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Abstract. We present an island model that uses different representa-
tions in each island. The model transforms individuals from one repre-
sentation to another during migrations. We show that such a model helps
the evolutionary algorithm to escape from local optima and to solve prob-
lems that are difficult for single representation EAs. We illustrate this
approach with a two population island model in which one island uses a
standard binary encoding and the other island uses a standard reflective
Gray code. We compare the performance of this multi-representation is-
land model with single population EAs using only binary or Gray codes.
We show that, on a variety of difficult multi-modal test functions, the
multi-representation island model does no worse than a standard EA on
all of the functions, and produces significant improvements on a subset
of them.

1 Introduction

The continuing successes of EA applications have resulted in exploring their use
on new and more challenging problems. As the complexity of these new applica-
tions increases, there is a corresponding need for more sophisticated evolutionary
algorithms. One direction that is being explored is the use of island models to
increase the problem-solving capabilities of EAs. The research described in this
paper is in this area and presents some preliminary results on the advantages
of using island models in which different islands use different representations.
Specifically we show that by using a two-island model, each with a different rep-
resentation, and allowing for migrations between them, we are able to effectively
solve problems that are difficult to solve with single representation EAs.

In section 2 we present a short background on island models and on using sev-
eral different representations. In section 3 we describe our multi-representation
island model with transforming migrations and verify our suppositions with some
initial experiments. In section 4 we present the results of a more systematic set
of experiments, and we finish with conclusions in section 5.

2 Island models and multiple representations

Separating individuals spatially from each other results in a qualitative change
in the behavior of evolutionary algorithms. The two most well known approaches
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to separating individuals is to either group them into populations (island mod-
els) or put them on a grid and restrict their interaction to some neighborhood
(neighborhood models).

The first most obvious outcome of separating individuals is the slowing down
of the information flow between individuals [1]. The results of this may be two-
fold. On one hand it may be undesirable - it can prevent successful mixing, which
would lead to constructing a novel solution. On the other hand, the results may
be positive - it may stop individual solutions from dominating the population
and allow different building blocks to be discovered in separated regions.

In island models the exchange of information is carried out by migrating indi-
viduals between populations. Migrations are characterized by several parameters
such as size, frequency and migration policy [2]. Although initially people used
island models simply for the purpose of distributing computations on many ma-
chines, often island models produce better qualitative results [3].

In island models different algorithms and/or representations can be used
in the same time inside populations. Seemingly useless redundancy of different
representations may lead to different evolvability characteristics, and ultimately
to a more effective search - as suggested by the neutrality theory [4, 5]. Switching
representation changes the exploration distribution around a given solution, and
opens a possibility for genetic operators to discover new regions of the search
space.

One of the problems of search algorithms, including evolutionary algorithms,
is getting locked in a local optimum. A local optimum is defined as a solution,
whose all direct neighbors are worse in terms of fitness. However, the neighbor-
hood relation depends on representation. Therefore a solution which is a local
optimum in one representation may not necessarily be so in another. Also, a
solution located in the basin of attraction of one local optimum, may belong to
the basin of some other optimum in another representation.

A well known implementation of island model with different representations
is the injection island model [6]. In this model there are several islands with
different precisions of representation and different fitnesses. Some islands have
simpler representations and faster fitness evaluation. Their task is to evolve the
first, coarse approximations of the final solution. The best solutions migrate to
the islands with more detailed representations and more expensive evaluations.
There might be several levels of islands and the final solution is taken from the
most complex one.

Another interesting approach to dynamically switching representations was
proposed in [7, 8]. This algorithm uses single population and changes the repre-
sentation for all the individuals, when it gets trapped in a minimum. The rep-
resentations used are Gray encodings and the method switches from one Gray
code to another by ”rotating” the encoding, which is called shifting. By doing so
the authors are often able to make two local minima become neighbors and thus
”collapse” the worse of them. The usefulness of the method was experimentally
confirmed. More information on shifting and properties of both binary and Gray
encodings is included in [9] and [10].
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3 Transforming migrations

The model that we propose in this paper is an island model in which we trans-
form individuals from one representation to another during migrations. Such a
model allows for changing representations in either direction, as opposed to in-
jection islands, where the flow of individuals is one-directional, from coarser to
more precise representations. In other approaches (like shifting) the represen-
tation changes for all individuals in the same time. Again, our model is more
flexible, because it allows for having different representations simultaneously,
and the control of representation is more at the individual level than at the
whole population level. The general model we just described doesn’t make any
assumptions about the sort of representations used, or number of populations.

For every problem there exist better and worse representations. Some of them
may create deceptive regions, whereas others will result in an easy landscape. In
many cases it is impossible to decide a priori what representation to choose for
a given problem. It may even happen that all the representations we are trying
produce a deceptive landscape. However, even then, a local optimum in one rep-
resentation need not be a local optimum in the other representation. Therefore
by switching representations in some cases we should be able to escape from
such situations. Optimally, if a function is easy for some representation in places
where it is difficult for others, the island model using multiple representations
should behave better on this function than a standard single population EA
using any of those representations.

In this paper we try to support these intuitions by analyzing a particular
example of the described model. We will use two populations. Migrations will
be occurring at the same time from the first population to the second and vice
versa and their parameters will be the same throughout any single experiment.
We will use two relatively simple encodings: a standard binary encoding and
a standard reflected Gray encoding. For those representations we will show a
function F which has the characteristics of the problem described above, and
we will show that the multi-representation island model indeed behaves better
than standard EAs.

3.1 Exemplary function

We will construct a function F representing a minimization problem. Let us
denote the solution search space by Ω and by Gn denote a graph, in which
nodes are binary strings of length n and the edges represent the neighborhood
relation (for a more formal definition and discussion see [9]). An encoding f
is a function f : Ω → Gn. We will denote the binary and Gray encodings by
binary : Ω → Gn and gray : Ω → Gn.

To construct our function we first define two functions from Gn to IN.
Let us define a function easy : Gn → IN by

easy(a) = hamming(a, 0n)/4
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where the function hamming returns the number of bits by which its two argu-
ments differ and 0n denotes a string of length n consisting of 0’s. It is easy to
see that it is a simple unimodal function with one global optimum equal to 0n.

Let us also define a function deceptive : Gn → IN by

deceptive(a) =
{3 ∗ hamming(a, 0n) if hamming(a, 0n) < 1

4n
n− hamming(a, 0n) otherwise

The function has two optima. One is global (0n), and the other one is local
(1n) and has a bigger basin of attraction. Therefore the function is deceptive -
it is easy for EA to get stuck in the local minimum.

We further define a function F1 : Ω → IN by

F1(x) = deceptive(gray(x)) + easy(binary(x))

The second component (easy) of the function is usually smaller and thus has a
smaller impact when using the Gray encoding. However, it influences the tra-
jectory of EA when using binary encoding. F1 is difficult for Gray encoding and
relatively easy for binary encoding.

Similarly, we define a function F2 : Ω → IN by

F2(x) = deceptive(binary(x)) + easy(gray(x))

Analogously, F2 is difficult for binary and relatively easy for Gray encoding.
Finally we can construct the function F to be

F (x) = min(F1(x), F2(x))

The function inherits both local minima from F1 and F2 and has one global
optimum at 0n with value 0. It is a difficult function when using only binary or
only Gray encoding, but turns out to be much easier when switching between
representation is allowed.

3.2 Initial observations

To verify our assumptions about the behavior of the model and the properties of
the function F , we start with analyzing single runs of EA. Not surprisingly, single
populations using just one encoding usually fail to find the global optimum. A
typical run for the binary encoding is shown in Figure 1. and a typical run for
Gray encoding is shown in Figure 2. We plot the best, average and worst fitness
of the population. In both cases the EA was trapped in local optima, which are
neighborhoods of respectively binary−1(1n) and gray−1(1n).

The situation changes when we allow for the island model with both rep-
resentations in the same time. On Figure 3. we show an analog run with two
representations. A careful inspection of the figure shows that the representations
”help each other”, not allowing each other to get stuck in local minima. One may
notice that it is the binary representation that is leading in the beginning but it
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Fig. 1. A typical single run with binary
encoding on function F . EA got trapped
in a local minimum

0

20

40

60

80

0 20 40 60 80 100 120 140 160 180 200

Gray encoding, function F

worst
average

best

Fig. 2. A typical single run with Gray en-
coding on function F . EA got trapped in
a local minimum

is the Gray representation that plays an important role towards the end. Vertical
changes in best fitness correspond to migrations from the other population. The
influence of such migrations is very distinct in generations 20–35 for the Gray
encoding and in generations 55–65 for the binary encoding.

To make the influence of migrations even more visible, we have run a set of
experiments in which migrations occur very rarely (every 50 generations). Again,
a typical run is shown in Figure 4. One can clearly see the initial leading role of
the population with binary representation. By generation 50 the Gray encoding
population is already stuck at its local minimum. A migration helps it escape
from this minimum. Later the roles of the populations get reversed and it is
the Gray encoding population that helps the binary encoding population escape
from its local minimum, by means of migrations at generations 100 and 150.
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Fig. 3. A typical single run with both
encodings on function F . EA found the
global optimum
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Fig. 4. A typical single run with both
encodings and rare migrations, on func-
tion F . Mutual influence of populations
by means of migrations is very visible in
generations 50, 100 and 150
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4 Experiments

We have conducted several sets of experiments, the statistical results of which we
report in this section. Firstly, we changed EA parameters to study the robustness
of the model. Then we explored the influence of migration level. Finally, we
ran experiments on different functions known in the literature to confirm the
applicability of the model to a wider set of problems.

Unless explicitly stated otherwise, we used the following parameters. For
each experiment we made 50 runs for a single population of size 100, using the
binary encoding, a single population of size 100, using the Gray encoding and
an island model of two populations each of size 50, one using the binary and
the other using the Gray encoding. The migrations occurred every 5 generations
by copying 10% of best individuals from each population, transforming them to
the other representation and immigrating by replacing random individuals. The
parameters used are summarized in Table 1.

Table 1. Parameters used

Parameter Value

mutation rate 1/n

recombination type two-point

recombination rate 1.0

selection strategy ranked

population size 100 or 50+50

migration policy copy best - replace random

migration size 10%

generations between migrations 5

total number of generations 500

number of runs 50

4.1 Changing EA parameters

We have tested the model using two crossover types (two-point and uniform)
and two selection strategies (ranked and binary tournament). In every test the
island model performed better than single population ones. It was the only one
to find the global optimum, and for experiment 2 it found the global optimum
every time. In other experiments both island model EA and single population
EAs were finding different minima in different runs. For example, in experiment
3 the binary encoding EA was finding optima with values 55 and 11, whereas
island model EA was finding optima of 55 and 0. Therefore the averages are not
significantly different. The results of experiments are presented in Table 2. For
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each model – binary (B), Gray (G) and island model (IM) – we give the average
best fitness at the end of run (Av), confidence interval (Err) for α = 0.05 and
number of times the model found the global optimum (#Opt)

Table 2. Changing EA parameters.

No Description B Av B Err #Opt G Av G Err #Opt IM Av IM Err #Opt

1 two-point, ranked 21.08±4.99 0 55.00 ±0.00 0 22.00 ±7.54 30

2 uniform, ranked 12.00±0.00 0 55.00 ±0.00 0 0.00 ±0.00 50

3 two-point, b.tourn. 25.38±5.76 0 55.00 ±0.00 0 27.50 ±7.70 25

4 uniform, b.tourn. 12.00±0.00 0 55.00 ±0.00 0 3.48 ±2.16 19

4.2 Changing migrations parameters

Similar analysis was performed for three different levels of migration. Again,
because the EAs converge to several very different optima, the averages and
confidence intervals don’t tell us much. However the comparison of numbers of
times the global optimum was found by each model is much more informative.
The results are given in Table 3. in a similar format to the previous one. It seems
that the migration of 1%, even occurring every generation, is too weak to have
any significant impact on the behavior of the algorithm (although it did find the
global optimum once). On the other hand migrations of level 10% seem to affect
the behavior significantly, even if they occur rarely (every 20 generations).

Table 3. Changing migration parameters

No Description Average Confidence #Opt

1 10 %, 5 gen. 22.0 ±7.54 30

5 1 %, 1 gen. 26.8 ±5.49 1

6 10 %, 20 gen. 18.7 ±7.29 30

4.3 Changing fitness functions

The last experiments were aimed at verifying the applicability of the model for
functions other than the one presented so far. Therefore a set of 4 functions which
are well-known in the literature, was taken. The functions are multi-modal test
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functions, known as Rosenbrock, Schwefel, Rastrigin and Griewangk (see Table
4.). A 10-dimensional versions of each of them were used and each parameter
was represented with 12 bits. To maintain the mutation rate of 1

n , it was set to
0.0083.

Table 4. Test functions

Name Formula

Rosenbrock f(x1, . . . , xn) =
∑n

i=2
(100(xi − x2

i−1)
2 + (1− xi−1)

2)

Schwefel f(x1, . . . , xn) =
∑n

i=1
−xisin(

√
|xi|)

Rastrigin f(x1, . . . , xn) = 10n +
∑n

i=1
(x2

i − 10cos(2πxi))

Griewangk f(x1, . . . , xn) = 1 +
∑n

i=1

x2
i

4000
−∏n

i=1
cos( xi√

i
)

The figures and the table below shows the results. We must note that we
plot the figures with error bars based on confidence interval calculated for α =
0.05 and assumption of Gaussian distribution. The latter is not necessarily true
because it strongly depends on what minima exist in the landscape. However,
the error bars still give us some insight into how reliable the data is.

For the Rosenbrock function the proposed model doesn’t differ significantly
from the single-population single-representation models. Its performance seems
to be slightly better than that of binary representation and comparable with
Gray representation. However the differences are within a statistical error.

For Schwefel function the performance of the multi-representation model
looks better. It is significantly better than both that of binary as well as of
Gray representation for short term runs (around generation 200) and at the
end, when it converges to very low minimum of value around 0.015.
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The model behaves well on Rastrigin function, again with most visible ad-
vantage in short runs. After 500 generations the Gray encoding model becomes
statistically indifferentiable from the island model while the binary encoding
model occurs significantly worse.

Finally, for Griewangk function, we observe a huge advantage of using the
multi-representation island model. It not only converges faster but also finds a
better optimum.
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Fig. 7. Average results from 50 runs for
Rastrigin function, shown from genera-
tion 50
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Fig. 8. Average results from 50 runs
for Griewangk function, all generations
shown

We are currently analyzing these landscapes in more detail in order to under-
stand more precisely what causes the island model to behave better on certain
functions than on others, and hope to present those results in a later paper.

5 Conclusions

The results presented in this paper suggest that island models with different
representations and transforming migrations may behave better than standard
EAs for some problems without making things worse on others. Therefore they
are a promising approach for difficult, multi-modal problems. What is interesting
is that they often behaved better than EAs using either of the two representa-
tions. This suggests that representations with dynamic neighborhood (i.e. those
in which the neighborhood structure can change, which happens when we switch
from one representation to another) can be in general better than any static-
neighborhood representation. Of course, the No Free Lunch theorem states that
they cannot be better for any function - but they may be better for commonly
used test and real-life functions.

The observations from single runs convinces us that the multi-representation
island models produce better results because the representations ”help each
other” by means of migrations. A further investigation into this process and
possibly making it dependent on some population-based feedback would defi-
nitely be an interesting area for future work.
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