Control structures in linear and stack-based Genetic
Programming

Elko B. Tchernev and Dhananjay S. Phatak

CSEE Dept., University of Maryland Baltimore County (UMBC)
1000 Hilltop Circle, Baltimore, MD 21250, USA
{etcherl, Phatak}@umbc.edu

Genetic Programming, or GP, has traditionally used prefix trees for representa-
tion and reproduction, with implicit flow control. The different clauses (the
evaluation condition, the if and else sections, etc.) are all subtrees of the flow-
control node. Linear and stack-based representations, however, require explicit
nodes to define the extent of the control structures. This paper introduces a
stack-based technique for correct control structure creation and crossover, and
discusses its implementation issues in linear and stack-based GP. A set of flow-
control nodes is presented, and examples given for evolving an artificial ant on
the Santa Fe and Los Altos Trails, with and without looping constructs.

Stack-based genetic programming

Stack based Genetic programming, introduced by Perkis in [4], represents pro-
grams as lists of nodes of functions or terminals that consume their inputs from a
stack and place their outputs on a stack. These implementations, including the early
work of Bruce, Stoffel and Spector, [1], [6] and later [5], do not try to preserve the
stack correctness of the individuals in the population, but rather rely on the evaluation
framework to identify any stack underflow or overflow. In contrast, GP with stack-
correct (Forth) crossover was introduced by Tchernev in [7] and [8], with the EPROF
(Evolutionary PROgramming in Forth) system. In EPROF, the crossover operators
manipulate the post order representation of the program tree. Because the crossover
points are chosen to have compatible stack depths, no malformation is possible. If the
initial population is stack-correct (no individuals have underflow, and the final stack
depth equals the desired number of outputs), it is guaranteed that all individuals pro-
duced by using stack-correct crossover will be stack-correct.

Control structures in GP

Traditional LISP-based GP has control structures that are tree-based; i.e. they are
delimited not by separate keywords if, else, then etc, but by the trees formed by
the parentheses of the single control-flow node. For example, the ¥ control structure
is represented by the subtree (if (condition) (then-part) (else-

part)), and the while control structure — by the tree (while (condition)
(body)). This approach has the advantage that no special handling is required of
control structures during crossover — they are just another subtree.

Linear and stack-based GP, where the individuals are represented as linear lists (or
arrays) of nodes, cannot use this approach. This, however, does not mean that nothing
can be done, or is very difficult, as Keith and Martin mistakenly conclude in [2]. The
key to having correct control structures in linear GP is to realize that the nodes are
bound in sequential execution not by trees, but by traces of control flow. In a sequen-
tial program, the if statement introduces a bifurcation in the control flow, and the
endi T statement merges the two branches. The branch condition in sequential im-
plementations is usually computed before the branch switching node, and is available
either in a status register or variable, or on the stack; therefore it is not part of the con-
trol structure proper. The control flow picture of the i ¥ control structure can be seen
below in Table 1, and that of the begin..until control structure can be seen in
Table 2.

Table 1. Flow control of the 1 ¥ control structure.

condition
if
then-body
else
else-body
endif

Table 2. Flow control of the begin. . _unti I control structure.

begin
loop-body
condition
until

In structured programming, there is no goto statement; therefore, any control
structures inside the body of another control structure are local, i.e. do not interfere
with the enclosing structure’s control flow. That’s why a stack holding the control
flow levels is a natural mechanism for handling the information that is needed to re-
solve the backward and forward branches and to ensure correctness when crossover is
performed between linear individuals having control structures. The stack depth in-
creases when control structures are nested, and the top of the stack corresponds to the
origin/destination of the closest enclosing control structure. Note: this control flow
stack is needed and used at compile time.

It is easy to see, that crossover that does not change the stack depth of the control
flow stack at the crossover points will always produce individuals with syntactically
correct control structures. An example for such crossover is given in Table 3.

Table 3. Crossover that preserves the control stack depth in the crossover points

Parent 1 | Parentltext | Parent 2 | Parent 2 | Offspring | Offspring text
flow flow text flow
if % if % if
XX aa aa
if if if
vy bb zz
if endif else
zz cc uu
else else endif
uu if cc
endif dd else
endif else if
vV EE dd
else endif else
ww LiLi ee
endif endif endif
Ll
P endif

As shown in [8], the most universal condition for ensuring stack correctness in
crossover is the delta condition. That is, the node sections being exchanged must have
the same control stack depth difference from beginning to end, and the stack usage of
both must be compatible. Therefore, in order to have control structures in linear and
stack-based GP, the crossover operation must be implemented such that it ensures
correctness with respect to the control flow stack in addition to the other conditions it
must satisfy.

Control-flow in Forth and GP

The compile-time control-flow stack described above is the mechanism that ANS
Forth uses for its control structures. Since Forth has a very fast single-pass compiler,
it is optimized for simple handling of forward and backward branch resolution. Each

of the control structure keywords in Forth acts immediately upon scanning in the
source by placing on the control flow stack a branch origin/destination or by consum-
ing one and resolving the branch. The standard Forth control-flow words are given in
Table 4, with an explanation of their action.

Table 4. Standard Forth control flow words

Picture | Name Consumes | Supplies Definition
if origin Marks the origin of a forward
conditional branch and compiles
its code
then origin Resolves a forward branch by
patching its origin
else originl origin2 Compiles a forward uncondi-

tional branch whose origin2 is
placed on the stack, and resolves
the forward branch originl

begin destination | Marks the destination of a back-
ward branch

until | destination Compiles a backward conditional
branch to destination

again | destination Compiles a backward uncondi-

tional branch to destination
while | destination | origin des- | Compiles a forward conditional
tination branch and places its origin on
the control stack such that it be-
comes the second stack item, be-
low the destination that must
have been on the stack

repeat | origin des- Compiles a backward uncondi-
tination tional branch to destination (top
of the control stack) and resolves
the forward branch to current po-
sition by patching the origin

gcﬁr >4 I

N

In addition to the above, ANS Forth defines the control stack operations cs-pick
and cs-rol 1 which can be used to copy a stack item to the top of stack, and to rear-
range the stack items. With the help of these operations, any control structure can be
portably custom-designed.

It can be seen, that as they stand, the Forth control flow words are not straightfor-
wardly usable in GP. They place on and consume from the control stack items of two
different types, namely origins and destinations. Any GP that uses these primitive
Forth constructs would have to ensure that the crossover points match not only the
stack depths, but the stack content types as well. A much more practical approach is
to make sure that any control flow primitive can mark/resolve any other, provided its
stack depth requirements are met, by making it supply and/or resolve both an origin
and a destination. In this way the only condition a crossover operation needs to ensure

is that the control stack usage between the crossover points in both individuals satis-
fies the delta requirements. Note: in this case, the control stack exists and is used at
crossover time.

Control structures for linear GP

In linear GP, each node is a self-contained entity (a machine language instruction,
or a VM language statement). These nodes can be mixed and executed in any order,
so there are no additional constraints to the choice of crossover points, except the
ones imposed by the control flow stack correctness requirements. The branch condi-
tions are stored in a status register/accumulator/variable, or may be results of atomic
execution of an embedded function, e.g. the i f-food-ahead control of the artifi-
cial ant problem. Thus, the set of control flow nodes could include begin, end, if,
else, until, while, repeat, with i f, until and whi le being defined to use
the system’s status register/condition. Alternatively, they could be custom defined ac-
cording to the problem, like if-true, while-food-ahead, until-empty,
etc. Example implementation of these control nodes in Forth (assuming the VM for
the particular Linear GP has been written in Forth) can be seen in Table 5.

Table 5. Control flow nodes for linear GP

Picture Node Control stack usage Definition in Forth
— begin [(--orig dest) true if
begin
A
J end (orig dest --) true until
then
| —/
O— if (-- orig dest) condition if
begin
)
else (origl dest—orig2 dest) |1 cs-roll
else
1 cs-roll
<>J until [(orig dest--) condition until
then
| —/
O while |(origl destl -- orig dest|condition if
origl destl) begin
) 3 cs-roll 3 cs-roll
J repeat |(origl destl orig2 dest2 -- again
f_//) then
true until

then

Control structures for stack-based GP

Stack-based GP is a superset of tree-based GP, as the individuals might represent
arbitrary digraphs, not just trees. For stack-correct crossover to operate, each primi-
tive used by the problem (function or terminal) must have a defined stack usage
(number of stack items it requires as inputs, and number of stack items it leaves on
the stack). The branches that the control flow nodes compile, usually adhere to this
rule and use the top stack items as flags to determine whether to execute the branch or
not. In this respect they are just like regular nodes, and participate in the formation of
the overall data stack picture. Crossover in stack-correct GP uses this stack picture to
choose the crossover points as usual, and then checks whether they conform to the
delta rule with respect to the control flow stack. This makes crossover in stack-based
GP with control structures more constrained than without, because some choices of
points will be rejected. The control flow nodes for stack based GP are essentially the
same as these for linear GP, except that the branching primitives i f, whi le and un-
ti 1 consume one stack item from the data stack each.

Initial population with control structures

The stack-correct crossover rules outlined so far guarantee stack-correct offspring
iff the initial population is stack-correct. Creating stack correct individuals involves
keeping track of the running stack depth, and restricting the choice of nodes to be
added as next node to these that will not underflow. The decision when to stop adding
nodes and fix the final size of the individual being created can be taken only when the
running stack depth is equal to the desired output depth. In addition, in order to guar-
antee a finite size, the selection of nodes to be added can be biased towards changing
the running stack depth in the direction of the desired output depth.

The same procedure can be applied when creating individuals with control struc-
tures. Since control structures must be properly delimited, the end of an individual
cannot occur at non-zero control stack depth (i.e. in the middle of a control structure),
and the control stack must not underflow. When dealing with linear GP, these are the
only conditions that must be observed.

Stack-based GP, however, places additional restrictions on the choice of control
flow nodes. Since they create splits and joins in the execution path, but there is only
one data stack picture, it must be guaranteed that both execution paths result in the
same data stack depth after the closing node. Therefore, a follow-up node for a con-
trol structure (one of else, end, until, while or repeat) can be inserted only
when the data stack depth of the active branch (the running stack depth) plus the data
stack change effected by the node itself, results in the same stack depth as the one
immediately after the opening node (begin or iF). A simple method of keeping
track is to push the current stack depth on the control stack together with the ori-
gin/destination information when adding an opening node, and pop it when the clos-
ing node is added. Note: now, the control stack exists and is used at initialization
time.

Experiments

/HEHII1111/1111777/7/1/7/7/77/7/7/7
/1741111177777 777/777/77/7/7/7/7/77/77
///#111177777777777/7771 /#1117
/1 /#1111717777777777777741777#/7
///#11117177777777777777181177#/7
Wi T T4
/1117177777 1#1177777/7/7777777/#/7
/7177177777741 1117771417/71/7/7/7/77
/1117171777 1#1171/1/#11/7/77/7/7//
/1117177777 1#11777771817/77777/#/7
///7717777777777777141/7177//7/7/77
/7777177777741 117/777/77/7/7//7/77/77
/1117177777 1#117777/7/7/77777/#/7
/7177177777781 111771411/7//7/77/77
/7777177777 74#171177741171 14534117
/1117177777777 777#11/7/71#/777/7//
/7777777777777 77/77/77/7/77//7/7/77
/1777777777 741111777/77/7/777/7/7/77
/1117171777 1#111#11/11711#1/7/7//
/7177177777781 1#11/77/7777/48/1/77
/7777177777741 1#/1/77/7///7/7/7/77
/1117171777 18#111#/1/1///7/77/7/77/
/7177177777741 11177/77/7171#/7/77
/7777177777 741717/777771#11/77/77
/1 /] TR 11811 /111/717/7/77/
/HI/111171717777#17/1/7/7/777/7/7
/#1111/7177777714#/1/77/7/7//7/7/77
/#1111 111 11117177/7/7
/HI/1118#11/1777777/7/7/7/7/777/7/7
///771181177/771/77/77/7/7//7/77/77
/#1111 11111171/1/1///7/77/7/7/7
VIZIATTIIIIIIIIIIITITIIIININIIII

The artificial ant problem, introduced by Koza in
[3], is used to demonstrate the use of control struc-
tures in linear GP. The problem is to evolve a pro-
gram that will scan a toroidal field of 32 by 32 cells,
on Figure 1, and “eat” the “food pellets” represented
by the hash symbol “#’.

The set of operations is Move, Left and Right,
where Move takes the ant one step forward in the di-
rection it is facing, and if the field it lands on contains
a “pellet”, “eats” it. Left and Right change the direc-
tion the ant is facing; initially the ant is positioned at
the top left field at the beginning of the trail and faces
the food. The ant is run until 400 steps (each of Move,
Left and Right is 1 step), or until all food is eaten,
whichever happens first. The fitness is equal to the
number of remaining food pellets (minimization), the
population is steady-state with elitism, and the selec-
tion uniform across the non-replaced individuals.

Figure 1. The Santa Fe Trail in the grass

Table 6. Tableau for the Ant Problem, no looping constructs

Terminals:

Left, Right, Move

The problem is run with two sets of
control structure nodes — with condi-

Control Flow:

If-food-ahead, Else, End

tional branching only, shown on Table 6,

Fitness case:

The Santa Fe Trail

and with a full set of looping constructs,
shown on Table 7. To prevent infinite

Fitness:

Food remaining

loops, the wrapper was set to limit the

Wrapper: 400 steps

total number of looping control execu-
tions to 400 steps as well.

Table 7. Tableau for the Ant Problem, with looping constructs

Numerous solutions were found with
both sets of control structures; usually

Terminals: | Left, Right, Move
Control If-food-ahead, Else, End,
Flow: Begin, While-food-ahead,

Until-food-ahead, Repeat

the solutions were over fit to the trail,
like on Figure 2: the O represents the
number of times the ant returns onto a

Fitness case:

The Santa Fe Trail

particular field. If it had moved onto any
field twice, the content of the field

Fitness:

Food remaining

would have been 1, etc. The evolved in-

Wrapper:

400 steps and 400 loops

dividual with conditional branching is
shown next to the trail.

////////////0///0//////0//77/7//
////////////0///0//////0/777/7//
////////////0///0//////00000////

IF-FOOD-AHEAD

[/000/777777777777777777777777777 | | RIGHT
///707777711777117777117771177717
/7/0777/7777777777777777000000// | | RIGHT
/7/0717711177711177111770/177017 | | RIGHT
/7/01177111177111771117701177017
///0000000000///////00000//7/0// END
/77111771117071117770/7771177017 RIGHT
/7771177111707111777077771177011
/7777177771707117777077777177077 MOVE
/7711177111707111777017771177017
/777111777111707111777017771177011 IF-FOOD-AHEAD
//717711711701777117707771771/077 | | MOVE
/77711177111707111777017771177017 | | MOVE
/77711777111707111777017711177011
//7/7177171770717777707/0000000// END
//771177771/7077/00000//0//17771/ RIGHT

IF-FOOD-AHEAD
END

////////////0///0///////7///0/77/

//7/7171717101710/71717171707177 1F-FOOD-AHEAD

/77771777717077/0777717771107717 | | MOVE
//77117771170771/077717700000/71/
/7717711711701770/771170/7711777 ELSE
/000000000000///0/////70/7/7771/ | | LEFT
/0/71177111777110771117771177711
/0771771717717170177777777717777 | | LEFT
/0/////0000000000//7//777717771/ ELSE
/0/71170711777111771117711177711
/0/7177077177171771717777777717777 | | MOVE
/0000000/7/7777177771717777177717 | | LEFT
VIZZITIIIITIIIITIIIITIIIIIIIIIIIA

END
Figure 2. Ant trail through the grass with no loops, and evolved solution

When using the full set of control structure nodes, the obtained individuals exhib-
ited significant bloat and were larger; here is one solution:

IF-FOOD-AHEAD MOVE MOVE IF-FOOD-AHEAD END MOVE IF-FOOD-
AHEAD END IF-FOOD-AHEAD WHILE-FOOD-AHEAD MOVE MOVE WHILE-
FOOD-AHEAD MOVE MOVE IF-FOOD-AHEAD END MOVE 1F-FOOD-AHEAD
END IF-FOOD-AHEAD WHILE-FOOD-AHEAD MOVE MOVE WHILE-FOOD-
AHEAD MOVE MOVE [IF-FOOD-AHEAD END I1F-FOOD-AHEAD WHILE-
FOOD-AHEAD MOVE REPEAT IF-FOOD-AHEAD IF-FOOD-AHEAD IF-
FOOD-AHEAD IF-FOOD-AHEAD MOVE UNTIL-FOOD-AHEAD BEGIN
UNTIL-FOOD-AHEAD END MOVE RIGHT LEFT I1F-FOOD-AHEAD MOVE
END 1F-FOOD-AHEAD MOVE END ELSE END LEFT REPEAT END ELSE
WHILE-FOOD-AHEAD MOVE REPEAT I1F-FOOD-AHEAD IF-FOOD-AHEAD
IF-FOOD-AHEAD END END LEFT REPEAT END ELSE END LEFT
WHILE-FOOD-AHEAD MOVE LEFT LEFT END END RIGHT RIGHT IF-
FOOD-AHEAD ELSE BEGIN END LEFT BEGIN END MOVE LEFT UNTIL-
FOOD-AHEAD

The Los Altos Trail

Runs were performed on the significantly larger Los Altos trail using the branching
set of primitives (no loops). The obtained solution was not over fit to the trail; it can
be seen by its trace that it employs an algorithm of actively scanning the vicinity
when the trail is lost in order to re-acquire it. Its trace is shown on Figure 3, and the
solution follows.

/000777171777 777/77777777/7/77777777/7/7/000//7/7/77777/77/7/7/777/77/7/1/7/7/7/77777
L1/0/7/7/77777777/7/7//7/77/7/7//7//77/7/7000100///7/7/7/7/777/7777/7/7//7/77/7/7/7/77/
I1/0/7/777777/777777/77/7/77/777//7/7/77/07/000//7//777/77/77/7/777/7/7//7/7/77/7/7//77/7
//010/0122210///////7/7//7//012222222210100/010/////7//7//77/7/7/7//7//1/1////////7/7
//11101111100//////////00011111111110/000/111////7/7/7//7//77/7/7////////1/////7/7/
//000//011100//////////10001111111110/////112/7//7//77//7//77//////////7/////77/7
[11777/7777010/777777772117777/77777777777112/7/7/77777/77/7/777/77/7/7/7/77/7/7/7/7777
L17777777770107777777772117777777777777777112/777777/7/777/77/777/7/7/7//7/7/7/7/777
L1777777777012/7777777721177777777777/77/7112/7//777/77/77/7/77/7/7//7//7/7/7/7//77/7
L1177777777002/777777772017777/777777777/7112/7//77777/77/7/777/7/7//7/7/77/7/7//7777
L1717777777112777777777100/77777777777777711277777/7/7/777/77/1/7/7/7/77/7/7/7/7/777
L1177777777112/777777770177777777777777777112/7//777/77/77/7/777/7/7//7//77/7/7//77/7
/11//77/7777112/7//77//7/0/7//7/7//7/7/77//010001////77/7/77/7/77/7/777/77/7/7/7/77//7//7777
/////7/7/7/112////7///7/0010///////7/7000/011000////1/7/7//7/7/7/1/7/7//7//7//1/7/7/777
////////7//7/112/////0001000///////7//1120110////7//7/7/77//7/7/77//7//7//77//7//77/7
/////7//7/7112////71000000////7//7/7112/7/7777/77/777777/7/7/7/77//7//7//77//7//7777
L1777777/77112777/7211/7/777/7/7/77112/000///77777/7/7/777/77/7/7/7/7/7//7/7/7/7/777
[//777777/77112777/7211/7/777/7/7/771120100///77/77777777777/77777/7/7/7/77/7/7/7/777
/11//77/7777112/7/7/7211///7/7//7//7//000//7/077/77//777/77/7/7/7/777/77//77//77/7/7//7777
L1777777777112777/7211777777/7/77777777/010/77777/7/7/7777777/7/7/7/7/7/7/7//7/7/7/777
[//7/7/7/77112//7/7211///7/7/7//7//77/70000000////7/7/7/77/77/77/77/7/7/7/7/7/7/7/7/777
/1//77/77/7112/7//7111///7//7////7/7/0001000///7//7/7/77//7//777//7/7/7//77/7/7//7777
///01111110001/////010/////7/7/7/77/0100/////7/7/7/1/7/7//7/71/1/1////////1/7/7/777
00/01111111000////7/0////7777/7/7/777707/7/7/77/7/7/7/7//7//7/7/1////////////////0
01012222210/////7//7/0/7/7/77/77//7/7/77107//77//77//7//77/7//7//7//////////7//7//7//7/0
SO/1717777777777777/007777777777777/011/7/71777771/7/7/777/77/1/7/7/7/77/7/7/7/7/777
SO/1/1777777777777770077777777777777122/7/7777777777/77777/77/77/7/7//7//77/7/7/7/777
SOL/11777777777777770777777777/7777710277777777/7/777/77/77/7/777/77//7/7/77/7/7/7/777/7
/0///7//7/70122222210100////7/7/7/777112/7/7/7777/1/7/7/7/77/71/1/1////7//7/1/7/7/777
/0/////000111111110/000////7/7/7/777112/7/7//7/77/7/7/7//7/7/1/1//////7/7/7/7/777
010////0//011111110///7//77777/77//7112//7/777/77//7//77//1//77//7//7///7//7//77/7
000/000100/////7/777/77/777777/777771127//777/77//777/77//7//77//7//77/77/7/7//7777
001010/000////777/7/7//7/777/7/7/77/001/7/7//7/77/7/7/7//7/77/1/7/7////7/7/7/7/777
000/////777/77//7/7/77/7/7/7/7/7/77//7/01000///77//7//77/7/77/7/7/7/77//7//7///7//7//77/7
L1117 177777777777777777777777777777/007777777777/7777777/7777777/77/7/777/77/7/7/7/7777
LI11777777777777777777777777777777707777777777777777/77777/77/777/7//7/7/7/7/7/777
LI11177777777777777777777777777777710/77/777777/777777/77/7777/77/7/7/7/77/7/7//77/7
L1177 7777777777777777777777777777/0017777777777/777777/77/7/777/7/7/7/77/77/7/7/7/7777
LI71717777777777777777777777777777102/777/77777777/7/7/777/717/1/7/7/7/77/7/7/7/7/777
LI11177777777777777777777777777777102/77/777777/777777/77/7/777/7/7/7/7//77/7/7//77/7
L117777777777/77/777777/7/777/01110001//7/777777/777777/777/7777/77/7/77/77/7/7//7777
L1717177/77777777/7/7/7777/7/01111000/7/7/7777777777/7777777/7/7/7/77/7/7//7/7/7/777
LI111777777777777777777777777702210/77777777777777777777/777/7777/7/7//7/7/7/7/7/777
L1117 777777777777777777777777707777777777777777/777777/77/7777/77/7/777/77/7/7/7/7777
LI11717777777777777777777777771007777777777777777777/7/777/77/1/7/7/77/7/7/7/7/7/777
LI11777777777777777777777777701117777777777777777777/7777777/777/7/7/7/77/7/7/7/777
L1177 777777777777777777777777102777777777777777/777777/77/7777/77/7/777/77/7/7//7777
LI717177777777777777777777777112/77777777777777777/7/77777/77/1/7/7/7/7/7/7/7/7/7/777
LI111777777777777777777777777/000/7777777777777777/777/77777/77/777/7/7/7/77/7/7/7/777
L11777/777777/77/777/77/77700000///77/777777777/7777/77/77/7/777/77//7//77/7/7/7/77/7
LI11717777777777777777777777007777777777777777777177/77777/77/7/7/7/777/7/7/7/7/777
LI1171777777777777777777777707777777777777777777777777777777/777/7/7/7//77/7/7/7/777
LI1117777777777777777777777700/77777777777777777/777777/77/7777/77/7/7//77/7/7/7/77/7
LI71717777777777777777777770011717777777777777777177/7/77777/7/7/7/77/7/7/7/7/7/777
[1/777/7/77777777/7//7011110001///7777777777777777/777/77777/77777/7//7//7/7/7/7/777
/1///7/777777/77/7/77/011111000//7//77/777777777/777777/77/7/777/77/7/7/7/77/7/7//77/7
L1177777777777777777/022210//7/7777777777777777/777777/77/7777/77/7/777/77/7/7//7777
LI11777777777777777777007777777777777777777777777777777777/77/777/7//7/77/7/7/7/777
LI1117777777777777777710/77777777777777777777777/777777/77/7777/77/7/7/7/77/7/7//77/7
L1177777777777777777701177777777777777777777777/7777777777777777/7/777/77/7/7/7/7777
LI7177777777777777777102/777777777777777777777777777777777/77/77/7/7//7/77/7/7/7/777
LI1177777777777777777012/77777777777777777777777777777/77/7/777/7/7/7/7//77/7/7//77/7
L1177 7777777777777777002/7777777777777777777777/777777/77/7777/77/7/7/7/77/7/7/7/7777
LI71717777777777777771027777777777777777777777777177/7/777/77/1/7/7/77/7/7/7/7/7/777
LI1177777777777777777012/77777777777777777777777/7777/77/77/7/777/77/7/7/7/77/7/7//77/7
L1177777777777777777/000/7777777777777777777777/777777/77/7/777/77/7/7/7/77/7/7/7/7777
LI11717777777777777771777777777777777777777777777777/7777777/7/7/7/777/7/7/7/7/777
LI1111777/777777/77/7/777/77/7/7/7/77/7/7/7/77/7
LI1111777/777777/77/7777/77/7/77/77/7/7/7/7777
LI11717777777777777771777777777777777777777777777777/7777777/1/7/7/77/7/7/7/7/7/777
LI1177/77777/77/777/7//7/77/7/7/7/777
L1111 77/777777/77/7777/77/7/77/77/7/7/7/7777
LI11717777777777777771777777777777777777777777777177/77777/77/7/7/7/777/7/7/7/7/777
LI117177/77777777/7//7/77/7/7/7/777
LI11117777777777777777777777777777777/7777/77777//7/7/77/7/7//77//7//7///7//7//77/7
LI1177/7777777/777/7/7/7/77/7/7/7/777

Figure 3. Ant movement on the Los Altos trail

Evolved solution to the Los Altos trail, no looping constructs:

IF-FOOD-AHEAD MOVE END MOVE I1F-FOOD-AHEAD MOVE LEFT END
IF-FOOD-AHEAD ELSE END RIGHT MOVE IF-FOOD-AHEAD MOVE MOVE
MOVE RIGHT END I1F-FOOD-AHEAD END MOVE I1F-FOOD-AHEAD MOVE
MOVE RIGHT END IF-FOOD-AHEAD ELSE END RIGHT MOVE IF-
FOOD-AHEAD MOVE MOVE MOVE RIGHT I1F-FOOD-AHEAD 1F-FOOD-
AHEAD END END END IF-FOOD-AHEAD MOVE MOVE I1F-FOOD-AHEAD
MOVE RIGHT MOVE END MOVE IF-FOOD-AHEAD IF-FOOD-AHEAD
RIGHT ELSE ELSE ELSE 1F-FOOD-AHEAD END 1F-FOOD-AHEAD ELSE
RIGHT END MOVE I1F-FOOD-AHEAD MOVE END END MOVE RIGHT LEFT
RIGHT I1F-FOOD-AHEAD RIGHT LEFT RIGHT I1F-FOOD-AHEAD MOVE
RIGHT MOVE 1F-FOOD-AHEAD MOVE ELSE END END MOVE RIGHT END
MOVE I1F-FOOD-AHEAD LEFT RIGHT [IF-FOOD-AHEAD RIGHT ELSE
END RIGHT ELSE I1F-FOOD-AHEAD END ELSE RIGHT LEFT END
RIGHT END END RIGHT MOVE 1F-FOOD-AHEAD MOVE MOVE MOVE
RIGHT 1F-FOOD-AHEAD END RIGHT MOVE I1F-FOOD-AHEAD ELSE
RIGHT END IF-FOOD-AHEAD LEFT RIGHT IF-FOOD-AHEAD RIGHT
ELSE ELSE ELSE RIGHT IF-FOOD-AHEAD END RIGHT MOVE IF-
FOOD-AHEAD END RIGHT IF-FOOD-AHEAD ELSE MOVE 1F-FOOD-
AHEAD MOVE ELSE END END MOVE RIGHT MOVE 1F-FOOD-AHEAD
MOVE END MOVE IF-FOOD-AHEAD MOVE LEFT END MOVE RIGHT IF-
FOOD-AHEAD IF-FOOD-AHEAD ELSE END RIGHT MOVE [IF-FOOD-
AHEAD END END END IF-FOOD-AHEAD MOVE MOVE 1F-FOOD-AHEAD
MOVE MOVE MOVE IF-FOOD-AHEAD MOVE MOVE RIGHT IF-FOOD-
AHEAD IF-FOOD-AHEAD END END END I1F-FOOD-AHEAD MOVE RIGHT
END 1F-FOOD-AHEAD ELSE RIGHT END ELSE ELSE RIGHT IF-FOOD-
AHEAD MOVE END MOVE END END MOVE END END MOVE 1F-FOOD-
AHEAD MOVE MOVE MOVE RIGHT IF-FOOD-AHEAD END RIGHT MOVE
IF-FOOD-AHEAD ELSE RIGHT END MOVE END RIGHT

Conclusion

It was shown how to efficiently implement universal control structures in linear
and stack-based GP, and the results they produce when used to solve the artificial ant
problem. The tools that make it possible are the well-understood stack-correct cross-
over methods, and the usage of the control flow stack established in ANS Forth. It is
hoped that this will encourage alternative approaches and increase the proportion of
high-speed structured linear GP and stack-based GP as opposed to traditional tree-
based.

Acknowledgments

This work was supported in part by NSF grants ECS-9875705 and ECS-0196362.

References

1. Wilker Shane Bruce. "The Lawnmower Problem Revisited: Stack-Based Genetic
Programming and Automatically Defined Functions", In Genetic Programming
1997: Proceedings of the Second Annual Conference, Stanford University, CA,
USA, San Francisco, CA, USA, pp. 52-57, 1997.

2. Mike J. Keith and Martin C. Martin. "Genetic Programming in C++: Implementa-
tion Issues”, In Advances in Genetic Programming, MIT Press, pp. 285-310, 1994.

3. John R. Koza. "Genetic Programming: On the Programming of Computers by
Means of Natural Selection”, Cambridge, MA, USA, MIT Press, 1992.

4. Tim Perkis. "Stack-Based Genetic Programming”, In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, Orlando, Florida, USA, IEEE
Press, pp. 148-153, 1994.

5. Lee Spector and Alan Robinson. "Genetic Programming and Autoconstructive
Evolution with the Push Programming Language", In Genetic Programming and
Evolvable Machines, pp. 7-40, 2002.

6. Kilian Stoffel and Lee Spector. "High-Performance, Parallel, Stack-Based Genetic
Programming", In Genetic Programming 1996: Proceedings of the First Annual
Conference, Stanford University, CA, USA, MIT Press, pp. 224-229, 1996.

7. Elko Tchernev. "Forth Crossover Is Not a Macromutation?", In Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, University of Wiscon-
sin, Madison, Wisconsin, USA, San Francisco, CA, USA, pp. 381-386, 1998.

8. Elko Tchernev. "Stack-Correct Crossover Methods in Genetic Programming”, In
Late Breaking Papers at the Genetic and Evolutionary Computation Conference
(GECCO0-2002), New York, NY, AAAI, pp. 443-449, 2002.

