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Abstract. Many evolutionary algorithms have been lately developed for solving 
multiobjective problems, appealing or not to the Pareto optimality concept. Al-
though, the evolutionary techniques for multiobjective optimization confront 
with several issues as: elitism, diversity of the population, or efficient settings 
for the specific parameters of the algorithm. In this paper, we propose a new 
evolutionary technique, which is inspired by the behavior of the endocrine sys-
tem and uses the Pareto non-dominance concept. Therefore, the members of the 
population aren’t called chromosomes anymore, but hormones and, even if they 
evolve according to the genetic principles, a supplementary mechanism based 
on the endocrine paradigm is connected with standard approach to deal with 
multiobjective optimization problems. Moreover, the proposed algorithm, in 
order to maintain the diversity of the population, uses a specific scheme of fit-
ness sharing, eliminating the inconvenient of defining an appropriate value of 
sharing factor. 

1   Introduction 

Multiobjective optimization occupies a large area in technical literature. The optimi-
zation problems became difficult in more than a single objective’s cases, so, the opti-
mum concept is reformulated accordingly. Vilfredo Pareto offers the most common 
definition of optimum in multiobjective optimization (1896). The evolutionary tech-
niques, which make use of Pareto concept of optimality, are so called Pareto-based 
approaches and were firstly suggested by Goldberg (1989). Since then, many Pareto-
based evolutionary techniques have been developed for multiobjective optimization 
problems.  

Our paper proposes a new evolutionary algorithm for multiobjective optimization 
based on endocrine paradigm. The evolutionary algorithms for multiobjective optimi-
zation deal with specific issues as fitness assignment, diversity preservation or elitism. 
We also suggest in our paper a new paradigm, which could be a fruitful source of in-
spiration for evolutionary computation: endocrine paradigm. The hormonal system 
proves itself as a complex, semi-independent and adaptive system – qualities that 
could be exploited in the evolutionary techniques. 
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2   Definitions 

Formally, multiobjective optimization problem is given as follows. Considering k cri-
teria (1), m inequality constrains (2), and p equality constrains (3), we are interested in 
finding the decision variable vector ( )**

2
*
1

* ,...,, nxxxx =  from the domain D, D⊂  Rn, 
which optimizes the vector function (1), and satisfies the constrains (2) and (3):  

( ) ( ) ( ) ( ) ( )( )xk,...,fx,fxfxfxF 21==  (1) 

( ) 0≥xgi , ,m,,i �21=  (2) 

( ) 0=xhi ,  21 ,p,,i �=  (3) 

Since, we hardly ever detect a real-world situation where all the objective functions 
have the same optimum in the search space D, the concept of optimality should have 
been revised in the multiobjective optimization’s context. 

Vilfredo Pareto formulated the most common concept of optimality for multicrite-
rial optimization problems. In order to estimate the quality of a particular element 
from the search space, a relation of dominance was established. We consider a k-
objective minimization problem and a search domain D⊂  Rn.  

Definition 1: The vector ( )k,...,a,aaa 21=  dominates the vector ( )k,...,b,bbb 21= , 

if and only if the following statement if verified:  

{ } { } ):21():21( ibia,...,k,iibia,...,k,i <∈∃∧≤∈∀  (4) 

Definition 2: The solution Dx ∈  is weakly non-dominated, if: 

{ } iaib,...,k,iDy <∈∀∈¬∃ :21for which   (5) 

where ( ) ( ) ( ) ( )kk ,...,a,aaxf ,...,b,bbyf 2121  and == . 
Definition 3: The solution Dx ∈  is strongly non-dominated, if: 

{ } { } ):21():21(for which  iaib,...,k,iiaib,...,k,iDy <∈∃∧≤∈∀∈¬∃  (6) 

where ( ) ( ) ( ) ( )kk ,...,a,aaxf ,...,b,bbyf 2121  and == . 
Definition 4: The solution Dx ∈  is Pareto optimal if and only if the next assertion 

is verified: 

( ) ( ) )k,...,a,a(axf)k,...,b,b(byfD y 21 dominates 21for which  ==∈¬∃  (7) 

Pareto front consists of the values of the objectives corresponding to the non-
dominated vectors found.  
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3   Endocrine Paradigm 

Many evolutionary techniques for solving different types of problems are developed 
and inspired from nature (as: immune systems, ant colony, hereditary principles, and 
so on). Our proposed algorithm for multiobjective optimization applies several princi-
ples inspired of the endocrine system. Even if the endocrine system has a particular 
dependence of nervous system, due to the intrinsic mechanisms of control and its 
functions, it represents by itself a suitable paradigm in the evolutionary computation’s 
landscape. 

The endocrine system, through its function and anatomy is relevant as a complex 
and adaptable system. That is why an artificial shaping of this one seems to be suit-
able for solving some complex problems.  

A quick view on endocrine system reveals how complex and ingenious nature can 
be. The endocrine system is represented by a collection of glands, which produce 
chemical messengers called hormones. These signals get through the blood system to 
the target organs, which have cells containing the appropriate receptors. The receptors 
of the cells recognize and tie one type of hormone. The hormones provoke profound 
changes at the level of the target cells. Every type of hormone has a specific shape, 
recognized only by the target cells. The main glands of the endocrine system are: the 
pituitary gland (hypophysis), the thyroid gland, the pancreas, the gonads, the adrenal 
glands and the pineal gland. The pituitary gland is considered the “master gland” of 
the body. This description is based on the control, which this one exercises.  

At the pituitary gland level are produced those hormones which influence and con-
trol the cells and the process of the organism. Its role of supervisor is offered in reality 
by the function of the hypothalamus, this one representing the bound between the 
nervous and endocrine systems. The hypothalamic neurons secrete hormones that 
regulate the release of the hormones from the pituitary gland. The hypothalamic hor-
mones are of two types: releasing and inhibiting hormones, reflecting the influence, 
which they have over the producing of pituitary hormones, called tropes. 

In order to better understand the self-control process of the endocrine system, the 
following example is taken into consideration: the releasing thyroidian hormone 
(TRH) produced by the hypothalamus actions on the hypophysis determining the se-
cretion of the thyroidian stimulation hormone (TSH). This one will act on the target 
organ i.e. thyroid gland. The action of the TSH hormone on the thyroid results the se-
cretion of the specific thyroidian hormones. Thus, when the concentration of the spe-
cific thyroidian hormones becomes too high or too low, through a negative feedback 
process, the hypothalamus is announced about this aspect. So, using inhibiting or re-
leasing hormones the hypothalamus acts on the hypophysis producing an inhibi-
tion/releasing in the production of the thyroidian stimulation hormones (TSH) with a 
direct effect on the thyroid gland activity and thus, a coming back to normal of the 
thyroidian hormones concentration.  

Concluding, the concentration of specific hormones is controlled through a feed-
back mechanism. So, a special type of hormones generated by hypophysis, called 
tropes, have the role to supervise and to imprint the releasing or inhibiting of specific 
hormones. This principle is adopted in our algorithm for the diversity preservation.  
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Simplifying, the endocrine system’s mechanism for controlling the hormonal con-
centration is shown in the next figure. 

 

Fig. 1. Control scheme of endocrine system 

4   MENDA Technique 

The principle of the proposed method relies on keeping two populations: an active 
population of hormones, Ht, and a passive population of non-dominated solutions, At. 
The members of the passive population behave as a population of elite and also have a 
supplementary function: to lead the hormones toward the Pareto front, keeping them 
as much as possible well distributed among the search space. These two populations 
correspond to the two classes of hormones in endocrine paradigm:  
1. Specific hormones, which are released by different glands of the body – the active 

population Ht. 
2. The hormones of control (tropes), which are produced by control level of the endo-

crine system (hypothalamus and hypophysis) in order to supervise the density of 
each type of hormone - the passive population At. 
The population of control, At, is modified at each generation. The new population 

At+1 gathers all non-dominated solutions from the population Ut, which has resulted 
from merging current population of hormones Ht and the previous population At. This 
manner of changing the population of controllers assures us that the non-dominated 
solutions from the previous population At cannot be lost if they still remain non-
dominated after the active population Ht has changed. 

The passive population, At, doesn’t suffer modification at the individual’s level, 
under the variation operators as crossover and mutation. It behaves as an elite popula-
tion of non-dominated solutions from the current generation, which is only actualized 
at each generation. Finally, the population At contains a predetermined number of 
non-dominated vectors and provides a good approximation of the Pareto front. 

At each generation t, the members of Ht are classified into sa classes. A corre-
sponding controller from At supervises a particular class. The idea is that each hor-
mone h from Ht is supervised by the nearest controller ia  from At: 
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( ) ( ) ( )( ){ }saahdistahdistHhaC jiti 1,2,...,j,,min,, ==∈=  (8) 

Each member a from the set At has a similar control function as a trop from endo-
crine paradigm.  

Another specific issue of the proposed algorithm is the manner of selecting and re-
combining the hormones in order to generate descendants.  

Among the members of the current population Ht a special kind of sharing results. 
Due to the fact that each individual ai from population At controls a class of hor-
mones: C(ai), this individual of control, ai, imprints to each hormone a probability of 
selecting it as first parent. The selection of the first parent is made proportionally to 
the value of its class, which is calculated according to the next formula:  

( )( )ii aCsizeofval 1=  (9) 

The first parent is selected from the population Ht, proportionally with value of its 
class; so, we can affirm that the hormones from a particular class locally share the re-
sources. By this manner of selecting first parent, the less crowded hormones are pre-
ferred and those zones from the search space, which are apparently disappearing, 
would be revived.   

Let hk be the selected first parent and ai, its controller. The second parent hl, the 
mate of the parent hk, is selected only from the hk’s class, C(ai). Parent hl is propor-
tionally selected with its performance, where performance value of a hormone h is 
given by the next formula, where nr_dominated  - represents the number of solutions 
from Ht, which are dominated by the hormone h: 

( )  shednr_dominatheperformanc =  (10) 

By selecting the second parent proportionally with its performance, the method as-
sures a faster convergence of the population toward the Pareto front. 

Crossover operator recombines two parents and produces a single descendant, 
which is accepted into the next population. 

MENDA technique:

Initialize_the_populations.
t = 0 (number of current generation);
sh = sa. (initial size of the population A is the

same with the size of the population H)
Randomly generate the populations: Ht and At where:
sh = size(Ht) and sa = size(At).

Repeat
Merge the two populations Ht and At, resulting Ut.
The population Ut contains all individuals from Ht

and At. (sha = size (Ut) = size (Ht)+size (At)).
Generate new At+1. Population At+1 embodies all non-
dominated solution from Ut:
At+1=∪ {u∈ Ut, u is non-dominated}, sa = size (At+1)
Classify the hormones from Ht according to At+1 and
set the crowding degrees for hormones. Each indi-
vidual from At+1 controls the hormones from its
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neighborhood. Further, a particular hormone can re-
combine only with hormones from its class.
Evaluate Ht. The performance of each hormone h is
proportional with the number of other individuals
of Ht, which are dominated by h.
Generate Ht+1:

Ht+1=ϕ ;

For each h from Ht, which is selected accord-
ingly to its crowding degree, do:

Select a mate h’ from the class of h
hormone.
Recombine h and h’, in order to produce
the descendant d.
Include the descendant into the next
generation: Ht+1 = Ht+1 U{d}

t = t+1.
Until ( sa = sh ).
 
Remarks: The algorithm ends when all individuals from Ht became non-dominated. 

Condition (sa = sh) could be replaced with another condition, as attaining a prefixed 
number of generations. Numerical experiments proved that for a population of size 
100, the condition (sa = sh) is satisfactory for detecting an approximate Pareto front. 

We also noticed that less crowded individuals or those individuals, which are dis-
tant from the set A, have a significant role for diversity preservation. So, the set A 
could also embody those individuals. 

5   Results  

We present in this paper several results obtained with a popular difficult test suit 
(ZDT 1-6 bi-objective problems). [2]. F is a bi-objective function: ( ) ( ) ( )( )xfxfxF 21 ,=  
and the optimization problem is:  









=
=

)mx,,1(xx        where
)mx,2g(x),1(x1)h(fmx,,2g(x(x)2f  to subject

F(x),  Minimize

�

��  

(11) 

Table 1. ZDT test problems for multicriterial optimization are described. The function F5 is 
omitted in the following test results. 

F1 ( ) 111 xxf = , ( ) ∑
= −

⋅+=
m

i

i
m m

xxxg
2

2 1
91,..., , 

( ) gfgfh /1, 11 −=  

[ ]1,0∈ix , 
m1,2,...,i =  

m = 30 

Pareto front 
is formed 
by g(x)=1 

F2 ( ) 111 xxf = , ( ) ∑
= −

⋅+=
m

i

i
m m

xxxg
2

2 1
91,..., , 

[ ]1,0∈ix , 
m1,2,...,i =  

Pareto front 
is formed 
by g(x)=1 
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( ) ( )2
11 /1, gfgfh −=  m = 30 

F3 ( ) 111 xxf = , ( ) ∑
= −

⋅+=
m

i

i
m m

xxxg
2

2 1
91,..., , 

( ) ( )1111 4sin)/(/1, fgfgfgfh π−−=  

[ ]1,0∈ix , 
m1,2,...,i =  

m = 30 

Pareto front 
is formed 
by g(x)=1 

F4 ( ) 111 xxf = ,  

( ) ∑
=

−+−+=
m

i
iim xxmxxg

2
2 ))4cos(10()1(101,..., π  

( ) gfgfh /1, 11 −=  

[ ]1,01 ∈x  
[ ]5,5−∈ix , 

m2,3,...,i =  
m = 10 

Pareto op-
timal front 
is formed 
by g(x)=1. 
The best 
Pareto front: 

( ) 25.1=xg . 
F6 ( ) ( ) ( )1

6
111 6sin4exp1 xxxf π−−=  

( )
4/1

2
2 1

91,..., 








−
⋅+= ∑

=

m

i

i
m m

xxxg , 

( ) ( )2
11 /1, gfgfh −=  

[ ]1,0∈ix , 
m1,2,...,i =  

m = 10 

Pareto op-
timal front 
is formed 
by g(x)=1. 

 
A specific characteristic of those functions made the population to converge toward a 
segment of the Pareto front, a segment that corresponded with the lowest values of the 
first function. It can be noticed that if the first objective function depends only of one 
variable (for example: ( ) 11 xxf = ), the second objective represents a function with m-1 
variables, where m is usually 30.   

We observed that for m=2, the Pareto front is detected using our standard algo-
rithm. Intuitively, we assume that the proposed evolutionary algorithm minimizes the 
values of the first function more quickly than the values of the second one. Thus, the 
final solutions correspond to a small part of the Pareto front, where the first objec-
tive’s values are lower. Due to this fact, a modification must be made in order to ob-
tain the entire Pareto front. Our proposal is to change the variation operator, respec-
tively the crossover operator.  

The standard convex crossover operator is applied on two selected parents 
( )mxxxx ,...,, 21=  and ( )myyyy ,...,, 21= , resulting the unique descendant 
( )mzzzz ,...,, 21= , where: ( ) iii yqxqz ⋅+⋅−= 1  and q is randomly generated.  

The modified operator generates the unique descendant ( )mzzzz ,...,, 21= , too. 
Considering λ from [0,1] (usually 0.5), representing a parameter of the algorithm, the 
modified crossover operator performs as follows: 

Modified Crossover Operator:

For each i from 2 to m
zi=(1-q)*xi+q*yi

EndFor
Randomly generate p from [0,1].
If p>λ then
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z1=(1-q)*x1+q*y1

Else
Randomly generate a value for z1 from the spe-
cific domain.

EndIf
 

We used the following metrics of performance: 
 
Error Ratio – proposed by Van Veldhuizen; this metric measures the percentage of 

solutions that are not members of the true Pareto front [5], where n is the number of 
non-dominated solutions found and: 

n

e
ER

n

i
i∑

== 1  

(12) 





=
otherwise ,

front Pareto optimal the of member is i vector if  
ei 1

,0
 

(13) 

 
Spacing – proposed by Schott; this metric measures the distance variance of the 

neighboring vectors among the Pareto front [6], where n is the number of non-
dominated solutions found, d  is the average of all di and: 

( )∑
=

−
−

=
n

i
idd

n
S

1

2

1
1  

(14) 

( ) ( ) ( ) ( )( )xfxfxfxfd jiji
ji 2211min −+−= , i,j=1,…,n (15) 

We also count the number of non-dominated solutions found and the number of 
generations produced. 

MENDA algorithm is performed for 20 times. For each run, the following values 
are kept: the number of generations produced, the number of non-dominated solu-
tions, the value of Spacing metric for the non-dominated front, and the error ration of 
the final front.  

The table 2 shows the average values per run of these metrics and the best value 
obtained for each metric. In our tests, the algorithm stops when the error ration be-
came zero.  

The results indicated next were found using the following parameters: the size of 
the active population H is 100 and the passive population A contains maximum 100 
members. The supplementary parameter ε is useful to estimate if two non-dominated 
solutions are clearly distinct or not: ε=10-2.  

First parent is selected by using the tournament selection operator and the second 
parent is selected among the neighborhood of the first one, by using the proportional 
selection. 

Next, the visual representations of the results are shown: 
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Fig. 2. Visual representation of the non-dominated solutions found for test functions F1 and F2. 
The figure present the final population of tropes (non-dominated solutions) obtained from a 
single run of the algorithm. 
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Fig. 3. Visual representation of the final populations of non-dominated solutions obtained in a 
single run of the MENDA algorithm for the test functions F3 and F4. 
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Fig. 4. Visual representation of the non-dominated solutions found for the test functions F6. 
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Table 2. The average values per run of the Spacing and Error Ratio metrics and the 
best value obtained for each metric. Also, the average and the best values of the num-
ber of non-dominated solutions obtained in a run, respectively, the number of genera-
tions produced, are indicated. 

 Number of  
Generations 

Non-dominated  
solutions SPACING ERROR 

RATIO 
Average 60 83 0.0056 0.00 

Best 54 88 0.0046 0.00 F1 
Worst 68 77 0.0069 0.00 

Average 65 83 0.0058 0.00 
Best 54 90 0.0041 0.00 F2 

Worst 88 75 0.0079 0.00 
Average 121 97 0.0061 0.00 

Best 86 100 0.0047 0.00 F3 
Worst 162 90 0.0072 0.00 

Average 37 82 0.0059 0.00 
Best 32 88 0.0043 0.00 F4 

Worst 43 78 0.0080 0.00 
Average 145 65 0.0059 0.00 

Best 122 70 0.0046 0.00 F6 
Worst 251 60 0.0087 0.00 

 
We choose to make a visual comparison of the results produced by MENDA algo-
rithm against the results obtained with two popular techniques: SPEA and NSGA. We 
plotted in the following graphs the nondominated vectors produced in a single run of 
each algorithm.The experimental results regarding the evolutionary algorithms NSGA 
and SPEA were found on the web page  

http://www.tik.ee.ethz.ch/~zitzler/testdata.html/#testproblems. 
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Fig. 5. MENDA versus SPEA and NSGA for the test functions F1.  

 

http://www.tik.ee.ethz.ch/~zitzler/testdata.html/#testproblems
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Fig. 6. MENDA versus SPEA and NSGA for the test functions F2. 
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Fig. 7. MENDA versus SPEA and NSGA for the test functions F3. 
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Fig. 8. MENDA versus SPEA and NSGA for the test functions F4. 

 



12      Corina Rotar 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2f1

f2

NSGA SPEA MENDA

 
Fig. 9. MENDA versus SPEA and NSGA for the test functions F6 

6   Conclusions 

Nature offers complex phenomena, processes and systems, which can inspire us in 
many ways. An example of this kind is the natural endocrine system. It reveals us as a 
dynamic, adaptive and semi-independent system. Its complex structural and func-
tional features suggest us a possible imitation of its characteristics for developing new 
techniques for multiobjective optimization. It is clear that hormonal system was ig-
nored by now. Our work essentially attempts to mimic hormones’ behavior in order to 
solve difficult problems like multiobjective optimization. Consequently, we propose a 
new technique based on endocrine paradigm, called MENDA (Multiobjective Endo-
crine Algorithm). It provides satisfactory solutions in our tests.  
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