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ABSTRACT
Investigating and enhancing the performance of genetic al-
gorithms in dynamic environments have attracted a growing
interest from the community of genetic algorithms in recent
years. This trend reflects the fact that many real world
problems are actually dynamic, which poses serious chal-
lenge to traditional genetic algorithms. Several approaches
have been developed into genetic algorithms for dynamic
optimization problems. Among these approches, random
immigrants and memory schemes have shown to be bene-
ficial in many dynamic problems. This paper proposes a
hybrid memory and random immigrants scheme for genetic
algorithms in dynamic environments. In the hybrid scheme,
the best solution in memory is retrieved and acts as the base
to create random immigrants to replace the worst individ-
uals in the population. In this way, not only can diversity
be maintained but it is done more efficiently to adapt the
genetic algorithm to the changing environment. The ex-
perimental results based on a series of systematically con-
structed dynamic problems show that the proposed memory-
based immigrants scheme efficiently improves the perfor-
mance of genetic algorithms in dynamic environments.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Probabilistic algorithms (including Monte Carlo)

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic Algorithms, Dynamic Optimization Problems, Mem-
ory Scheme, Random Immigrants Scheme

1. INTRODUCTION
Genetic algorithms (GAs) have been widely used for and

mainly focused on stationary optimization problems. How-
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ever, in recent years investigating the performance of GAs
in dynamic environments has attracted a growing interest
from GA’s community because many real world problems
are actually dynamic. In these dynamic optimization prob-
lems (DOPs), the problem-specific fitness evaluation func-
tion and constraints of the problem, such as design variables
and environmental conditions, may change over time. This
poses serious challenges to traditional GAs due to the con-
vergence problem because once converged GAs cannot adapt
well to the changing environment. In recent years, several
approaches have been developed into GAs to address dy-
namic optimization problems [3], such as maintaining diver-
sity during the run via random immigrants [8, 15], increasing
diversity after a change [5], using memory schemes to reuse
old good solutions [2], and multi-population approaches [4].
Among the approaches developed for GAs for DOPs, ran-

dom immigrants and memory schemes have proved to be
beneficial for many DOPs. Random immigrants schemes
aim to maintain the diversity of the population by replacing
worst or randomly selected individuals from the population
with randomly created individuals. Memory schemes work
by implicitly using redundant representation or explicitly
storing good (usually best of population) solutions in cer-
tain time pattern during the run in an extra memory and
reusing them when the environment changes. In this paper,
a hybrid random immigrants and memory approach, called
memory-based immigrants, is proposed and investigate for
GAs in dynamic environments. In the hybrid approach, the
best solution in the memory is retrieved and acts as the base
to create random immigrants to replace the worst individ-
uals in the current population. In this way, not only can
diversity be maintained but it is done more efficiently to
adapt the GA to the changing environment.
Based on the dynamic problem generator proposed in [16,

17], a series of dynamic test problems are constructed from
several stationary functions and experimental study is car-
ried out to compare the performance of several GA vari-
ants with random immigrants and memory schemes. Based
on the experimental results, we carry out algorithm per-
formance analysis regarding the weakness and strength of
random immigrants and memory schemes for GAs in dy-
namic environments. The experiment results indicate that
the proposed memory-based immigrants scheme efficiently
improves the performance of GAs in dynamic environments.
The rest of this paper is outlined as follows. The next

section briefly reviews random immigrants and memory ap-
proaches for GAs in dynamic environments and presents the
GAs studied in this paper as peer GAs. Section 3 presents
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begin
t := 0
initialize population P (0) with n random solutions
evaluate population P (0)
repeat

P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)
replace elite from P (t− 1) into P ′(t) randomly
evaluate the interim population P ′(t)

if random immigrants used then // for RIGA
replace ri×n worst individuals in P ′(t) with
random immigrants

evaluate the random immigrants

P (t+ 1) := P ′(t)
until terminated = true // e.g., t > tmax

end

Figure 1: Pseudo-code for the standard GA (SGA)
and the GA with random immigrants (RIGA).

the proposed memory-based immigrants scheme for GAs in
dynamic environments. Section 4 describes the dynamic test
environments for this study. The experimental results and
relevant analysis are presented in Section 5. Section 6 con-
cludes this paper with discussions on relevant future work.

2. RANDOM IMMIGRANTS AND
MEMORY SCHEMES

2.1 Random Immigrants Based GA
The standard GA (SGA) maintains and evolves a popula-

tion of candidate solutions through selection and variation,
as shown in Figure 1. New populations are generated by first
probabilistically selecting relatively fitter individuals from
the current population and then performing crossover and
mutation on them to create new off-springs. This process
continues until some stop condition becomes true, e.g., the
maximum allowable number of generations tmax is reached.
Usually, with the iteration of the GA, individuals in the
population will eventually converge to optimum solutions in
stationary environments due to the pressure of selection.
Convergence at a proper pace, instead of pre-mature, may

be beneficial and in fact is expected in many optimization
problems for GAs to locate expected solutions in stationary
environments. However, convergence usually becomes a big
problem for GAs in dynamic environments because chang-
ing environments usually require GAs to keep certain pop-
ulation diversity level to maintain their adaptability. The
random immigrants approach is a quite natural and simple
way around the convergence problem [5]. It maintains the
diversity level of the population through substituting some
individuals of the current population with random individu-
als every generation. As to which individuals in the popula-
tion should be substituted, usually there are two strategies:
replacing random individuals or replacing the worst ones
[15]. In order to avoid that random immigrants disrupt the
ongoing search progress too much, especially during the pe-
riod when the environment does not change, the ratio ri of

the number of random immigrants to the population size n
is usually set to a small value, e.g., 0.1.
The pseudo-code for the standard GA with random im-

migrants investigated in this paper, denoted RIGA, is also
shown in Figure 1, where random immigrants replace worst
individuals in the population, pc is the crossover probability,
and pm is the mutation probability.

2.2 Memory-Enhanced GA
While the random immigrants approach uses random in-

dividuals to maintain the population diversity level to adapt
GAs to changing environments, the memory approach aims
to enhance GA’s performance in dynamic environments in a
different way. The memory approach works by storing useful
information from the current environment, either implicitly
through redundant representations [6, 7, 9, 12] or explicitly
by storing good (usually best) solutions of the current pop-
ulation in an extra memory space [1, 10, 11, 14]. And the
stored information can be reused later in new environments.
For example, for the explicit memory scheme, when the en-
vironment changes, old solutions in the memory that well
fit the new environment will be reactivated and hence may
adapt the GA to the new environment more directly than
random immigrants would do. Especially, when the environ-
ment changes periodically, the memory approach can work
very well because with time going an old environment will
reappear exactly and the associated solution in the memory,
which exactly remembers the old environment, will instan-
taneously move the GA to the reappeared environment [2].
For explicit memory schemes, which are the concern of

this paper, there are several technical considerations, regard-
ing the content, the management and the retrieval strate-
gies of the memory. For the first aspect, usually good solu-
tions are stored and reused directly when the environment
changes [10]. It is also an interesting policy to store environ-
mental information together with good solutions. When the
environment changes, the stored environmental information
is used, for example, as the similarity measure [13], to asso-
ciate the new environment with stored good solutions in the
memory to be re-activated.
For the memory management, since the memory space is

usually limited, it is necessary to update memory solutions,
when it is full, to make room for new ones. A general strat-
egy is to select one memory point to be removed for the
best individual from the population or to be moved toward
it [1]. As to which memory point should be selected for
updating, there are several memory replacement strategies,
e.g., replacing the least important one with respect to the
age, contribution to diversity and fitness, replacing the one
with least contribution to memory variance, replacing the
most similar one if the new individual is better, or replacing
the less fit one of a pair of memory points that have the
minimum distance among all pairs [2]. For the memory re-
trieval, a natural strategy is to use the best individual(s) in
the memory to replace the worst individual(s) in the popula-
tion. This can be done periodically (e.g., every generation),
or only when the environment changes.
The GA with the memory scheme investigated in this pa-

per, called memory-enhanced GA (MEGA), is shown in Fig-
ure 2, where f(X) is the fitness of individualX. MEGA (and
other memory based GAs studied in this paper) uses a mem-
ory of size m = 0.1∗n, which is randomly initialized. When
the memory is due to update, if any of the randomly initial-
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begin
t := 0 and tM := rand(5, 10)
initialize population P (0) and memory M(0) randomly
evaluate population P (0)
repeat
evaluate memory M(t)
if environmental change detected then

P ′(t) := retrieveBestMembersFrom(P (t),M(t))
else P ′(t) := P (t)

if t = tM then // time to update memory
tM := t+ rand(5, 10)
denote the best individual in P ′(t) by BP (t)
if still any random point in memory then
replace a random point in memory with BP (t)

else
find the memory point CM (t) closest to BP (t)
if f(BP (t)) > f(CM (t)) then
replace CM (t) with BP (t)

// normal genetic operation
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)
replace elite from P (t− 1) into P ′(t) randomly
evaluate the interim population P ′(t)

if random immigrants used then // for MRIGA
replace ri×n worst individuals in P ′(t) with
random immigrants

evaluate the random immigrants

P (t+ 1) := P ′(t)
until terminated = true // e.g., t > tmax

end

Figure 2: Pseudo-code for the memory-enhanced
GA (MEGA) and the GA with memory and ran-
dom immigrants schemes (MRIGA).

ized points still exists in the memory, the best individual of
the population will replace one of them randomly; otherwise,
it will replace the closest memory point if it is better (i.e., the
most similar memory updating strategy [2]). And instead
of updating the memory in a fixed time interval as in other
memory-based GAs in the literature, the memory is updated
in a dynamic time pattern as follows. After each memory
updating, a random integer R ∈ [5, 10] is generated to decide
the next memory updating time tM . For example, suppose
a memory updating happens at generation t, then the next
memory updating time is tM = t+R = t+rand(5, 10). This
way, the potential effect that the environmental change pe-
riod coincides with the memory updating period (e.g., the
memory is updated whenever the environment changes) is
smoothed away. The memory is re-evaluated every gener-
ation to detect environmental changes1. If an environment
change is detected, the memory is merged with the old pop-
ulation and the best n − m individuals are selected as an
interim population to undergo normal genetic operations for
a new population while the memory remains unchanged.

1The environment is detected as changed if at least one indi-
vidual in the memory has been detected changed its fitness.

begin
t := 0 and tM := rand(5, 10)
initialize population P (0) and memory M(0) randomly
evaluate population P (0)
repeat
evaluate memory M(t)
if t = tM then // time to update memory

tM := t+ rand(5, 10)
denote the best individual in P (t) by BP (t)
if still any random point in memory then
replace a random point in memory with BP (t)

else
find the memory point CM (t) closest to BP (t)
if f(BP (t)) > f(CM (t)) then
replace CM (t) with BP (t)

// normal genetic operation
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc)
mutate(P ′(t), pm)
replace elite from P (t− 1) into P ′(t) randomly
evaluate the interim population P ′(t)

// perform memory-based immigration
denote the best point in M(t) by BM (t)
PI(t) := mutateBestMemoryPoint(BM (t), ri×n, pi

m)
replace ri×n worst individuals in P ′(t) with
the memory-based immigrants in PI(t)

evaluate the memory-based immigrants

P (t+ 1) := P ′(t)
until terminated = true // e.g., t > tmax

end

Figure 3: Pseudo-code for the GA with memory-
based immigrants (MIGA).

2.3 GA with Memory + Random Immigrants
It is straightforward that the above discussed random im-

migrants and memory approaches can be combined into GAs
to deal with DOPs. The GA investigated in this paper,
which combines memory and random immigrants schemes,
is also shown in Figure 2, denoted MRIGA. MRIGA differs
from MEGA only in that before entering next generation,
ri ×n random immigrants are swapped into the population.

3. MEMORY-BASED IMMIGRANTS GA
As discussed in the above section, the random immigrants

approach aims to improve GA’s performance in dynamic
environments through maintaining the population diversity
level with random immigrants and the memory approach
aims to move the GA directly to an old environment that
is similar to the new one through reusing old good solu-
tions. These two approaches can be simply combined into
GAs as in the MRIGA. In this paper we propose a more
efficient memory and random immigrants hybrid approach,
called memory-based immigrants, for GAs to deal with dy-
namic optimization problems. The pseudo-code for the GA
with the proposed memory-based immigrants scheme, de-
noted MIGA, is shown in Figure 3.
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Figure 4: Illustration of immigrants schemes in GAs.

Comparing Figure 2 with Figure 3, it can be seen that
MIGA uses the same memory updating mechanism as MEGA
and MRIGA. However, the memory retrieval does not de-
pend on the detection of environmental changes and is hy-
bridized into the random immigrants scheme together with
the mutation mechanism. For every generation, the memory
is reevaluated and the best memory point BM (t) is retrieved
as the base for creating immigrants. From BM (t), a set PI(t)
of ri ×n individuals are iteratively generated by performing
general bit flip mutation with a probability pi

m on BM (t).
The generated individuals then act as immigrants and re-
place the worst ri × n individuals in the population.
The key idea behind MIGA is that the memory is used

to guide the immigrants to make them more biased to the
current environment, be it a new one or not, than random
immigrants. This is illustrated in Figure 4. For the random
immigrants approach, immigrants are distributed over the
whole search space while for the memory-based immigrants
approach, immigrants are distributed around the best mem-
ory point and hence more precisely around the optimum of
the current environment. This bias is expected to further
improve GA’s performance in dynamic environments.

4. DYNAMIC TEST ENVIRONMENTS
The dynamic problem generator used in [16] can construct

dynamic environments from any binary-encoded stationary
function f(�x) (�x ∈ {0, 1}l) by a bitwise exclusive-or (XOR)
operator. Suppose the environment is changed every τ gen-
erations. For each environmental period k, an XORing mask
�M(k) is incrementally generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k) (1)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,
0 ⊕ 0 = 0) and �T (k) is an intermediate binary template
randomly created with ρ × l ones for environmental period
k. For the first period k = 1, �M(1) is set to a zero vector.
Then, the population at generation t is evaluated as below:

f(�x, t) = f(�x⊕ �M(k)) (2)

where k = �t/τ	 is the environmental period index. With
this generator, the parameter τ controls the change speed
while ρ ∈ (0.0, 1.0) controls the severity of environmental
changes. Bigger value of ρ means severer environmental
change and greater challenge to GAs.
In this paper, in order to compare GAs in dynamic en-

vironments, three 100-bit binary-encoded stationary func-
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Figure 5: Building block of the stationary functions.

tions, denoted OneMax, NK(25, 4) and Deceptive respec-
tively, are selected. They all consist of 25 contiguous 4-bit
building blocks (BBs) and have an optimum fitness of 100.
As shown in Figure 5, the BB for each function is defined
based on the unitation function, i.e., the number of ones
inside the BB. The BB for OneMax is just a OneMax sub-
function, which aims to maximize the number of ones in a
chromosome. The BB for NK(25, 4) contributes 4 (or 2) to
the total fitness if its unitation is 4 (or 3), otherwise, it con-
tributes 0. The BB for Deceptive is fully deceptive. These
three stationary functions have increasing difficulty for GAs
in the order from OneMax to NK(25, 4) to Deceptive.
Dynamic test environments are constructed from the three

stationary functions using above dynamic problem genera-
tor. The landscape is periodically changed every τ gen-
erations during the run of GAs. In order to compare the
performance of GAs in different dynamic environments, the
generator parameters τ is set to 10, 50 and 100 and ρ is
set to 0.1, 0.2, 0.5, and 0.9 respectively. Totally, a series
of 12 DOPs, 3 values of τ combined with 4 values of ρ, are
constructed from each stationary function.

5. EXPERIMENTAL STUDY

5.1 Experimental Design
Experiments were carried out to compare different GAs on

above constructed dynamic environments. For all GAs, gen-
erators and parameters are set as follows: generational, uni-
form crossover with pc = 0.6, flip mutation with pm = 0.01,
and fitness proportionate selection with the stochastic uni-
versal sampling scheme and elitism of size 1. The population
size n, including memory size if memory is used, is set to 100
and the memory size is m = 0.1∗n = 10 if used. For RIGA,
MRIGA and MIGA, the ratio of immigrants ri is set to 0.1
and for MIGA the probability pi

m of bitwisely mutating the
best memory point for immigrants is 0.01.
For each experiment of an algorithm on a dynamic test

problem, 20 independent runs were executed with the same
set of random seeds. And for each run 100 environmental
changes were allowed and the best-of-generation fitness was
recorded every generation. The overall performance of an
algorithm on a problem is formulated as below:

FBOG =
1

G

GX

i=1

(
1

N

NX

j=1

FBOGij ) (3)

where G = 100 ∗ τ is the total number of generations for
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Table 1: Experimental results with respect to overall performance of algorithms.

Performance OneMax NK(25, 4) Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
SGA 74.7 70.4 65.3 63.3 60.4 51.0 40.3 37.4 54.9 52.4 51.0 54.3
RIGA 75.5 71.4 66.5 63.9 62.2 52.5 42.3 38.6 53.6 52.1 51.3 52.5
MEGA 75.9 70.8 65.4 63.3 60.8 50.7 40.2 37.6 55.6 52.6 50.9 54.8
MRIGA 76.5 71.7 66.5 64.2 62.3 52.3 42.2 39.2 54.0 52.2 51.2 52.8
MIGA 78.9 70.6 64.8 64.0 60.0 47.9 39.6 38.7 59.3 54.2 51.7 57.7

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
SGA 83.5 80.1 73.3 67.5 77.7 70.8 57.6 47.5 65.4 61.7 58.5 66.0
RIGA 83.7 80.5 75.4 73.7 81.4 73.8 61.3 61.0 62.6 59.1 57.4 61.5
MEGA 84.0 80.4 73.5 71.7 77.7 70.8 57.9 63.5 65.9 61.9 58.5 66.2
MRIGA 84.2 80.7 75.5 75.0 82.0 74.0 61.5 69.4 63.2 59.1 57.4 62.0
MIGA 94.4 88.1 78.0 87.1 89.0 76.9 59.8 75.7 74.3 68.5 64.7 77.2

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
SGA 86.5 83.8 78.5 73.3 82.5 78.0 68.2 58.2 70.0 66.4 63.8 70.9
RIGA 86.7 84.1 80.4 79.4 86.7 81.7 73.2 73.8 67.9 64.1 61.6 68.2
MEGA 86.9 84.1 78.8 79.3 82.7 78.0 68.5 75.4 70.2 66.7 63.9 71.1
MRIGA 87.1 84.3 80.5 80.8 87.3 82.1 73.6 80.7 68.3 64.1 61.8 68.6
MIGA 97.5 94.0 86.5 94.0 94.8 87.8 73.0 88.1 77.1 74.1 72.0 83.1

Table 2: The t-test results of comparing algorithms on dynamic test problems.

t-test Result OneMax NK(25, 4) Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
RIGA− SGA + + + + + + + + − − + −
MEGA− SGA + + ∼ ∼ ∼ ∼ − + + + − +

MRIGA−RIGA + + ∼ + ∼ ∼ ∼ + + ∼ ∼ +
MRIGA−MEGA + + + + + + + + − − + −
MIGA−RIGA + − − ∼ − − − ∼ + + + +
MIGA−MEGA + − − + − − − + + + + +
MIGA−MRIGA + − − − − − − − + + + +

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
RIGA− SGA + + + + + + + + − − − −
MEGA− SGA + + + + ∼ ∼ + + + + ∼ +

MRIGA−RIGA + + + + + + + + + ∼ ∼ +
MRIGA−MEGA + + + + + + + + − − − −
MIGA−RIGA + + + + + + − + + + + +
MIGA−MEGA + + + + + + + + + + + +
MIGA−MRIGA + + + + + + − + + + + +

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
RIGA− SGA + + + + + + + + − − − −
MEGA− SGA + + + + + ∼ + + ∼ ∼ + +

MRIGA−RIGA + + + + + + + + + ∼ ∼ +
MRIGA−MEGA + + + + + + + + − − − −
MIGA−RIGA + + + + + + − + + + + +
MIGA−MEGA + + + + + + + + + + + +
MIGA−MRIGA + + + + + + − + + + + +

a run, N = 20 is the total runs, FBOGij is the best-of-

generation fitness of generation i of run j, and FBOG is the
offline performance, i.e., the best-of-generation fitness aver-
aged over the 20 runs and over the data gathering period.

5.2 Experimental Results and Analysis
The experimental results of GAs on the dynamic problems

are presented in Table 1. The statistical results of compar-
ing GAs by one-tailed t-test with 38 degrees of freedom at
a 0.05 level of significance are given in Table 2. In Table 2,
the t-test result regarding Alg. 1 − Alg. 2 is shown as “+”,

“−”, or “∼” when Alg. 1 is significantly better than, signif-
icantly worse than, or statistically equivalent to Alg. 2 re-
spectively. The results are also plotted in Figure 6 to Figure
8 for the three series of dynamic problems respectively. The
dynamic behaviour of GAs for the first 10 environmental
periods is plotted with respect to best-of-generation fitness
against generation on the dynamic problems with τ = 50
and ρ = 0.1, 0.5, and 0.9 in Figure 9 to Figure 11 respec-
tively, where the data were averaged over 20 runs. From the
tables and figures several results can be observed.
First, a prominent result is that MIGA significantly out-
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Figure 6: Results on dynamic OneMax functions with different ρ and (a) τ = 10, (b) τ = 50, and (c) τ = 100.
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Figure 7: Results on dynamic NK(25, 4) functions with different ρ and (a) τ = 10, (b) τ = 50, and (c) τ = 100.
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Figure 8: Results on dynamic Deceptive functions with different ρ and (a) τ = 10, (b) τ = 50, and (c) τ = 100.

performs other GAs on most dynamic test problems, see the
t-test results regarding MIGA−RIGA, MIGA−MEGA,
and MIGA − MRIGA in Table 2. This result validates
our expectation of the memory-based immigrants scheme
for GAs in dynamic environments. When τ = 10, MIGA
is beaten by other GAs on some dynamic OneMax and
NK(25, 4) functions. The reason is that when the environ-
ment changes quickly, the best memory point may not be
able to track the optimum of the current environment and
hence biases the immigrants to not well fit area.
Second, traditional memory scheme improves GA’s perfor-

mance in most cases and consistently over the three series of
dynamic problems, see the t-test results regardingMEGA−
SGA and MRIGA − RIGA in Table 2. In contrast, the
random immigrants scheme has different effect on different

problems. On all non-deceptive dynamic test environments,
i.e., dynamic OneMax and NK(25, 4) functions, RIGA and
MRIGA outperform their peers, SGA and MEGA, respec-
tively. In these environments, the diversity introduced by
the random immigrants really improves GA’s adaptability.
However, on dynamicDeceptive functions RIGA and MRIGA
are outperformed by SGA and MEGA respectively, see the
t-test results in Table 2. This is because random immigrants
can easily break global optimal building blocks existing in
the deceptive functions via crossover.
From Figure 6 to 8, it can be seen another difference be-

tween the memory and random immigrants schemes lies in
that the random immigrants scheme has much stronger ef-
fect on GA’s performance than the memory scheme. For ex-
ample, |FBOG(RIGA)− FBOG(SGA)| is much larger than
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Figure 9: Dynamic behaviour of GAs on dynamic OneMax functions with τ = 50 and (a) ρ = 0.1, (b) ρ = 0.5,
and (c) ρ = 0.9.
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Figure 10: Dynamic behaviour of GAs on dynamic NK(25, 4) functions with τ = 50 and (a) ρ = 0.1, (b) ρ = 0.5,
and (c) ρ = 0.9.
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Figure 11: Dynamic behaviour of GAs on dynamic Deceptive functions with τ = 50 and (a) ρ = 0.1, (b) ρ = 0.5,
and (c) ρ = 0.9.

|FBOG(MEGA)−FBOG(SGA)|. The memory-based immi-
grants approach combines the two aspects: the strong effect
of random immigrants and the consistent performance of
memory. This leads to MIGA’s good performance.
Third, for each fixed value of ρ, when τ increases, the per-

formance of all GAs increases. This is natural. When the
environment changes slower, GAs get more time to reach
higher fitness level before next change. And, also naturally,
for a fixed τ , when the severity of environmental change
increases, i.e., when ρ increases, the performance of GAs
decreases. This is because bigger ρ leads to sharper fitness

dropping when change occurs, e.g., compare GAs’ dynamic
behaviour in Figure 9(a), 10(a) and 11(a) with Figure 9(b),
10(b) and 11(b) respectively. When ρ = 0.5, each time the
environment changes all GAs are put into a totally random
environment and hence their behaviour during dynamic en-
vironmental periods is just like that for the first stationary
period, see Figure 9(b), 10(b) and 11(b). When ρ = 0.9, for
several situations GAs with memory perform better than
when ρ = 0.5. This is because when ρ = 0.9 memory points
stored at environmental period k may be quite efficiently
reused at period k+2, i.e., every other period. On dynamic
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deceptive functions, GAs without memory also perform bet-
ter when ρ = 0.9 than ρ = 0.5. This is because the sort of
switching between global optimum and deceptive optimum
within the building blocks makes the fitness drop less sharp
when change occurs, compare Figure 11(b) and 11(c).
Finally, viewing from Figure 6 down to Figure 8 and Ta-

ble 1 it can be seen that the increasing difficulty of station-
ary OneMax and NK(25, 4) functions is also reflected in
corresponding dynamic functions. That is, with the same
τ and ρ, GAs perform worse on dynamic NK(25, 4) func-
tions than on dynamic OneMax functions. However, the
existence of deceptivity in deceptive functions makes things
different. In several cases GAs perform better on dynamic
Deceptive functions than on dynamic NK(25, 4) functions,
especially when the environment changes severely.

6. CONCLUSIONS AND FUTURE WORK
Random immigrants and memory schemes are two ma-

jor approaches developed into GAs to address dynamic op-
timization problems. This paper proposes a memory-based
immigrants scheme for GAs in dynamic environments, where
the memory (in fact, best memory point) is used to bias
the immigrants toward the current environment. This way,
the diversity introduced by the immigrants becomes more
adapted and hence more efficient for the current environ-
ment, be it a new one or not. From the experiment results
on a series of systematically constructed dynamic problems,
we can draw following conclusions.
First, random immigrants are beneficial for non-deceptive

dynamic functions but may deteriorate GA’s performance in
dynamic deceptive functions. Second, traditional memory
scheme has more consistent positive but maybe less strong
effect than the random immigrants scheme on GA’s per-
formance for DOPs. Third, the proposed memory-based
immigrants scheme combines the working principles of the
memory and random immigrants approaches and hence im-
proves GA’s performance in dynamic environments. Fourth,
the difficulty level of non-deceptive stationary functions is
reflected in corresponding dynamic problems for GAs.
As relevant future work, it would be interesting to in-

vestigate the effect of the memory-based immigrants and
other memory schemes for GAs in periodically returning
dynamic environments, where an old environment will re-
turn exactly in the search space after certain changes. Usu-
ally, the memory scheme is expected to be more beneficial
in these dynamic environments. Another interesting future
work would be developing other memory organization and
retrieval mechanisms in order to make the memory direct
the immigrants more efficiently, e.g., in rapidly changing
environments.
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