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Abstract. A scalable architecture to facilitate emergent (self-organized)
task decomposition using neural networks and evolutionary algorithms
is presented. Various control system architectures are compared for a
collective robotics (3 x 3 tiling pattern formation) task where emergent
behaviours and effective task -decomposition techniques are necessary to
solve the task. We show that bigger, more modular network architectures
that exploit emergent task decomposition strategies can evolve faster and
outperform comparably smaller non emergent neural networks for this
task. Much like biological nervous systems, larger Emergent Task De-
composition Networks appear to evolve faster than comparable smaller
networks. Unlike reinforcement learning techniques, only a global fitness
function is specified, requiring limited supervision, and self-organized
task decomposition is achieved through competition and specialization.
The results are derived from computer simulations.

1 Introduction

Some of the fundamental goals of machine learning is to develop learning algo-
rithms that require limited supervision but can facilitate the discovery of novel
solutions and better handle environmental uncertainties. We have been inspired
by social insects such as ants, bees and termites that form synergistic (one whose
capabilities exceed the sum of its parts) multiagent systems without any cen-
tralized supervision. These insects societies consist of simple individuals and as
a collective can solve complex tasks. For example, termites have evolved the
ability to survive the harsh Australian outback by building towering ‘Cathedral
Mounds’ with internal heating and cooling shafts [4].

Evolutionary algorithms (EAs) are specially suited for non-Markovian col-
lective robotics tasks, since only a global fitness function needs to be specified
to obtain a desired collective behaviour. Unfortunately, the application of evolu-
tionary algorithms for increasingly complex robotics control tasks has been very
challenging due to the bootstrap problem [12]. The bootstrap problem occurs
when it becomes increasingly difficult for the EAs (particularly for a monolithic
control system topology) to pick out incrementally better solutions for crossover
and mutation resulting in premature stagnation of the evolutionary run.



A common solution to the bootstrap problem is to decompose a complex task
into a set of simpler tasks through supervised task decomposition. This often re-
quires a priori information of the task and supervisor intervention in determining
suitable task decomposition strategies. Yet in nature, biological systems can ac-
complish such feats with no such external intervention.

In this paper we introduce a modular Emergent Task Decomposition Net-
work (ETDN) architecture that requires limited supervision and can decompose
a complex task into a set of simpler tasks through competition and self organi-
zation. The ETDN architecture is trained using evolutionary algorithms, with
only a prespecified global fitness function. The network is composed of decision
neurons (mediates competition) and several expert networks (that compete for
dominance).

Limited supervision provides numerous advantages including the ability to
discover novel solutions that would otherwise be overlooked by a human su-
pervisor. This strategy is particularly advantageous for decentralized collective
robotics where little is known of the interaction of local behaviors resulting in a
desired global behavior. We empirically compare the training performance (us-
ing evolutionary algorithms) of various control systems for the tiling pattern
formation task (similar to a segment of the termite nest building task [3]). Tt
was found earlier that a memorization approach (such as a monolithic look-up
table-based control system) is unable to solve more complex versions of the task
because of the bootstrap problem [14].

2 Related Work

Dorigo and Colombetti [5] introduced the idea of incremental learning (shaping)
in classifier systems, where a robot learns a simplified version of the task and the
task complexity is progressively increased by modifying the learning function.
Stone and Veloso [13] developed a task decomposition scheme known as layered
learning, where the learning function for a complex task (playing soccer) is par-
titioned into a set of simpler learning functions (corresponding to sub-tasks) and
learned sequentially. These traditional task decomposition techniques require the
supervisor to have domain knowledge of the task and are very difficult to im-
plement in the collective robotics domain since the necessary local and global
(collective) behaviors need to be known.

Jordan and Jacob [9] developed an automated task decomposition technique
using a modular neural network architecture for the ‘what’ and ‘where’ vision
task . The architecture consists of a decision network (mediates competition)
and several expert modules (explicitly specialized for predefined subtasks). The
expert networks and the decision networks are trained separately according to a
set of handcrafted reinforcement learning algorithms.

In evolutionary computation, algorithms such as ESP (Enforced Subpop-
ulations) and SANE (Symbiotic Adaptive Neuro-Evolution) evolve individual
neurons, within a fixed neural network topology [7]. ESP uses separate subpop-
ulations to select neurons for each placeholder within the neural network. This



technique has been used to evolve control systems for keep-away soccer robots,
sounding rockets and for the double-pole balancing task [15, 7, 8]. Unfortunately,
this approach is susceptible to early convergence in some cases, since the algo-
rithm attempts to pick the best set of individual neurons rather than the best
combination of neurons within a network [7].

In evolutionary robotics, Nolfi [11] introduced emergent modular architec-
tures, where decision neurons arbitrate individual motor control neurons for the
garbage collection task [12]. This architecture evolved faster and produced better
solutions than other comparable networks including multilayered feed forward
and recurrent architectures. Ziemke [16] attempted to determine the scalability
of the emergent modular architecture and was unsuccessful in his efforts. He
found emergent modular architectures were particularly inefficient when inte-
grated with memory neurons.

There are some key difference between our ETDN architecture and Nolfi’s
emergent modular architecture. In his experiments, selection was amongst two
motor control neurons rather than whole networks. In addition there is 1:1 map-
ping between his decision neurons and control neurons, where each decision
neuron votes for a motor control neuron. This implementation is applicable only
for simpler problems, where individual neuron responses are sufficient for a solu-
tion. Using our ETDN architecture (Binary Relative Lookup variant), arbitration
could be extended to 2n expert networks.

3 Method

Some of the control system architectures presented in this paper consist of ar-
tificial neural networks trained using evolutionary algorithms (neuroevolution).
We use a fixed network topology, with a 1:1 genotype-to-phenotype mapping
and where weights, biases/thresholds are evolved using a global fitness function.
Some of the advantages of neuroevolution, over reinforcement learning is that
the search space need not be smooth nor differentiable and solutions tend to be
more robust against local minima. In addition, unlike traditional machine learn-
ing algorithms, EAs could be used to select suitable activation functions during
training (as shown with our modular neuron architecture).

3.1 Emergent Task-Decomposition Architecture

We propose an Emergent Task-Decomposition Network (ETDN) architecture
that consist of a set of decision neurons that mediate competition and a set of
expert network modules that compete for dominance (see Fig. 1b). We exploit
network modularity, evolutionary competition, specialization and functional neu-
trality to facilitate emergent (self organized) task decomposition



Expert Network 1 Expert Network 2

Network ;l:‘ ;l:‘

Input

Neurons é____,,____f
1

I\ I\ NN/ % Decision

Neuron

(a) (b)

Fig. 1. (a) An example of the non-emergent network used in our experiments. (b)
ETDN architecture consisting of a decision neuron that arbitrates between 2 expert
networks.

Unlike traditional machine learning methods where handcrafted learning
functions are used to train the decision and expert networks separately, our
architecture requires only a global fitness function. The intent is for the archi-
tecture to evolve the ability to decompose a complex task into a set of simpler
tasks with limited supervision. The decision neuron is connected to all the sen-
sory input and is used to select an expert network based on the output state.
In turn, the output from the selected expert network triggers a set of predefined
actions.

In nature, it is well known that the brain has adopted a modular architecture.
Ballard [1] goes further and suggests that a limitation in the number of neurons
in the brain (due to limited volume) have forced the brain to evolve a modular
architecture. Geshwind and Galaburda[6] suggest competition between different
networks of neurons in the brain drives certain networks to become specialized for
a particular function . At the molecular level, it is well known the interaction of
functional proteins is determined through collaborative competition for limited
resources and binding sites, thus leading to functional specialization [2].

3.2 Extending Emergent Task Decomposition

Our proposed ETDN architecture unlike previous work in the field of evolution-
ary computation, could be generalized for ng expert networks. Here we discuss
two proposed extensions to the ETDN architecture, namely the Binary Relative
Lookup (BRL) architecture and Binary Decision Tree (BDT) architecture.

The Binary Relative Lookup (BRL) architecture consists of a set of ng non-
interconnected decision neurons that arbitrate between 2™¢ expert networks.
Starting from left to right, each additional decision neuron determines the spe-
cific grouping of expert networks relative to the selected group. Since the decision
neurons are not interconnected (see Fig. 2), this architecture is well suited for
parallel implementation.
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Fig. 2. (left) BDT Architecture with 4 expert networks and 3 decision neurons. (right)
BRL Architecture with 4 expert networks and 2 decision neurons.

The Binary Decision Tree (BDT) architecture could be represented as a bi-
nary tree where the tree nodes consist of decision neurons and the leaves consist
of expert networks. For this architecture, ng decision neurons arbitrate between
ng + 1 expert networks. The tree is traversed by starting from the root and
computing decisions neurons along each selected branch node until an expert
network is selected. For both architectures the computational cost of the deci-
sion neurons, Cy x logng.

3.3 Modular Neurons

We have also developed a modular threshold activation neuron, where the EAs
are used to train the weights, threshold parameters and choice of activation
function for each neuron. The inputs and outputs from the modular threshold
neurons consist of states rather than arbitrary values. The modular neuron could
assume one of four different activation functions listed shown below:
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Each neuron outputs one of two states s = (s1, s2), where ¢, is a threshold,
p(x) = (O, wiz;)/ (>, i), w; is a neuron weight and z; is an element of the
active input state vector.

Our intention was to develop a compact modular neuron architecture for im-
plementation on hardware, where a single neuron could be used to simulate AND,
OR, NOT and XOR functions. The assumption is that a compact yet sufficiently
complex (functional) neuron will speed up evolutionary training since this will
reduce the need for more hidden layers and thus result in smaller networks.

4 Example Task: Tiling Pattern Formation Task

The tiling pattern formation task [14] involves redistributing objects (blocks)
piled up in a 2-D world into a desired tiling structure (see Fig. 7). The robots need



to come to a consensus and form one ‘perfect’ tiling pattern. This task is similar
to a segment of the termite nest construction task that involves redistributing
pheromone filled pellets on the nest floor [3]. Once the pheromone pellets are
uniformly distributed, the termite use the pellets as markers for constructing
pillars to support the nest roof.

B
-

Fig. 3. The 2 x 2 tiling pattern (left) and 3 x 3 tiling pattern (right).

More important, the tiling pattern formation task could be decomposed into
a number of potential subtasks consisting of emergent behaviors. These may in-
clude foraging for objects (blocks), redistributing block piles, arranging blocks
in the desired tiling structure locally, merging local lattice structures, reaching
a collective consensus and finding/correcting mistakes in the lattice structure.
Inspired by nature, we are interested in evolving homogenous decentralized con-
trollers (similar to a nest of termites) for the task [10]. Decentralized control
offers some inherent advantages including the ability to scaleup to a larger prob-
lem size. Task complexity is dependent on the intended tile spacing, since more
sensor data would be required to construct a ‘wider’ tiling pattern.

Shannon’s entropy function has been shown to be a suitable fitness function
for the tiling formation task [14]. The test area spans M x M squares and is
divided into J I x [ cells, A;, where the fitness value, f; »,, for one set of initial
condition %, after T discrete time steps, with cells shifted x squares in the x-
direction and y squares in the y-direction is given as follows:

S pilnp;
fimy=5" =153 7 (2)
InJ

where, s = 100 and is a constant scaling factor, I is an index over a set of
initial conditions and p; = (TL(A]))/(Z;]=1 n(A;)), where n(A4;) is the number
of blocks in cell A;. To encourage the desired tiling pattern, the fitness function
is applied by shifting the cells a maximum of [ — 1 squares and the total fitness,
fi = (Zly_:lo(Z;_:lo izy))/1?. When the blocks are uniformly distributed over
J cells, according to the desired tiling pattern, we have f; = 100 (a successful
epoch).



4.1 The Robot
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Fig. 4. Input layer neuron and physical topology for the 2 x 2 (left) and 3 x 3 (right)
tiling pattern forming robots.

The robots are modelled as modified Khepera robots equipped with a gripper
turret. We have developed a fast 2-D grid world simulator for our evolutionary
experiments and we have verified this simulator using Webots (Fig. 7). For the
2 x 2 tiling pattern formation task, each robot could detect blocks and other
robots in the 5 squares as shown (Fig. 4). For the 3 x 3 tiling pattern formation
task, the robots could detect object in 7 surrounding squares as shown. The
output state from the robot controller activates one of two predefined basis
behaviors, namely Move and Manipulate Object described below.

I Move: Move forward if square to the front empty, otherwise turn left if
square to the left empty otherwise turn right.

IT Manipulate Object: Pick up/put down a block from the surrounding
squares according to a predefined sequence of steps depending on posses-
sion of a block or not. If the robot is unable to pick up or put down a block,
the ‘move’ command is activated.

5 Experimentation

The evolutionary performance of various control systems architectures are com-
pared for the tiling pattern formation task (see Fig. 5). Through experimenta-
tion, we found the best nonmodular network for the tiling pattern formation task
as shown in Fig. 1(a). We use this network as our expert network module for
the ETDN architectures. In our simulations the EA population size is P = 100,
number of generations G = 200, crossover probability p. = 0.7, mutation proba-
bility p,, = 0.025 and tournament size of 0.06p. (for tournament selection). The
fitness is evaluated after T = 3000 timesteps for a 11 x 11 world (2 x 2 task) or
16 x 16 world (3 x 3 task) with 11 robots and 36 blocks.
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Fig. 5. Evolutionary performance comparison, 2 x 2 (left), 3 x 3 (right, bottom) tiling
pattern formation task, averaged over 120 EA runs. (A) Look-up Table, (B) ESP
(using Non-Emergent Net), (C) Non-Emergent Net(Sigmoid),(D) ETDN (Exp. Net 2,
Sigmoid), (E) Non-Emergent Net. (Threshold), (F) ETDN (2 Exp. Nets, Threshold),
(G) Non-Emergent Net. (Modular), (H) ETDN (2 Expert Nets, Modular),(I) BRL (16
Expert Nets, Modular), (J) BRL (32 Expert Nets, Modular), (K) BRL (8 Exp. Nets,
Modular), (L) BRL (4 Expert Nets, Modular), (M) BDT (4 Expert Nets, Modular)
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6 Results and Discussion

For the 2 x 2 tiling pattern formation task, the lookup table approach evolves de-
sired solutions faster than the network architectures. This suggests that ETDNs
may not be the most efficient strategy for smaller search spaces. Our conven-
tional ETDN architecture consisting of a single threshold activation function
evolves slower than the nonemergent architectures.

The ETDN architectures include an additional ‘overhead’, since the evolu-
tionary performance is dependent on the evolution of the expert networks and
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decision neurons resulting in slower performance for simpler tasks. However the
Emergent Task Decomposition Network architecture that combines our modu-
lar neuron architecture outperforms all other network architectures. The per-
formance of the modular neurons appears to offset the ‘overhead’ of the bigger
ETDN architecture. A ‘richer’ activation function is hypothesized to improve
the ability of the decision neurons to switch between suitable expert networks.
For the more difficult 3 x 3 tiling formation task, a lookup table architecture
is unable to find a desired solution. The resulting search space is significantly
larger (owing to increased number of sensors required), 2437 potential solutions
compared to 2486 for the 2 x 2 tiling formation task. With a very large search
space, this architecture falls victim to the bootstrap problem, since EAs are un-
able to find an incrementally better solution during the early phase of evolution.
The ESP algorithm learns slower than the other architectures for both tiling
formation tasks. It is suspected that evolving individual neurons in parallel may
not be the most effective strategy in facilitating task decomposition for this task.
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Fig. 6. (left) Fitness of individual expert networks and the entire control system
(ETDN, 2 expert nets.) averaged over 1000 simulations. (right) Expert Network activity
and overall system fitness for a BRL (with 16 expert networks).

The ETDNs outperform non-emergent network architectures for the more
complex 3 x 3 tiling formation task (regardless of the activation function used).
Analysis of a typical solution (for ETDN with 2 expert nets) suggests the expert
networks have specialized since the individual fitness performance of the net-
works is quite low (Fig. 6). It appears the decision neuron arbitrates among the
expert networks not according to ‘recognizable’ distill behaviors but as a set of
emergent proximal behaviors (organized according to proximity in sensor space)
[11].

Although conventional network architecture can perform limited task decom-
position, (evident from solutions to the 3x 3 tiling formation task), this process is
more prone to spatial crosstalk [9] resulting in slower evolutionary performance.
For the ETDNSs, it appears, the task is distributed over several expert networks
resulting in fewer hidden neurons being used as feature detectors within each
network, thus reducing the overall effect of spatial crosstalk. The decision neu-
rons within the BRL architecture act more ‘independently’ when selecting an
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expert network than the BDT network. We suspect this characteristic, in addi-
tion to the fewer number of decision neurons for the BRL network improves the
ability to select suitable expert networks. This is evident from Fig. 5, where the
BDT with 4 expert networks evolves slower than a comparable BRL network.

Much like biological nervous systems, the larger BRL architecture outper-
formed (or performed as fast as) the smaller ones (evident after about 80 gen-
erations). It is hypothesized that by increasing the number of expert networks,
competition among candidate expert networks is further increased thus improv-
ing the chance of finding a desired solution. However, as the number of expert
networks is increased (beyond 16), the relative improvement in performance is
minimal, for this particular task.

Table 1: Success rate of population best out of 120 simulations (generation 200)
scaled up to a 100 x 100 world (76 robots, 1156 blocks) after 107 timesteps

. % Successful % Batch
Architecture -
Epochs Variance
Non-Emergent (Sigmoid) 0.0 -
Non-Emergent (Modular) 27.0 0.2
ETDN (2 Expert Nets., Modular) 44.5 22
BRL (16 Expert Nets., Modular) 70.2 0.4

Fig. 7. Simulation snapshots taken after 0, 100, 400 and 410 timesteps using a evolved
solution for the 2 x 2 tiling formation task on a 11 x 11 world (11 robots, 36 blocks).
The robots reach a consensus and form a ‘perfect’ tiling pattern after 410 timesteps.

The larger BRL network solutions generally evolve the ability to limit the
number of expert networks used (see Fig. 6 for a typical solution). The other
expert networks remain dormant throughout the simulations. The ability to
limit the number of expert networks used for task decomposition is particularly
advantageous, since ‘over segmenting’ the task into subtasks would result in
over-fitting. Minor differences in fitness performance and ‘success rates’ for the
19 x 19 training world is ‘magnified’, once we scaleup to a larger problem size
(100 x 100 world). This is where our ETDN and in particular BRL architectures
is more advantageous over conventional network architectures (see Table 1).
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Fig. 7. Effect of sensor error on evolved controllers (population best at Generation
200) for the 3 x 3 tiling pattern formation task (16 x 16 world, 11 robots, 36 blocks, after
3000 timesteps) averaged over 1000 simulations. (A) BRL (16 Expert Nets, Modular),
(B) ETDN (2 Expert Nets), (C) Non-Emergent Net. (Modular), (D) Non-Emergent
Net (Sigmoid).

We measure the robustness of the solution by measuring the fitness perfor-
mance of the evolved controllers under a unique situation (by introducing sensor
error) not encountered during evolution. The ETDN architectures tend to out-
perform the nonemergent architectures for a sensor error of below 10%. Beyond
10% sensor error, the net effect on all the controllers compared is drastic, in-
dependent of the controller used. It appears the ability of the ETDN to limit
the number of expert networks used for task decomposition limits over fitting
amongst the networks and reduces the effect of noisy/spurious sensor input.
Larger ETDNs, in particular the BRL (with 16 expert networks) have a ten-
dency of evolving richer solutions that can better handle unique situations not
encountered during training

7 Conclusion and Future Work

A scalable mechanism for emergent task decomposition using artificial neural
networks and evolutionary algorithms is presented in this paper. Unlike rein-
forcement learning techniques, only a global fitness function is specified (un-
supervised) and the network is able to decompose a complex task into sim-
pler tasks through self-organization. Emergent Task Decomposition Networks
(ETDN) evolve faster than non-emergent architectures and produce more desired
solutions for complex tasks. It is interesting to note that much like biological ner-
vous systems, larger BRL architectures tend to evolve faster than comparable
smaller architectures. We are currently planning to compare the performance of
our ETDN architecture with other supervised task decomposition methods for
potential multirobot control tasks such as robotic soccer, mining and surface
exploration.
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