
Crossover and Mutation in Genetic Algorithms Using
Graph-Encoded Chromosomes

Sam Stone1, Brian Pillmore2, and Walling Cyre3

1 905 McBryde Lane #2,
Blacksburg, VA 24060
sastone@vt.edu

2 1019 West AJ, Virginia Tech,
Blacksburg, VA 24061
bpillmor@vt.edu

3 340 Whittemore Hall, Virginia Tech,
Blacksburg, VA 24061

cyre@vt.edu
http://www.ece.vt.edu/

Abstract. Graph chromosomes provide an elegant and flexible structure
whereby genetic algorithms can encode applications not easily represented by
the conventional vector, list, or tree chromosomes. While general-purpose mu-
tation operators for graph-encoded genetic algorithms are readily available, a
graph-encoded GA also requires a general-purpose crossover operator that en-
ables the GA to efficiently explore the search space. This paper describes the
existing graph crossover operators and proposes a new crossover operator,
GraphX. By operating on the graph’s representation, rather than the graph’s
structure, the GraphX operator avoids the unnecessary complexities and per-
formance penalties associated with the existing fragmentation/recombination
operators. Experiments verify that the GraphX operator outperforms the tradi-
tional fragmentation/recombination operators, not only in terms of the fitness of
the offspring, but also in terms of the amount of CPU time required to perform
the crossover operation.

1 Introduction

In a given application domain, genetic algorithms use the principles of genetics and
natural selection to evolve optimal solutions to specified problems, or to adapt exist-
ing solutions to changing environments [5]. With search spaces encoded as vector,
list, and tree chromosomes, genetic algorithms have demonstrated success in a wide
variety of applications [4], including digital circuit design, VLSI cell placement, trav-
eling salesman problems, artificial intelligence, and adaptive filtering.

However, for many applications of interest, including the evolution of digital cir-
cuits and biological molecules, graph-encoded chromosomes provide the most ele-
gant, flexible, and intuitive structure whereby a genetic algorithm can encode the
application’s search space. While graph mutation operators are readily available, the
existing graph crossover operators simply do not perform well in more than a handful

mailto:bpillmor@vt.edu
mailto:cyre@vt.edu
http://www.ece.vt.edu/

of narrowly defined application domains. This paper describes the existing graph
crossover operators, which tend to divide each parent into two disjoint fragments and
then merge fragments from opposite parents to form offspring. After discussing the
unnecessary complexities, restrictions, and performance penalties associated with
these fragmentation/recombination operators, this paper presents a new crossover
operator, GraphX. Modeled after the traditional 2-point crossover operator used on
vector and list chromosomes, the GraphX operator avoids the pitfalls of fragmenta-
tion and recombination by operating on the graph’s representation rather than on the
graph’s actual structure. Experiments verify that the GraphX operator outperforms the
traditional fragmentation/recombination operators, not only in terms of the fitness of
the offspring, but also in terms of the amount of CPU time required to perform the
crossover operation.

2 Related Work

A graph can be represented directly as a linked data structure, or indirectly as an
adjacency matrix or adjacency list [2]. If the graph’s nodes have types associated with
them, then the indirect representations must also represent the node types; a vector is
sufficient for this task. Thus, an arbitrary graph of any size and any structure can be
completely represented by a two-dimensional adjacency matrix and a one-
dimensional types array. While effective crossover operators that manipulate two-
dimensional matrices do exist, such as the subsequence exchange crossover of [6] and
the window crossover of [8], surprisingly little effort has been expended in adapting
these operators to the problem of graph crossover.

2.1 Fragmentation and Recombination Operators

Much of the research related to crossover operators for graph chromosomes has fo-
cused on techniques that first divide each parent graph into disjoint fragments (where
each fragment is a connected sub-graph), then merge fragments from different parents
to produce offspring [1], [3]. While these operators have demonstrated success in
certain applications, such as the evolution of self-organizing maps [1] and the evolu-
tion of biological molecules [3], an effective general-purpose crossover operator for
graph chromosomes has not emerged.

2.2 Globus Crossover

The crossover operator devised by Globus, Atsatt, Lawton, and Wipke is representa-
tive of the best work in this area. While many graph crossover operators place sub-
stantial restrictions on the structure of the parent graphs [1], the Globus operator can
operate on any connected graph, directed or undirected [4]. (In fact, the Globus op-
erator can also operate on graphs that are not connected; however, in that case, the
operator really only operates on one connected fragment within the graph; all nodes

and edges outside that fragment are simply discarded.)
As described in [3] and [4], the Globus operator implements graph crossover ac-

cording to the following algorithm:

To divide a graph into two fragments
1. Choose an initial random edge
2. Repeat until a cut set is found

a. Find the shortest path between the initial edge’s vertices
b. Remove a random edge in this path from the graph
c. Save the removed edge in the cut set

To merge two fragments into a graph
Repeat until each broken edge has been processed
1. Select a random broken edge in either fragment’s cut set
2. If at least on broken edge exists in the other fragment’s cut set

a. Choose one such edge at random
b. Merge the broken edges

3. Else flip a coin
a. If heads, attach broken edge to random node in other fragment
b. If tails, discard the broken edge

As an example, consider Fig. 1-3, in which the Globus operator crosses an 8-node

parent with a 6-node parent, yielding a 10-node child.

7

1

2

6

4

5

3

0

A

B

C

E

F

D

Fig. 1. The operator divides each parent into disjoint fragments. For the 8-node parent, the
operator randomly selects edge 0-3 as the initial edge. The shortest path between nodes 0 and 3
is the path {0-3}; therefore, the operator breaks edge 0-3. In the resulting graph, the shortest
path between nodes 0 and 3 is the path {0-6, 6-3}; the operator randomly breaks edge 6-3. The
shortest paths remaining between the terminal nodes are the paths {0-7, 7-5, 5-3} and {0-6, 6-
5, 5-3}. In successive iterations, the operator randomly breaks edges 0-7 and 0-6, yielding a 1-
node fragment and a 7-node fragment. Through the same algorithm, the operator breaks edges
A-C, F-E, and D-B to divide the 6-node parent into two 3-node fragments

7

1

2

6

4

5

3

AFD

Fig. 2. The operator selects one fragment from each parent graph to be merged into a child
graph

7

1

2

6

4

5

3

AFD

Fig. 3. The operator merges the fragments to form the offspring. The operator randomly selects
a broken edge on node 6 and randomly merges it with the broken edge on node D. Successive
iterations of the algorithm yield the merged edges 3-F and 6-A, leaving a lone broken edge on
node 7. The operator randomly chooses to discard the last broken edge

As the preceding example demonstrates, the Globus algorithm implements a
straightforward, intuitive crossover operation on two graphs. However, a closer ex-
amination of the algorithm and the example reveals that the Globus operator induces
several undesirable side effects into the genetic algorithm. First, as Fig. 1 shows, the
Globus operator tends to divide a parent graph into two very unevenly sized frag-
ments. This phenomenon occurs because every path between the initial edge’s termi-
nal nodes must include edges that are incident on the terminal nodes. Therefore, over
many iterations of the operator’s fragmentation algorithm, the edges that are incident
to the path’s terminal nodes have a much greater probability of breaking than any
other edges in the graph. Obviously, as the number of nodes and edges in the parent
graph increases, the rate at which the Globus operator unevenly fragments the parent
increases. Furthermore, as Fig. 1 shows, the Globus operator tends to break edges
within the larger fragment of the parent graph – edges that ultimately did not need to

be broken to divide the parent graph into the resulting fragments. Again, as the num-
ber of nodes and edges in the parent graph increases, the rate at which the Globus
operator unnecessarily breaks edges within a fragment of the parent graph increases.
Collectively, these two side effects of the Globus operator make it very difficult for
the genetic algorithm to identify and preserve high-fitness building blocks during
crossover. Upon observing the operator’s poor performance in evolving digital cir-
cuits, the authors noted in [4], “it may be that the crossover operator does not pre-
serve useful sub-graphs very often…the extremely destructive nature of the crossover
operator…can be expected to generate many very unfit children from fit parents.”

3 GraphX Crossover

The GraphX operator avoided the unnecessary complexities and performance penal-
ties associated with fragmentation and recombination by operating on the graph’s
representation, rather than on the graph’s structure. That is, GraphX simply per-
formed 2-point crossover on the adjacency matrices and on the matrices of node types
(types matrices).

3.1 GraphX Crossover on Graphs of the Same Size

In the simplest case, where the parent graphs contained the same number of nodes
(N), the GraphX operator simply performed 2-point crossover on the parents’ adja-
cency matrices, selecting the crossover points randomly in the N-by-N matrices. The
operator then performed 2-point crossover on the parents’ types matrices, with the
crossover points again selected randomly. Each offspring then contained the same
number of nodes as the parents, but contained edges and node types inherited from
both parents. This property of the GraphX operator allowed the GA to efficiently
explore the search space for graphs of a particular size.

3.2 GraphX Crossover on Graphs of Different Sizes

To perform crossover on a (smaller) graph of size S and a (larger) graph of size L, the
GraphX operator first increased the size of the smaller graph to match the size of the
larger graph. In increasing the size of the smaller graph, the operator simply added L-
S nodes to the graph; no edges were added to connect these nodes to the graph or to
each other. In other words, the additional nodes were placeholders – empty rows and
columns appended to the adjacency matrix (and empty nodes added to the types ma-
trix) to permit efficient 2-point crossover. Conceptually, this algorithm was consistent
with the desired properties of a crossover operator. The two graphs not only ex-
changed information about high-fitness interconnections (edge placements and
weights) between the S nodes that were shared by both graphs, but also exchanged
information about the number of nodes that a highly fit graph should contain. The
smaller graph’s placeholders encouraged the larger graph to disconnect its additional

L-S nodes; the larger graph’s interconnections to its additional L-S nodes encouraged
the smaller graph to increase its size.

Following the 2-point crossover, the size of the offspring corresponding to the lar-
ger parent remained fixed at L nodes. However, the size of the offspring correspond-
ing to the smaller parent varied between S and L nodes, depending on the location of
the second crossover point in the adjacency matrix. If the second crossover point was
located in a row representing one of the graph’s original nodes, then the GraphX
operator discarded all the placeholder nodes, trimming the offspring to its original
size of S nodes. If the second crossover point was located in a row representing one
of the offspring’s placeholder nodes, then the GraphX operator preserved that place-
holder node and all placeholder nodes preceding it, while discarding all subsequent
placeholder nodes. Consider the following example:

 1 2

3 6 1 1 5 2 9 3 6 1 0 1 5 2 9

0 1 1 0 1 0 0 0 1 1 0 0 1 0 0
1 0 1 0 0 1 1 1 0 1 0 0 0 1 1
1 0 1 1 0 0 0 1 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1

3 4
3 5 2 0 1 6 1 9 3 5 2 1 6 1 9

0 1 0 0 0 1 1 0 0 1 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0 1 0 0 1 1
1 0 1 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 1

Fig. 4. Performing GraphX Crossover on Graphs of Different Sizes. Each panel depicts the
types matrix and the adjacency matrix of each graph. The first panel depicts two parent graphs
of sizes 3 and 4 nodes, respectively. In the second panel, the GraphX operator increases the
size of the smaller parent to 4 nodes by appending a placeholder node. The second panel also
shows the location of the crossover points in both the adjacency matrices and the types matri-
ces; values between the crossover points appear in shaded cells. In the third panel, the operator
performs the 2-point crossover by exchanging the shaded values, yielding two offspring that
each contain 4 nodes. In the final panel, the operator trims the size of the first child to 3 nodes
because the crossover point was in the third row of the adjacency matrix

3.3 GraphX Crossover with Expansion

While the normal mode of GraphX crossover permitted the GA to efficiently explore
the search space of all graphs with sizes between the smallest and largest graph in the
population, the normal mode did not contain a mechanism whereby the crossover

operation could create a child graph containing more nodes than the larger parent
graph. To enable GraphX crossover to generate a child graph containing more nodes
than the larger parent (thereby enabling the GA to efficiently explore the search space
of all graphs), we added an expansion mode to the GraphX operator.

For a given pair of parent graphs, the GraphX operator performed expansion cross-
over with the user-specified probability expand_prob (typically 0.05 or smaller). In
expansion mode, the GraphX operator first increased the size of the larger parent by
one node, and then increased the size of the smaller parent to match the expanded size
of the larger parent. Unlike the placeholder nodes in the non-expansion crossover,
these expansion nodes were randomly connected to each other and to other nodes in
the graph. Finally, as in the normal mode, the GraphX operator performed 2-point
crossover on the parents, then trimmed the size of the offspring corresponding to the
smaller parent, based on the position of the second crossover point. Consider the
following example:

1 2
0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1
1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 0 0 1

3 4
0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1
0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1
1 0 0 1 0 0 1 0 0 1 0 1 0 0 1

Fig. 5. Performing GraphX Crossover in Expansion Mode. Each panel depicts the adjacency
matrix of each graph; node type matrices are omitted for brevity. The first panel depicts two
parent graphs of sizes 3 and 4 nodes, respectively. In the second panel, the GraphX operator
increases the size of the each parent to 5 nodes by appending 2 expansion nodes to the smaller
graph and 1 expansion node to the larger graph. The second panel also shows the locations of
the crossover points in the adjacency matrices; edges between the crossover points appear in
shaded cells. In the third panel, the operator performs the 2-point crossover by exchanging the
shaded edges, yielding two offspring of size 5 nodes. Finally, the operator trims the size of the
first offspring to 4 nodes because the crossover point was in the fourth row of the adjacency
matrix.

4 Mutation

To augment the GraphX operator, we implemented a set of four general-purpose
mutation operators, which mutated a graph by (1) adding an edge, (2) removing an
edge, (3) adding a node, and (4) removing a node, respectively [1], [4]. After per-

forming crossover on the entire population, the GA selected an offspring for mutation
with user-specified probability mutation_prob (typically 0.005). If a graph was se-
lected for mutation, the GA randomly carried out one of the aforementioned muta-
tions.

To add an edge to a graph G of N nodes, the operator randomly selected an edge
from the complete graph on N nodes that was not already present in the graph G and
added that edge to graph G. The operator also assigned a random edge weight to the
new edge. To remove an edge from a graph G, the operator randomly selected an
existing edge in G and removed that edge from the graph.

To add a node to a graph G, the operator appended a new row and column to the
graph’s adjacency matrix, and appended a new entry to the graph’s matrix of node
types. The operator then assigned a random type to the new node, and randomly
added edges between the new node and the graph’s existing nodes. To remove a node
from graph G, the operator deleted the last row and column from the graph’s adja-
cency matrix, and deleted the last entry from the graph’s matrix of node types. Thus,
the operator removed the node and all edges incident on it.

5 Data and Results

To determine the effectiveness of the crossover and mutation operators, we designed
a genetic algorithm that attempted to evolve a target graph. The target graph was
completely and uniquely specified by its adjacency matrix and by the integer type
assigned to each of its nodes. Each chromosome in the GA was a graph, represented
internally by an adjacency matrix of edge weights and a types vector of node types.
The GA permitted the user to select Globus crossover or GraphX crossover, and to
enable or disable graph mutation. To determine the fitness of a graph, the GA com-
pared that graph to the target graph using the following algorithm, where T_ and C_
represent properties of the target graph and the chromosome graph, respectively:

1. maxFitness = 10*T_numNodes + sum(T_edgeWeights) + sum(T_nodeTypes)
2. minNodes = min(T_numNodes, C_numNodes)
3. nodePenalty = 10*abs(T_numNodes – C_numNodes)
4. For row = 1:minNodes

a. typePenalty += abs(T_nodeType – C_nodeType)
b. For col = 1:minNodes

edgePenalty += abs(T_edgeWeight – C_edgeWeight)
5. If (T_numNodes > C_numNodes)

a. For each extra node in target graph
typePenalty += T_nodeType

b. For each extra node pair in target graph
edgePenalty += T_edgeWeight

6. Else If (C_numNodes > T_numNodes)
a. For each extra node in chromosome graph

typePenalty += C_nodeType
b. For each extra node pair in chromosome graph

edgePenalty += C_edgeWeight
7. fitness = maxFitness – nodePenalty – edgePenalty – typePenalty

Note that the evaluation algorithm strongly encouraged the GA to evolve graphs

containing the same number of nodes as the target graph, thereby minimizing the
search space. Furthermore, the algorithm penalized every erroneous arc weight (and
every erroneous node type) in the chromosome, and the penalty was always the dif-
ference between the chromosome’s edge weight (or node type) and the target graph’s
edge weight (or node type).

The foregoing experiments were conducted with the following set of GA parame-
ters. A distributed GA with 10 islands was used because the GraphX operator per-
formed better in a distributed GA, while the Globus operator performed as well in the
distributed GA as it did in a serial GA. Each island contained a population of 100
graphs, with the each graph in the initial population containing at most 5 nodes.

islands 10 selection stochastic
epoch 100 crossover 2-point or globus
migrants 20 scaling linear_fitness
pop_size 100 crossover_prob .96
replacement elitism expand_prob 0.05
elites 1 mutation none or uniform
graph_nodes 5 mutation_prob .005

40

60

80

100

120

140

0 100 200 300 400 500 600 70

Generation

Fi
tn

es
s

x

g

Fig. 6. GraphX Crossover Versus Globus Crossover (Fitness).
typical runs in which the GA attempted to evolve a 10-node grap

5.1 GraphX Crossover Versus Globus Crossover

In the first experiment, we attempted to evolve a di
nodes and 25 edges, with a maximum fitness of 131. As
search space, the target graph contained nodes of only tw
target graph’s arcs were not weighted. Fig. 6 shows a
Globus crossover enabled, and a typical run of the GA
globus av
globus max
graphX ma
graphX avg
0 800 900 1000

 These fitness curves represent
h with fitness 131

rected graph containing 10
 a means of minimizing the

o types (0 and 1), and the
typical run of the GA with
with GraphX crossover en-

abled. As the figure indicates, GraphX crossover outperformed Globus crossover by a
significant margin. In 20 runs of 1000 generations, the GraphX operator evolved a
graph with the maximum fitness 11 times, while the Globus operator never evolved a
graph with fitness greater than 113.

The poor performance of the Globus operator derived largely from the operator’s
tendency to disrupt high-fitness building blocks. However, it should be noted that the
GA did not attempt to account for isomorphism when evaluating the fitness of a
graph. Because Globus crossover truly operated on the graph’s structure, rather than
on the graph’s representation, it is possible that the operator tended to create graphs
that were more nearly isomorphic to the target graph than Fig. 6 suggests.

Nevertheless, the superior performance of the GraphX operator should not be dis-
counted. In addition to outperforming the Globus operator for the given application,
the GraphX operator also performed crossover on an arbitrary pair of graphs much
more quickly and efficiently than did the Globus operator. As Fig. 7 indicates, the
time required for the GraphX operator to perform crossover on two graphs increased
in proportion to the number of nodes in each graph. However, the amount of time
required for the Globus operator to perform crossover on two graphs increased in
proportion to the number of nodes and the number of edges in each graph. The unde-
sirable increase in the Globus operator’s execution time stems primarily from the
operator’s frequent use of the expensive breadth-first search algorithm.

0

2

4

6

8

10

12

14

16

18

20

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

G
ra

ph
X

G
lo

bu
s

(10, 0.25) (10, 0.50) (10, 0.75) (50, 0.25) (50, 0.50) (50, 0.75) (100, 0.25) (100, 0.50) (100, 0.75)

Source Graphs (Graph Nodes, Arc Probability)

Ti
m

e
(S

ec
on

ds
 p

er
 1

00
0

C
ro

ss
ov

er
s)

Fig. 7. GraphX Crossover Versus Globus Crossover (Execution Time). Depicts the time re-
quired for each operator to perform 1000 crossover operations on two graphs containing the
specified number of nodes, with the specified probability of an edge existing between any two
nodes in either graph. The authors obtained the data by iteratively crossing over two graphs
with the specified properties and discarding the results

5.2 Mutation

Finally, the mutation operators were tested. With GraphX crossover selected, we
attempted to evolve a directed graph containing 40 nodes, 159 edges, and maximum
fitness 577. As a means of minimizing the search space, the target graph contained
nodes of only two types (0 and 1), and the target graph’s edges were not weighted.
Fig. 8 shows 5 typical runs of the GA with mutation enabled, and 5 typical runs of the
GA with mutation disabled. As the figure indicates, the GA with mutation enabled
outperformed the GA with mutation disabled. In particular, the effectiveness of the
mutation operators increased as the number of generations increased. In the GA with
mutation disabled, the maximum fitness leveled off around 460 after nearly 1500
generations. In the GA with mutation enabled, the maximum fitness continued to
steadily improve for the duration of each run. Considering that GraphX expansion
crossover incorporated the behaviors of all the mutation operators, it seems reason-
able to infer that the mutation operators were most beneficial after the graphs in the
population stabilized at the target size (and stopped expanding).

350

375

400

425

450

475

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generation

Fi
tn

es
s

mutation enabled

mutation disabled

Fig. 8. Benefits of Mutation. Depicts the maximum fitness found by the GA for five runs with
mutation enabled and five runs with mutation disabled. The GA with mutation enabled consis-
tently outperformed the GA with mutation disabled

6 Summary

The development of efficient, general-purpose graph crossover and graph mutation
operators is absolutely essential if genetic algorithms are to make effective use of
graph representations. While existing mutation operators are adequate, the traditional

fragmentation/recombination crossover operators are extremely inefficient. These
operators tend to disrupt the high-fitness building blocks that are crucial to the suc-
cess of any genetic algorithm.

The GraphX crossover operator implements a new and promising approach to
graph crossover. Because GraphX crossover does not operate directly on the graph’s
structure, the operator avoids the unnecessary complexities and performance penalties
associated with fragmentation/recombination operators. Modeled after existing vector
crossover and matrix crossover techniques, GraphX crossover implements an effi-
cient algorithm that finds and preserves high-fitness building blocks in the search
space. The GraphX operator can perform crossover on any graph structure, including
directed or undirected graphs, graphs with or without arc weights, and graphs with or
without node types. Furthermore, given an arbitrary population of graphs, a genetic
algorithm using GraphX crossover can evolve any graph that is not smaller than the
smallest graph in the initial population. Early experiments indicate the GraphX opera-
tor outperforms existing fragmentation/recombination operators by a significant mar-
gin.

In the future, the GraphX operator must be tested against existing crossover opera-
tors in a traditional application domain, such as the evolution of digital circuits. It is
probable that the GraphX operator would benefit from a contraction mode to com-
plement the existing expansion mode. It is also possible that the efficiency of the
GraphX operator could be improved if the graph were represented by an adjacency
list rather than by an adjacency matrix (particularly for large graphs that are not par-
ticularly full). However, it is clear that GraphX crossover already offers significant
advantages over current graph crossover operators.

References

1. Chang, M., Heh, J. Implements an Evolutionary Self-Organizing Map Based Graph Evo-
lution. http://www.fuzzy.org.tw/5-2t.htm

2. Dossey, J.A., Otto, A.D., Spence, L.E., Eynden, C.V. Discrete Mathematics. 3rd edn.
Addison-Wesley, Illinois State University (1998) 101-160

3. Globus, A., Lawton, J., Wipke, T. Automatic Molecular Design Using Evolutionary Tech-
niques. In: Nanotechnology, Vol. 10, No. 3 (1999) 290-299

4. Globus, A., Atsatt, S., Lawton, J., Wipke, T. JavaGenes: Evolving Graphs with Crossover.
NAS Technical Report NAS-00-018, October 2000

5. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley, University of Alabama (1989)

6. Kobayashi, S., Ono, I., Yamamura, M. An Efficient Genetic Algorithm for Job Shop
Scheduling Problems. In: Proceedings of ICGA (1995) 506-511

7. Poli, R. Evolution of Graph-Like Programs with Parallel Distributed Genetic Program-
ming. In: Goodman, E. (ed.): Proceedings of Seventh International Conference on Genetic
Algorithms. Morgan Kaufman, Michigan State University, East Lansing (1997) 346-353.

8. Valenzuela, J., Smith, A. A Seeded Memetic Algorithm for Large Unit Commitment
Problems. In: Journal of Heuristics, Vol. 8, No. 2 (2002) 173-195

http://www.fuzzy.org.tw/5-2t.htm

