individual base chromosomes (e.g., MAV rule sets) over 
time. This reduction occurs without explicit parsimony pressure 
built into either the ChGA or the fitness function. 

A series of experiments was conducted prior to starting this work 
using a ChGA and various fitness functions to verify that 
reductions in base chromosome lengths were not the result of the 
MAV simulator or mxn MaxSum functions used in previous 
works by Wu and Stringer.  Although not reported here, the 
results of those experiments show that winnowing and reduction 
in base chromosome size occur to varying degrees with most of 
our test functions.   In addition it appears that reduction in base 
chromosome length always occurs after the contents of memory 
are filled with a near optimal solution. 

We have come to believe that reduction in base chromosome 
length is related to reduction in selection pressure as the ChGA 
finds a near optimal solution and stores it in memory.  To put this 
in proper perspective, we must look at what happens during a 
ChGA’s execution.  

As mentioned previously, the ChGA evolves the contents of its 
shared memory simultaneously with access to that memory by 
individuals within the population at large.  At some point in the 
ChGA’s execution, memory contains numerous high-value genes.  
These genes are in turn accessed by more and more individuals 
within the population.  Over time, the contents of memory 
becomes the primary contributor to these individuals’ fitness.  The 
contents of their base chromosomes becomes less relevant.  As the 
run continues, the majority of individuals reference the same 
memory contents (or slots) and we begin to see similar fitness 
values for most of the population – the population converges on 
references to the same memory slots.  As a result, selection among 
these like individuals within the population becomes essentially 
random in nature. 

In this work we focus specifically on understanding and modeling 
how the absence of selection pressure (random selection) can 
cause reduction in chromosome sizes for a variable-length GA 
given 1) a finite population and 2) a uniform distribution of 
chromosome lengths within a population.   

We begin in Section 2 with a discussion of work by other 
researchers related to our area of interest.  We test our ideas using 
a variety of experiments and models in Sections 3 and 4.  
Empirical data from models in these sections show that absent 
selection pressure related to chromosome size, a variable-length 
finite population GA can evolve populations with shorter average-
sized chromosomes. Our conclusions are contained in Section 5. 
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2. RELATED WORK 
In this work we investigate changes in chromosome length under 
random selection (no selection pressure).  No mention of this 
specific topic was found in our search through the GA literature.  
Examples may exist which relate to Grammatical Evolution or 
Pittsburgh Learning Classifier Systems but we leave the search in 
those areas for future work.  The examples found to date have 
actually come from the Genetic Programming (GP) community.  
In this section we summarize those examples and discuss their 
relevance to GAs under similar conditions. 

The first reference concerning random selection on chromosome 
size was found in [9]. It was observed that under random selection 
bloating did not occur (Figure 7.1 of that work actually shows a 
slight reduction in tree size).  Tackett theorized that bloat was 
proportional to selection pressure – the greater the selection 
pressure caused by fitness, the faster the increase in chromosome 
size. It was suggested that bloat might be further strengthened by 
hitchhiking forces which carry non-coding regions along with 
useful material into next generation individuals. 

Experiments performed in [1] confirm some of the Tackett’s 
findings. Bloat is shown to be related to selection pressure. The 
absence of selection pressure stops the growth of program size. 
Like Tackett, the authors found a “slow reduction in program 
size” under random selection. This reduction was attributed to 
biases in the crossover operator that require children to be less 
than a pre-specified length restriction. 

A recent series of papers by Langdon, McPhee, Poli and Rowe as 
well as Stephens and Waelbroeck have culminated in new theory 
regarding variable-length structures that has direct bearing on our 
work.  A summary follows of publications in that series which are 
directly relevant to our work. 

In [3], a new schema theory is proposed for GP.  This new theory 
is specific to GP using two new genetic operators: one-point 
crossover and point mutation.  The new crossover operator works 
by selecting a point on both parents from a common region.  The 
common region consists of those portions of both parents, starting 
from the root with the same arity of nodes and related edges.  A 
single point is selected uniformly from edges within this region to 
serve as the crossover point.  Subtrees below this point are then 
swapped between parents to produce two new children.  This type 
of one-point crossover does not increase the depth of the children 
with respect to both parents but does encourage mixing of 
subtrees.  The use of this specific form of crossover allowed Poli 
and Langdon to develop their new schema theorem which 
mathematically models “the competitions between programs with 
different structure and programs with the same structure.” 

At about the same time, Stephens and Waelbroeck were 
developing a new exact schema theorem for genetic algorithms [6, 
7].  The primary contribution of these works was the addition of 
schema reconstruction via crossover and mutation to Holland’s 
original, more pessimistic schema theorem.  Another important 
finding from [7] is the following: 

“We also showed that, generically, there is no preference for 
short, low-order schemata. In fact, if schema reconstruction 
dominates, the opposite is true – typically large schemata will be 
favored. Only in deceptive problems does it seem that short 
schemata will be favored, and then only in totally deceptive 

problems as the system will tend to seek out existing non-
deceptive channels.” 

In this quote the use of “short” and “large” refer to the defining 
length of  schemata.  This finding is important as a possible clue 
to the cause of bloat in variable-length GAs.  Without some bloat 
control mechanism, such GAs grow rapidly in size during early 
generations as they work to combine building blocks into more 
complete and optimal solutions.  The fact that large schemata can 
improve building block construction may explain why variable-
length GAs grows so rapidly in early generations. 

The idea of exact schema was applied to Poli and Langdon’s new 
schema theory in [5] to produce “a macroscopic exact schema 
theorem for genetic programming with one-point crossover.”  
Included in that work was an example that calculated the total 
transmission probability and effective fitness for a specific 
schema in a limited population consisting of functions of singular 
or 1-arity. 

The example just described served as inspiration for two 
subsequent works: [2, 4].  In these papers, the authors develop an 
exact schema theory for linear structures (similar to variable-
length GAs) consisting solely of 1-arity functions and a single 
terminal.  Results were given for linear structures under both the 
previously described one-point crossover and standard crossover.  
In standard crossover, crossover points are chosen on both parents 
independently – no common region is used.  This version of 
crossover is equivalent to that used in most variable-length GAs 
including the ChGA. We will not replicate here the details of Poli 
and McPhee’s papers but will summarize the points that are most 
applicable to our current work. 

For one-point crossover, assuming an infinite population and 
constant fitness function (e.g., uniform or random selection), the 
average size of individuals over time remains constant – a fixed 
point equal to the average size of the initial population.  In 
addition, the distribution of lengths within the population does not 
change over time.  The distribution remains a fixed point also 
equal to the distribution of length within the initial population.  
One-point crossover has no effect on structure length. 

The results under standard crossover are different.  Again 
assuming an infinite population and constant fitness function, the 
average size from one generation to the next remains constant and 
fixed at a point equal to the average size of the initial population.  
But the distribution of lengths over time changes. Poli and 
McPhee show that under constant fitness, shorter-than-average 
structures are sampled more often than larger ones.  Over time 
large individuals become larger but fewer in number while shorter 
individuals shrink but become more numerous.  Thus we see a 
change in length distribution but no change in mean length from 
one population to the next.  They conclude their work in [4] by 
showing that distribution of length under standard crossover is not 
a fixed point but a set of fixed points over time defined by a 
family of discrete gamma functions. 

3. SIMULATING A VARIABLE-LENGTH 
GENETIC ALGORITHM 
How do we verify our hypothesis that a GA without selection 
pressure causes the average size of a population to shrink?  Since 
our motivation for this work is in part a desire to explain the 
shrinking genomes in [10], we must first verify that this behavior 
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is not problem specific.  To do so we perform a series of empirical 
tests on a simple model of a variable-length GA with selection 
and crossover operators. 

Our model starts with an integer array of 100 elements, each 
element representing a single individual in a 100-member GA 
population.  The value of each array element represents the 
number of genes contained within an individual’s chromosome 
(its length).   Lengths can vary in the model from 0 to c where c is 
some size cap which invokes a truncation operator.  For most of 
the experiments in this section, elements of an array are initialized 
to 20 to match the initial length used in prior ChGA works. 

Before proceeding we should address the issue of “0” length 
chromosomes.  In [8, 10] the ChGA allowed for individuals with 
base chromosomes of zero length.  This type of “null” 
chromosome was possible since individuals could still access 
genes stored in the ChGA’s communal memory structure.  
Without a memory structure, crossover is still possible between 
two parents, one being of 0 length.  This scenario could be 
thought of as a form of asexual reproduction where the genetic 
material in one parent is divided between two children.  Finally, 
for the experiments in this section the use of 0-valued array 
elements is a non-issue.  If length is re-defined as the number of 
crossover points within a chromosome, then a 0-length individual 
is really a 1-gene chromosome, that gene being indivisible. 
Alternatively our experiments could also have been run using 
elements of size 1 to c+1 and achieved the same results. 

Within our model, a loop contains code which simulates random 
selection, crossover, and reproduction.  No fitness function exists 
in our initial model since we want to test the performance of a GA 
without any selection pressure.  We have also excluded mutation 
from our model as this operator normally affects the contents of a 
chromosome rather than its length. 

The loop is executed 500 times to simulate 500 generations. 
During each “generation”, a new child array of 100 elements 
representing the next generation is created. 

A simulated 1-point crossover populates elements in a child array.  
Two parent elements are chosen (selected) from the first array at 
random.  Two random integers between 0 and each parental 
element’s value are chosen as the crossover points.  Two children 
are produced and copied into the child array as follows:  Child1 
equals the first crossover point plus the value of Parent2 less the 
second crossover point; Child2 equals the second crossover point 
and the difference between Parent1 and the first crossover point.  
The following example illustrates our simulated crossover: 

 
Parent1 = 25  Xover Pt 1 = 6 Child1 = 6 + (7-5) or  8 
Parent2 = 7  Xover Pt 2 = 5 Child2 = 5 + (25–6) or  24 
 
The above calculation serves to model the effect of crossover on 
the length of chromosomes from one generation to the next.  
Remember our concern here is size, not fitness of the individual or 
its genetic composition. 

3.1 1-Point Crossover and Random Selection 
A number of model experiments of 1000 runs each were 
performed.  At the end of each run, the average length of the final 
population (average of 100 array elements) was computed and 
classified according to size ranges in Table 1.  The experiments 

themselves varied by the size cap (c) applied to larger 
chromosomes.  In past works, we have used a size cap of 100 
genes with right truncation similar to Table 1(b). 

Table 1.   Number of runs with avg. size of final population 
within various ranges for GA simulations using random 

selection, 1-pt crossover, and initial gene size of 20 
Number of Runs Within Given Ranges  

Ranges for Avg 
Population 

Size at End of Run 

(a) 
Cap=50 

(b) 
Cap=100 

(c) 
Cap=250 

(d) 
Cap=1B 

<10 895 740 673 665 
(10 – 20] 98 163 140 133 
(20 – 30] 7 63 73 67 
(30 – 40] 0 28 36 30 
(40 – 50] 0 6 25 22 
(50 – 60] n/a 0 15 22 
(60 – 70] n/a 0 17 13 
(70 – 80] n/a 0 12 10 
(80 – 90] n/a 0 4 5 

(90 – 100] n/a 0 4 3 
>100 n/a 0 1 30 

Avg. Size All Runs 3 6 11 16 
 
As Table 1 shows, the vast majority of populations ended with an 
average length below the starting average of 20 genes per 
individual.  This occurred even when a size cap of 1 billion (in 
effect no cap) was implemented.  A smaller size cap (in this case 
below 250) may act as a dampening force causing more “shorter” 
populations.  But a cap itself does not seem to be the force driving 
the reduction. 

Could our short populations be due to the initial array values (20)?  
To find out we conducted the same experiment with array 
elements initialized to 200 thus simulating longer genes per 
chromosome.  Results are shown in Table 2.  The distribution of 
population averages across ranges is similar to that in Table 1 
(assuming larger ranges) and the average size for all runs varies 
approximately by a factor of 10. 

Table 2.   Number of runs with avg. size of final population 
within various ranges for GA simulations using random 

selection, 1-pt crossover, and initial gene size of 200 
Number of Runs Within Given Ranges  

Ranges for Avg 
Population 

Size at End of Run 

(a) 
Cap=500 

(b) 
Cap=1000 

(c) 
Cap=2500 

(d) 
Cap=1B 

<100 879 725 667 661 
(100 – 200] 115 170 143 138 
(200 – 300] 6 68 75 67 
(300 – 400] 0 31 37 32 
(400 – 500] 0 6 26 22 
(500 – 600] n/a 0 13 19 
(600 – 700] n/a 0 16 11 
(700 – 800] n/a 0 13 16 
(800 – 900] n/a 0 6 2 
(900 – 1000] n/a 0 3 3 

>1000 n/a 0 1 29 
Avg. Size All Runs 44 77 122 167 

 

3.2 Results with Fitness-Based Selection 
The previous experiments indicate that, absent selection pressure, 
a GA can shorten the average size of a population over time.  
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What if selection pressure is incorporated into our model?  
Experiments were conducted similar to those shown in Tables 1 & 
2 using tournament selection with fitness maximization in lieu of 
random selection.  A cap of 1 billion was set for all experiments in 
this group to allow near unlimited growth in chromosome size 

In the first experiment (Table 3 column (a)), each parent and child 
element in the array is assigned a “fitness” equal to its size thus 
favoring longer individuals.  Not surprisingly, the average sizes 
(and fitnesses) of the final populations are enormously large.  All 
final populations are well over 100 genes in terms of average 
length.  This experiment shows how fitness, tied in some way to 
length, increases the average size of the population dramatically – 
another illustration of Langdon and Poli’s assertion that fitness 
causes bloat. 

In the second experiment, fitness is equal to 100 minus the size of 
the individual (favoring smaller individuals).  In every case, all 
individuals evolve to a size of 0 (no genes) hence all 1000 final 
populations average in the 0-10 range (see Table 3, column (b)). 

Table 3.   Number of runs with avg. size of final population 
within various ranges for GA simulations using tournament 

selection, 1-pt crossover, and initial gene size of 20 
Number of Runs Within Given Ranges Ranges for Avg 

Population 
Size at End of 

Run 

(a) 
Longer is 

Fitter 

(b) 
Shorter 

is 
Fitter 

(c) 
Fitness = 

(Fp1+Fp2)/2 

(d) 
Random 
Fitness 

<10 0 1000 611 709 
(10 – 20] 0 0 149 107 
(20 – 30] 0 0 77 52 
(30 – 40] 0 0 42 25 
(40 – 50] 0 0 23 21 
(50 – 60] 0 0 22 11 
(60 – 70] 0 0 14 10 
(70 – 80] 0 0 10 9 
(80 – 90] 0 0 8 7 

(90 – 100] 0 0 4 7 
>100 1000 0 40 42 

Avg. Size All 
Runs 

799722254 0 21 17 

Avg. Fit All Runs 799722254 100 83.49 49.34 
 

The third experiment starts by assigning a random fitness value to 
each array element.  During execution, the children of each 
mating are assigned fitness values equal to the sum of their 
parents’ values divided by two.  The result is a fitness assignment 
that does not depend on the length of the parents.  Our simulated 
GA in this scenario evolves many populations with individuals of 
short average size (see Table 3, column (c)). 

In our last experiment, fitness values for all array elements 
(parents and children) are assigned randomly.  Fitness is in no 
way tied to the size of the individual.  Nor does fitness from prior 
generations have any bearing on selection in the next generation.  
Like the results in column (c) we see that populations are by far, 
smaller than the initial starting size.  The fact that fitness is 
randomly assigned causes a complete absence of selection 
pressure associated with length and we see that our GA simulation 
naturally evolves shorter populations.  Note that this column is 
very similar to Table 1, column (c) which used purely random 
selection without any fitness function. 

3.3 Other Crossover Types 
The three prior sets of experiments (Tables 1, 2 and 3) modeled a 
GA using 1-point crossover.  Two more sets of experiments were 
conducted to see if reduction in average size across populations 
occurs using 2-point crossover.  The results of these experiments 
are contained in Tables 4 and 5. 

These tables show that reduction in average chromosome size for 
a population can occur with at least one other form of crossover.  
A comparison of results from Table 1 & 4 to those in Tables 3 & 
5 shows however that the size reduction under 2-point does not 
appear to be as great (or fast) as that occurring with 1-point. 

Table 4.  Number of runs with avg. size of final population 
within various ranges for GA simulations using random 

selection, 2-pt crossover, and initial gene size of 20 
Number of Runs Within Given Ranges  

Avg Population 
Size 

At end of Run 

(a) 
Cap = 50 

(b) 
Cap = 100 

(c) 
Cap = 250 

(d) 
Cap = 1B 

<10 761 598 563 561 
(10 – 20] 212 228 189 188 
(20 – 30] 27 100 89 80 
(30 – 40] 0 51 44 45 
(40 – 50] 0 21 27 26 
(50 – 60] n/a 2 23 17 
(60 – 70] n/a 0 20 14 
(70 – 80] n/a 0 15 14 
(80 – 90] n/a 0 11 6 

(90 – 100] n/a 0 9 13 
>100 n/a 0 10 36 

Avg. Size All 
Runs 

5 10 16 19 

 

Table 5.  Number of runs with avg. size of final population 
within various ranges for GA simulations using tournament 

selection, 2-pt crossover, and initial gene size of 20 
Number of Runs Within Given Ranges Ranges for Avg 

Population 
Size at End of 

Run 

(a) 
Longer is 

Fitter 

(b) 
Short = 
Fitter 

(c) 
Fitness = 

(Fp1+Fp2)/2 

(d) 
Random 
Fitness 

<10 0 1000 555 605 
(10 – 20] 0 0 179 153 
(20 – 30] 0 0 77 61 
(30 – 40] 0 0 53 46 
(40 – 50] 0 0 38 35 
(50 – 60] 0 0 22 20 
(60 – 70] 0 0 20 15 
(70 – 80] 0 0 10 13 
(80 – 90] 0 0 8 9 

(90 – 100] 0 0 8 3 
>100 1000 0 30 40 

Avg. Size All 
Runs 838,601,988 0 20 18 

Avg. Fit. All 
Runs 838,601,988 100 83.66 49.60 

 

3.4 Population Size and Run Length 
Results found in [2, 4] show that, given an infinite population and 
a flat fitness landscape, there should be no change in the average 
length of individuals within a population over time. The model we 
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have constructed in this section uses a finite population of 100 
elements.  Do our results change if larger populations are used? 

To answer that question we re-ran experiments using our model 
but varied both the size of the population (from 100 to 1000 
elements) and the number of generations (500-5000).  For each 
size/generation combination, a total of 500 runs were made.  In 
each run, all members of the population began with a length of 50. 
The number of runs ending with a population of average length 
less than 50 (the average starting length) were counted, converted 
to a percentile, then plotted in Figure 1. 

Figure 1 shows that as population size increases, the reduction in 
mean size within a population slows.  In other words, the 
phenomenon we have seen with our ChGA experiments and those 
conducted earlier in this section becomes less apparent with larger 
populations. 

Also shown in Figure 1 is the affect of time on this reduction.  
The longer the GA runs, the greater the reduction in mean length. 
For example, when using an array of 100 elements and 5000 
generations, over 99% of all runs ended with a mean length less 
than 50 (the mean length for the starting population).  At the 
opposite end of the spectrum (1000 elements, 500 generations) 
only 60% of runs ended in populations with mean lengths of less 
than 50. 
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Figure 1. Graph showing effect of population size and run 

length on percentage of runs with ending average population 
sizes below the starting size. 

Earlier in this work we mentioned results found in [1, 9].  Those 
authors found no increase in mean program length under random 
selection with Langdon and Poli noticing a slight reduction in 
size.  A review of their experiment parameters show that Tackett 
used a population of 500 individuals and 24 generations per run.  
Langdon and Poli’s experiments also used 500 individuals but 50 
generations per run.  It may be that given more time or smaller 
populations, those researchers would have seen a more 
pronounced reduction in program size.  Of course, the use of parse 
trees in their experiments rather than the GA’s more linear 
structure may have prevented size reduction regardless of the 
number of runs or  larger population sizes tried. 

Finally, the results in Figure 1 may be seen as a limited 
confirmation of [4].  That work concludes that “shorter structures 
are sampled exponentially more frequently than larger ones.”  
This is despite the fact that the average length within an infinite 
population is a fixed point over time.  It is not surprising that the 
mean length in our experiments decreases over time given 1) that 

GAs are stochastic algorithms and subject to sampling errors in 
finite populations and 2) that over-sampling of smaller individuals 
is inherent in linear structures using 1-point crossover under 
random selection.  Sampling errors occurring in a GA with small  
populations are more likely to cause selection of smaller 
individuals as parents thereby reducing the mean size for the 
entire population over time. 

3.5 Discussion 
The simulations performed in this section yield several important 
bits of information. First, absent selection pressure our GA model 
prefers to evolve finite populations of shorter average size given 
sufficient time (generations). Without a size cap, roughly 75%-
80% of all final populations have an average chromosome size 
less than the starting length regardless of initial starting size.  
Second, a size cap does exert downward pressure on chromosome 
size but does not appear to be the primary cause of reductions in 
average size.  Last but not least, time is a factor in this reduction – 
the more individuals in a population, the more time required for 
reduction to take place.  

Results clearly show that a finite population GA without any 
selection pressure tends to evolve populations with shorter 
average chromosome sizes.  But as shown in Table 3 & 5, absence 
of selection is not the complete story. The GA evolves larger-size 
populations only when longer individuals are considered more fit.  
Shorter populations can evolve in the presence of selection as long 
as 1) fitness and size are not related to one another or 2) fitness 
favors more compact solutions. 

These simulations seem to confirm at least that fitness can be the 
cause of bloat if longer individuals in a population are considered 
more fit. The reason for longer individuals being more fit is itself 
a subject for future investigation. 

4. SHORTER THAN AVERAGE 
CHILDREN 
Given that a variable length GA can evolve shorter mean length 
populations over time, what might be the cause of this reduction?  
Our next set of experiments focuses on a possible cause – the 
percentage of children produced by a GA which are shorter than 
the average size of the parent generation.  If this percentage is 
above 50% we may be able to quantify the over sampling of 
smaller structures described in [2] and find a force that aids in 
reduction of mean genome size from one generation to the next.   

To set up our experiments we define a theoretical population as 
one occurring at some generation t consisting of 2n individuals.  
The individuals which make up this population consist of two of 
every size from 1 to n crossover points.  We use the notation Li to 
indicate the size of an individual where i is the number of 
crossover units (bits or genes) within the genome. The population 
in total makes up an nxn matrix with each row and column 
corresponding to one of the population members (see Figure 2). 

The number of possible crossover events for any given mating is 
the multiplication of the number of crossover points in each of the 
parents.  For example, a total of 8 unique crossover events is 
possible between a single mating of two parents, one with four 
crossover points and the other with two.  We can fill each cell in 
our population matrix with the number of possible crossover 
events that can take place for any two chromosomes of size j and 
k where j,k ≤ n by simply multiplying the row and column 
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indexes. Each element of the matrix in Figure 2 shows the number 
of possible crossover events between parents with crossover point 
lengths of j and k up to n. 

 L1 L2 L3 L4 ... Ln       

L1 1 2 3 4 ... N       

L2 2 4 6 8 ... 2n       

L3 3 6 9 12 ... 3n       

L4 4 8 12 16 ... ...       

... ... ... ... ... ... ...       

Ln n 2n 3n ...  nn   X1 X2 X3 X4 

        X1 
C2, 
C4 

C3, 
C3 

C4, 
C2 

C5, 
C1 

        X2 
C5, 
C1 

C4, 
C2 

C3, 
C3 

C2, 
C4 

 
Figure 2. nxn population matrix cell showing length of 

children created by each possible crossover event.  Number of 
rows and columns in the inner matrix determined by the 

number of crossover points in the parent genomes. 
Let us now extend our illustration in Figure 2 by expanding a 
single cell to contain an inner matrix representing each of the 
unique crossover events possible for a given mating. We use the 
notation Xi to indicate the different crossover points for both 
individuals where i is the location of the crossover point along the 
genome.  Children produced by each possible crossover event are 
shown as Cl where l is the number of crossover points (length) in 
each child.  For the mating of any L2 and L4 chromosome there 
are eight possible mating events which produce children of 
various sizes.   

Our first experiment counts the number of children whose length 
is less than, equal to, or greater than  the average size of the parent 
population.  From a run with a 200x200 population matrix, the 
percentages are 34.25%, .5% and 65.25% respectively.  The high 
percentage of greater-than children would seem to indicate that a 
GA actually produces children longer than the prior generation’s 
average size.  But these numbers do not include any weighting of 
the counts by mating occurrences.  If a form of weighting is used 
which factors in the probability of mating between parents then 
the percentage of possible children of size less than the parent 
generation approaches 55% (see Figure 3). 
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Figure 3.  Percentages of children with size less than, equal to, 
or greater than the average size of  their parent generation for 
nxn population matrices varying in size from n=1 to 200.   

The experimental method used to produce Figure 3 actually tests n 
different matrices as n goes from 0 to 200.  Both the average size 
of the population and the variation in array elements (difference 
between smallest and largest) in each matrix is increased 
uniformly during program execution.  Two additional sets of 
experiments were performed to isolate which of these two factors 
might be the cause of the increase in shorter children. 

In the first set of additional experiments, the size of the variance 
was fixed for each run (e.g., 10, 25, 50, 75, 100).  The starting 
point for the program was determined by multiplying the variance 
by 2.  For example, a variance of 25 requires a 50x200 population 
matrix.  As the program executes it essentially moves a window 
50 rows high from a starting point of 1 to an end point of 150.  As 
a result the average size of the population matrix moves from 25 
to 175.  The number of mating occurrences stays constant but the 
number of crossover events increases as the average size within 
the window grows. 

The results of this experiment are found in Figure 4 and are two-
fold.  First, the size of the variance definitely makes a difference.  
Of the five tests, a variation of 100  between smallest and largest 
individual in the window has the highest percentage of children 
whose size is below the average size of the parent population (see 
single point on the right side of the graph).  Second, the number of 
less-than-average children decreases as the average size of the 
population goes up.  This seems to indicate that the ratio of 
average chromosome size to diversity of size within the 
population matters. 
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Figure 4. Effect of changes in variance on percentages of 

children whose size is less than the mean length of the parent 
population matrix.  n is equal to the average times 2. 

 

The next experiment (Figure 5) makes this more clear.  In this 
test, the average size of the matrix was kept at 100.  The variance 
was increased over time from 0 to 200.  This method can be 
thought of as a mxn matrix expanding out from a fixed center 
point acting as the average.  m and n change over time with m 
always equal to the average less the variance and n always equal 
to the average plus the variance. 

Figure 5 clearly shows that as the size variance grows so does the 
probability of creating children that are of smaller size than their 
parents.  Note however that the growth is not infinite. At the end 
of the experiment (200x200), the percentage of lesser children 
reaches 54.9% –  close to the 55% mentioned earlier. 
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Figure 5. Effect of changes in variance (given a fixed average) 
on percentages of children whose size is less than the average 

size of the parent population for a mxn. 
 

Based on empirical evidence it appears that the probability of 
choosing shorter individuals for mating in the next generation is 
no longer a purely random event absent selection pressure.  Our 
experiments seem to lend support to the finding in [2] that smaller 
and smaller structures are sampled over time for linear structures 
under random selection.   

Empirical results show that this probability approaches 55% given 
a sufficiently large variation in genome size, assuming uniform 
distribution within the population. The fact that this percentage is 
only a little higher than 50% means that it can probably be 
overcome by stochastic effects.  This small difference also gives 
an indication of why finite populations shrink in the absence of 
selection pressure but only over an extended period of time.  If the 
probability was significantly higher, the rate of decline in size 
would be very rapid. 

5. CONCLUSIONS 
In this work we have conducted a series of experiments which 
provide strong evidence that variable-length GAs can naturally 
evolve populations of shorter mean length over time if selection is 
random or not associated with length in some way. 

Empirical evidence is given which lends support to the 
conclusions drawn in [4] with regard to standard crossover – 
specifically that a variable-length GA, given an infinite population 
and standard crossover, over samples shorter individuals in each 
generation. Our experiments show that this same idea applies to 
GAs of finite population sizes. 
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