An Adaptive Diploid Evolutionary Algorithm for
Floating-Point Representations in Dynamic
Environments

A. Sima Etaner-Uyar

Istanbul Technical University, Department of Computer Engineering
TR-34469 Maslak Istanbul, Turkey

etaner@cs.itu.edu.tr

Abstract. Many flavors of different EA approaches have been suggested
in literature to address various requirements that arise when the envi-
ronment is dynamic. One such line of research focuses on using memory-
based techniques. However, their use is very limited and they are only
considered to be advantageous when the environment periodically re-
turns to previously visited states. In addition, most of these approaches
require a change detection mechanism to adapt and their performance
partly depends on an accurate detection mechanism. In this study, an
implicit memory-based approach for floating-point representations is in-
troduced.. A technique similar to estimation of distribution algorithms is
used to automatically adapt the population to the change. This approach
aims at addressing some of the deficiencies reported for memory-based
approaches and it requires no change detection mechanism to trigger the
adaptation process. The Moving Peaks Benchmark is used in the exper-
iments to show the desired properties of the proposed approach. Prelim-
inary experimental results are promising and promote further study.

1 Introduction

Evolutionary algorithms (EA) have been applied to a diverse set of problems.
Most of the published work on EAs mainly focus on stationary environments.
However, recently an increasing interest in applying EAs to dynamic environ-
ments can be seen paralleled by the increase in number of papers published on the
topic. Many flavors of different EA approaches have been suggested in literature
to address various requirements that arise when the environment is dynamic. A
detailed survey of the EAs suggested for use in dynamic environments can be
found in [1], [4] and more recently in [5].

When designing efficient EAs for dynamic environments, several aspects of
the change need to be considered. These have been categorized in [4] as the sever-
ity of the change, the frequency of the change, the predictability of the change
and the cycle length / cycle accuracy of the change. Each different aspect of
the change has distinct properties which may form a basis in the design of a
specialized EA approach, but the need to preserve diversity in the population is

a key requirement for all. Loss of diversity is one of the main reasons why tradi-
tional EA approaches do not perform so well in dynamic environments. The EA
approaches in literature that address diversity issues from different viewpoints
can roughly be grouped as those using standard diversity preservation tech-
niques such as sharing or crowding, those incorporating some form of a genetic
memory and those that use multiple populations or other forms of parallel EAs.
There are not many studies that thoroughly compare all of these approaches.
One such recently published study [5] focuses on comparing several memory-
based techniques with a multi-population approach. The results of the empirical
comparisons show that memory-based techniques have many deficiencies when
coping with the different aspects and requirements of a dynamic environment.

Much of the work proposed for dynamic environments rely on detecting the
change instance to trigger the extra steps to cope with the change and their per-
formance partly depends on an accurate detection mechanism. A trigger mecha-
nism that produces too many “false-positives” will cause the algorithm to perform
the extra steps even when there is no actual change in the environment. Since
these steps mostly involve some form of a diversity increasing mechanism, ap-
plying them when the environment has not changed disrupts the ongoing search
process and degrades performance. One such observation can be seen in [13]
where the authors report that when the change frequency is low, the occurrence
of the “false-positives” increase, possibly leading to a poorer performance. The
memory-based techniques used for comparisons in [5] require some form of a
detection mechanism to trigger the change, however the detection mechanism
has not been explored in the paper. To avoid the performance issues caused as
a result of faulty triggers, it would be better to have an approach that adapts
automatically when change occurs without requiring an extra effort to detect
the change.

In this study, an implicit memory-based approach for floating-point repre-
sentations is introduced.. A technique similar to estimation of distribution algo-
rithms (EDA) [11] is used to automatically adapt the population to the change.
This approach aims at addressing some of the deficiencies reported for memory-
based approaches and it requires no change detection mechanism to trigger the
adaptation process. A floating-point, diploid representation of individuals is used
to provide the necessary diversity. Diploidy is traditionally regarded as being an
implicit memory mechanism, however in this study it is mainly used as a source
of genotypic diversity. A genotype to phenotype mapping scheme that automat-
ically adapts itself based on the current weighted averages of the gene values
of the population is implemented. This genotype to phenotype mapping mecha-
nism can be categorized as being adaptive [8] based on the fact that adaptation
is done through feedback obtained directly from the ongoing search process. This
approach will be referred to as DECAF (Diploid Evolutionary Computing with
Adaptation for Floats) for the rest of the paper. Experimental runs using the
Moving Peaks Benchmark are performed. This benchmark for dynamic environ-
ments was first introduced in [2] and its source code can be downloaded from
[22]. The preliminary results obtained show that in its current form DECAF is

comparable in performance to the best memory-based algorithm reported in [2]
and in [5], but unlike similar algorithms it does not require any change detec-
tion. These promising results promote further study to enhance the automatic
adaptation mechanism to reach a better performance comparable to that of the
multiple population approach introduced in [3] and used for comparisons in [5].

This paper will be organized as follows: In section 2, a survey of memory-
based approaches for dynamic environments will be given and their known de-
ficiencies will be discussed. In section 3, the proposed approach DECAF will
be introduced. Experimental results to explore the properties and performance
of DECAF in detail will be presented in Section 4. Section 5 will conclude the
paper and provide possible directions for future work.

2 Memory-Based Evolutionary Algorithms for Dynamic
Environments

Memory-based approaches have been widely used in applying EAs to dynamic
environments. Memory has been incorporated into an EA in two ways: as implicit
memory through redundant representations or as explicit memory through using
external memory to store / retrieve individuals. Introduction of a form of memory
into the EA is especially useful when the change in the environment exhibits a
periodic nature and returns to old states where previously found good solutions
become favorable again.

For introducing implicit memory, redundant representations implemented as
multiploid chromosomes with some form of a domination mechanism has been
used in literature. The most known approaches that fall into this category are
discussed in [7,9,10,12,14,15,16]. In [12], the authors compare two state-of-the-
art diploid approaches with a simple hypermutation scheme [6] in which the
mutation rate is increased for a predefined number of generations when change
occurs. The diploid approaches chosen for comparisons are the Ng-Wong ap-
proach [14] and the additive diploidy approach [15]. In the Ng-Wong approach
each individual has a diploid chromosome structure where each gene can have
four different alleles: dominant and recessive 0 and also dominant and reces-
sive 1. The phenotype of an individual is determined based on the dominance
characteristics of the two corresponding genes for each location. In the additive
diploidy approach, individuals again have a diploid chromosome structure where
each gene can have several allele values each of which is assigned a numeric value.
The phenotype is determined using an additive technique. For each locus on the
phenotype, the corresponding values of the alleles are added. If the sum exceeds
a threshold, the phenotype becomes 1, otherwise it becomes 0. The additive
diploidy is easily extended to having more than two chromosomes. In [12], as a
result of the preliminary experiments, the authors conclude that a dominance
change is required for better performance and they modify both approaches to
incorporate the required mechanism. In the Ng-Wong approach, when change
occurs, the dominance characteristics of all alleles are inverted, e.g. a dominant
1 becomes a recessive 1. In additive diploidy, when change occurs, the allele

values at each locus is either demoted or promoted depending on the value of
the corresponding allele on the phenotype. The results obtained using the two
modified diploid approaches confirm the fact that implicit memory (through
diploid chromosomes) is useful when the environment oscillates between two op-
tima. However when change occurs randomly, both diploid approaches fail and
a simple hypermutation scheme is found to be more useful.

For explicit memory, some different approaches have been suggested in lit-
erature. Most of these rely upon storing some of the current information for
inserting into the population in later generations after the environment changes.
A detailed survey of these approaches can be found in [1], [4] and more recently
in [5]. In [2], design issues of explicit memory approaches are discussed and a
new approach that incorporates the advantages of using a memory together with
a mechanism that has a similar effect to a random restart when change occurs
is proposed. In the study, the population is divided into two sub-populations: a
search population and a memory population. The search population is respon-
sible for keeping the diversity in the population, finding new good solutions and
storing them in memory and is randomly re-initialized when a change occurs.
The memory population is responsible for remembering previously found good
solutions. They experiment with different strategies for deciding which individ-
uals to store in memory and which individuals to replace later when individuals
are retrieved from the memory population. The experimental results obtained
confirm that memory is useful for periodic dynamics in the environment and
show that some method for keeping diversity within the population is required
along with memory for better performance. The authors also present some open
questions for future work.

3 The Proposed Approach - DECAF

As has been discussed previously, memory-based approaches have a limited use
in which they are advantageous over other approaches. When the environment
visits previous states, a memory becomes useful in adapting to the change and
remembering old solutions, but when the environment changes randomly, the
memory property may guide the population toward wrong areas in the search
space and prevent discovery of new good solution candidates. This implies that
it is also very important to have some form of a diversity preserving technique
along with memory to improve performance. Most of the proposed methods in
literature for achieving this, require that change is known by the EA to re-
introduce diversity. Usually most papers either assume that change is explicitly
made known to the EA or they use some form of a mechanism to detect the
change. In some cases, it is realistic to assume that change is explicitly made
known to the system. For example in a scheduling environment, if a new job
arrives or a job leaves or a new machine is added or a machine is removed, it
is usually known by the system and no detection is required. However in most
problems, this assumption will not be realistic. Change has to be detected by
the system. As has been previously mentioned, problems with detecting the

change also affect the performance of the EA. Acting on “false-positives” usually
degrades performance. Furthermore, in cases where the change occurs in the
constraints rather than the problem itself, it is even harder to detect this change
correctly, especially when the constraints become less tighter and the current
individuals are still feasible but no longer good solution candidates.. So it is
clear that an approach that does not need to know when change occurs would
not suffer from the disadvantages of a weak detection mechanism.

DECAF has a diploid chromosome structure with real valued genes. Each
individual has two chromosomes forming the genotype of the individual. The
characteristics that are expressed, i.e. the phenotype, are obtained through a
dominance mechanism. To the best of the author’s knowledge, no diploidy with
a dominance mechanism has been previously suggested in literature for floating
point representations. Of course it is possible to use the existing approaches for
binary encodings by representing the real valued genes using a binary or a gray
coding; however this method will not be very efficient, first because of redundant
codes due to the required number of bits to represent the numbers in the allele
value range and second due to the limited fixed precision to represent the real
valued genes with bits.

In DECAF, the first and second chromosomes of individuals are treated sep-
arately. A global array is used for genotype to phenotype mapping. This array
keeps the dominance probabilities of the alleles on the first chromosomes of
the individuals over the alleles on the second chromosomes To determine these
probabilities, first of all weighted averages of the allele values at each locus are
calculated for each generation using Eq. 1 where A; shows the weighted average
of the allele values at the ith locus, p;; is the phenotypic value at the th locus
of the jth individual in the population and f; is the fitness of the jth individual.

A; = M, ji=1,2,...,PopSize (1)
Ej fj

An allowed error percentage (err) is defined for the algorithm. A weighted
proportion is calculated to determine the dominance probability of the alleles
on the first chromosomes. The phenotypic values of those alleles that are within
the neighborhood of the weighted average for that locus (defined by the error
percentage) are multiplied by the fitnesses and are summed. This sum is divided
by the total fitness of the population to determine the dominance probability of
the alleles on the first chromosomes for that locus. This procedure is given in
the pseudo-code in Fig. 1.

For each locus, when determining the phenotype of an individual, if the allele
value of the first chromosome for that locus is within the allowed error limits,
then it is expressed in the phenotype with a probability. This probability is given
by the dominance vector corresponding to that locus. Otherwise the allele value
on the second chromosome is expressed. If both alleles on the two chromosomes
are within the allowed error limits or if both are not, then either one is selected
randomly with equal probability.

begi n

Total Sum = Cal cul ate_Total _Fi tness();
Partial Sum = 0;
for i=0 to ChronpsonelLength

begin
for j=0 to Individual Count
begi n
if (Ali]-Ali]* err) <p[j.,i] < (Ali]+A[i]* err)
Partial Sum = Partial Sum+ (p[j,i]l*f[j]);
end
Domi nance[i] = Partial Sum/ Total Sum
end
end

Fig. 1. Algorithm for calculating dominance probabilities

Gaussian mutation is used for the mutation step on the genotype. The alleles
on the first chromosomes of all individuals are mutated at a rate of p,,; and the
alleles on the second chromosomes have a mutation rate of p,,2. Both mutation
rates are taken as the standard deviations of the normal distribution with mean
0. The first chromosomes will be used to exploit promising areas in the search
space and the others will be responsible for exploration. To achieve this p,,; is
chosen to be smaller than p;,2. This causes smaller changes in the alleles on the
first chromosomes and bigger changes in the alleles on the second chromosomes as
required by the designated roles of each chromosome. During the reproduction
phase, cross-over occurs between the corresponding chromosomes of the pairs
separately, i.e. the information carried on the first chromosomes and on the
second chromosomes are not mixed. The mutation scheme combined with the
domination mechanism, causes the algorithm to search for solutions close to
the location given by the weighted averages of the current population during the
times when the environment is stationary. When the environment changes, due to
the difference in the new fitness values of the individuals, the weighted averages of
the population change too. As a result, the allele values on the first chromosomes
may no longer be within the error limits around the weighted averages. This
causes the alleles on the second chromosomes to be expressed. Since these alleles
are typically mutated at higher rates, this enables the population to jump in
the search space. This adaptation is automatic and does not require any change
detection mechanism.

This domination mechanism is an extension of a previous approach proposed
by the author in an earlier work [17,18] for binary representations and later
extended to non-order based multi-allelic representations in [19]. In the binary
case, when determining the phenotype, the genotype elements corresponding to
that location may either be equal or different. When the two alleles for the genes
on the two chromosomes are the same, the corresponding phenotype equals that
allele but in the case where they are different, a method to determine the pheno-

typic value is needed. In this implementation, alleles 1 and 0 are initially equally
dominant. However, through generations the dominance factors for these alleles
are modified. To define the probability of an allele being expressed, an array of
real numbers in the interval [0.0,1.0] is used. The length of the array is the same
as the chromosome length. Each value on the array shows the domination factor
of the allele 1 over the allele 0 for the corresponding location on the chromo-
somes. The domination factor for an allele is interpreted as the probability of it
being expressed in the phenotype. The domination array changes along with the
individuals through generations and is calculated using Equation 2.

>ipijx fj
dom; = =2 ———
ijj

where p;; is the phenotypic value of the jth individual at the ith location, f;
is the fitness value of the jth individual, length is the chromosome length and
size is the population size. Equation 2 is evaluated at the end of each generation
using the phenotype and fitness values of the individuals in that population. So
the dom; value will be higher if individuals with the allele 1 in the ith location
have higher fitnesses compared to those that have allele 0. Both chromosomes are
mutated at very high rates allowing for a high level of diversity on the genotypic
level. This approach has been tested against state-of-the-art diploid representa-
tions with domination mechanisms in [20] and have been shown to outperform
them especially when the change in the environment occurs randomly.

The domination mechanism in both the binary and integer cases as well as
the floating point case is based on using the information represented by the
current population. In that sense, the mechanism is similar to estimation of
distribution algorithms [11] when guiding the search on the phenotypic level.
However, since preserving diversity in dynamic environments is very important,
the diploid chromosome structure is used to provide this. Historically, diploid
representations have been used to remember previous good solutions. In DE-
CAF, the memory property is not emphasized. In this sense, DECAF is similar
to the explicit memory approach presented in [2] where there are two popu-
lations, one for searching different areas of the search space and the other for
keeping a record of found good solutions. The second chromosome in the diploid
structure provides the exploration feature while the first chromosome tries to
exploit current good solutions. The major difference between both approaches is
that in DECAF, adaptation is automatic while for the explicit memory approach,
adaptation depends on the detection of the change.

1=1,2,..,length j=1,2,..size (2)

4 Experiments

The same experiments as in [5] are carried out to show the performance of
DECAF. The Moving Peaks Benchmark (MPB) first introduced in [2] and used
in the experiments in [5] is chosen for the tests in this study. The MPB can
be downloaded from [22]. For the tests, the cone function with the default base
function is used. Peaks are changed every 5000 evaluations in height, width

and location. For all the experiments, unless otherwise stated, the MPB default
parameter settings given in Table 1 are used.

Table 1. Default parameter settings for the MPB used in the experiments

| Parameter | Value |
change frequency [5000 evaluations
shift vector length (s) 1.0
lambda 0.5
number of peaks 10
number of dimensions 5
dimension value range [0, 100]
height severity 7.0
width severity 0.01
height (max,min,std) 70,30,50
width (max,min,std) 7.0,0.8,1.0
random number seed 1

The results are reported based on 50 runs of all the programs. Plots of the
offline error and the percentage of peaks covered on the genotypic level through
generations, all averaged over 50 runs are given. Graphs are given as error bars
where the average and standard deviation of the 50 runs will be plotted.

Offline error is defined in [5] as the average current error over all time steps.
Current error is the difference between the fitness of the current best individual
(since last change) and the actual optimum. Offline error is calculated as in
Eq. 3.

T
e*(T) = %Zet where e; = opt(t) — frest(t) (3)
t=1

The population consists of 100 individuals which are initialized randomly.
Each individual has a diploid representation with real valued genes. Genera-
tional replacement with an elitism of one individual per generation is used. For
each generation, the best individual from the previous generation replaces the
worst individual in the current generation if it has a higher fitness in the cur-
rent environment. Fitness values of the individuals are calculated based on their
phenotypes but the variation operators act directly on the chromosomes, i.e. the
genotype. Gaussian mutation is used with standard deviations given as p,,; = 0.2
for the first chromosomes and as p,,2 = 10 for the second chromosomes. The val-
ues of p1 and py,2 are determined empirically to give good performance. Each
dimension represented by each gene takes on values between 0 and 100. In the
normal distribution, 95% of the values are within 1.96 standard deviations of
the mean. So a choice of 10 for the second mutation rate should provide an
acceptable amount of diversity. Two-point cross-over between the first chromo-

somes and also between the second chromosomes of reproducing pairs is used
each with a rate of p. = 0.6 where the two cross-over locations are selected ran-
domly with equal probability for all loci. For mating pool selection, tournament
selection with tournament sizes of two is used. All programs are run for a total
of 1000 generations each. Since there are 100 individuals in the population, this
means that change occurs every 50 generations. For each test case, the EA starts
with a different random number seed for the 50 runs whereas the same seed is
used for the MPB to obtain the same environment for all runs of the algorithm.
For the EA implementation, the GNU Scientific Library [21] implementations
of the random number generators and the normal distribution is used with the
Mersenne-Twister random number generator chosen to sample from the uniform
distribution. For the MPB, to make results comparable with those reported in
previous studies, the random number generators included in the benchmark are
used.

In [5], the experiments consist of three parts. In the first part, the effect of
the change severity is explored. In the second part, the effect of recurrence of
optima is tested. And in the final part, the effect of increasing the number of
peaks is explored. To be able to make comparisons, the same set of experiments,
explained in the following subsections, are performed in this study too. In all
experiments, unless otherwise stated, all parameters of the MPB are as given in
Table 1.

To test the effect of the change severity, the length of the shift vector in the
MPB is varied between 0 and 3. The offline error at the end of 1000 generations,
averaged over 50 runs can be seen in the plot in Fig. 2. The percentage of peaks
covered at all generations by the genotype space of the populations, averaged
over 50 runs, for a shift vector of length s = 1.0, is given in Fig. 3. The offline
error plot in Fig. 2 is comparable to the one given in [5] for the explicit memory
approach and shows similar performance with different change severity levels.
So it can be said that performance is not highly dependent on the severity
of the change. In Fig. 3, the plots for the percentage of peaks covered on the
genotypic level is given. It can be seen from this figure and Fig. 2 that while
the percentage of peaks covered on the genotypic level is not very high, the
adaptation mechanism is sufficient for keeping a moderately low offline error
and this remains consistent over different change severity levels.

To test the effect of recurrence, the value of the lambda parameter in the
MPB is varied between 0 and 1. Increasing the value of lambda will make the
direction of the move more dependent on the current direction, making recurring
optima less likely. In the previous test case, lambda was chosen as 0.5, causing
the peaks to move in a random direction at each change instance. The offline
error plot can be seen in Fig. 4. The performance of DECAF is again very similar
to the explicit memory approach plot given in [5]. It should be noted that the
offline performance is not affected too much from the selection of lambda. This
supports the fact that the memory feature of diploidy works together with the
adaptation and diversity preserving mechanisms to be able to cope with different
dynamics as represented by different values of lambda.

To see the effect of changing the number of peaks, the number of peaks
parameter in the MPB is varied between 10 and 200. The offline error plot can
be seen in Fig. 5 and the percentage of peaks covered on the genotypic level for
10, 50 and 175 peaks can be seen in Fig. 6. It can be seen that even though the
percentage of peaks covered by the genotype decreases as the number of peaks
are increased, the offline performance is not affected too much.

ercent of Peaks Covered

Shiftvector length ()) 100 200 300 400 500 600 700 800 900 1000

Fig. 2. The effect of increasing Fig. 3. Percentage of peaks covered
the shift vector length (s) by genotype at s=1.0 and 10 peaks

6s
0 o1 02 03 04 05 06 07 08 09
lambda

Fig. 4. The effect of increasing lambda

ent of Peaks Covered

! by

65
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Fig. 5. The effect of increasing Fig. 6. Percentage of peaks covered
the number of peaks by genotype at 10, 50 and 175 peaks

5 Conclusion and Future Work

An adaptive evolutionary algorithm for dynamic environments, using diploid
chromosomes with a floating-point encoding and an adaptive genotype to phe-
notype mapping mechanism is introduced in this study. Through experiments, it
is found to perform similarly to an explicit memory approach which was shown
to perform better than other memory-based approaches in [5]. As has been re-
ported in [5], memory-based approaches have a very limited use in dynamic
environments but the addition of a diversity maintaining mechanism seems to
improve performance. However, as the experiments in that study also indicated,
currently multiple population approaches perform much better than the best
memory-based approach tested. In this study, DECAF is shown to reach the
performance of the explicit memory approach reported in that study, but it too
is not able perform as well as the multi-population approach. Even though they
exhibit similar performance characteristics, DECAF is better than the explicit
memory approach of [5] because adaptation in DECAF is automatic and thus
performance will not be degraded by possible “false positives” generated by the
change detection mechanism.

Even though this study reports the preliminary results of DECAF, these
results are quite promising and promote further study. In this study, parameter
settings, especially the mutation rates of both chromosomes, have been done
empirically to provide good performance. This should be further explored to
test the dependency of the performance on the choice of parameters. A better
adaptation mechanism will possibly be able to provide a more robust solution.

The results of this study show that an approach similar to estimation of
distribution algorithms (EDA) provides promising adaptation properties when
used along with a diversity maintenance mechanism. So it seems a worthwhile
future work to explore EDAs in greater depth to improve the performance of
DECAF. It also may be useful in obtaining better performing EA implementa-
tions if EDAs can be incorporated into multi-population approaches to improve
their convergence properties during stationary periods.

References

1. Branke J., “Evolutionary Algorithms for Dynamic Optimization Problems - A Sur-
vey”, Technical report No. 387, AIFB Institute, University of Karlsruhe - Germany,
(1999).

2. Branke J,. “Memory Enhanced Evolutionary Algorithms for Changing Optimiza-
tion Problems”, in Proceedings of the Congress on Evolutionary Computation 1999,
pp. 1875-1882, IEEE, (1999).

3. Branke J., Kaussler T., Schmidt C., Schmeck H., “A Multi-Population Approach to
Dynamic Optimization Problems”, in Proceedings of Adaptive Computing in design
and Manufacturing 2000, pp. 299-308, Springer, (2000).

4. Branke J., Evolutionary Optimization in Dynamic Environments, Kluwer, (2002).

5. Branke J., Schmeck H., “Designing Evolutionary Algorithms for Dynamic Opti-
mization Problems”, in Tsutsui S, Ghosh A. (eds) Theory and Application of Evo-
lutionary Computation: Recent Trends, pp. 239-262, Springer, (2003).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

. Cobb H. G., “An Investigation into the use of Hypermutation as an Adaptive Oper-

ator in Genetic Algorithms having a Continuous, Time-Dependent Non-Stationary
Environments”, Technical Report No. AIC-90-001, Naval research Laboratory,
(1990).

. Collingwood E., Corne D., Ross P., “Useful Diversity via Multiploidy”, in Proceed-

ings of AISB Workshop on Evolutionary Computation, (1996).

. Eiben A. E., Hinterding R. , Michalewicz Z., “Parameter Control in Evolutionary

Algorithms”, IEEE Transactions on Evolutionary Computation, Vol. 3, No.2, pp.
124-141, IEEE, (1999).

. Greene F., “A Method for Utilizing Diploid/Dominance in Genetic Search”; in

Proceedings of the First IEEE Conference on Evolutionary Computation, (1996).
Hadad B. S., Eick C. F., “Supporting Polyploidy in Genetic Algorithms using
Dominance Vectors”, in Proceedings of the Sixth International Conference on Evo-
lutionary Programming, Lecture Notes in Computer Science Vol. 1213, Springer,
(1997).

Larranaga P., Lozano J. A., Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation, Kluwer, (2001).

Lewis J., Hart E., Graeme R., “A Comparison of Dominance Mechanisms and
Simple Mutation on Non-Stationary Problems”, in Proceedings of Parallel Prob-
lem Solving from Nature, Lecture Notes in Computer Science Vol. 1498, Springer,
(1998).

Morrison R. W., De Jong, K. A., “Triggered Hypermutation Revisited”, in Pro-
ceedings of the Congress on Evolutionary Computation 2000, pp. 1025-1032, IEEE,
(2000).

Ng K. P., Wong K. C., “A New Diploid Scheme and Dominance Change Mechanism
for Non-Stationary Function Optimization”, in Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, (1995).

Ryan C., “The Degree of Oneness”; in Proceedings of the 1994 ECAI Workshop on
Genetic Algorithms, Springer, (1994).

Smith R. E., Goldberg D. E., “Diploidy and Dominance in Artificial Genetic
Search”, Complex Systems, Vol. 6, pp. 251-285, (1992).

Uyar A. S., Harmanci A. E., “Investigation of New Operators for Diploid Genetic
Algorithm”; in Proceedings of SPIE: Application and Science of Neural Networks,
Fuzzy Systems and Evolutionary Computation II, (1999).

Uyar A. S., Harmanci A. E., “Preserving Diversity through Diploidy and Meiosis for
Improved GA Performance in Dynamic Environments”, Lecture Notes in Computer
Science Vol. 2457, pp. 314-323, Springer, (2002).

Uyar A. S., Harmanci A. E., “An Adaptive Domination Map Approach for Multi-
Allelic Diploid Genetic Algorithms”, Genetic and Evolutionary Computation Con-
ference - GECCO 2003. Late Breaking Papers, pp. 291-298, (2003).

Uyar A. S., Harmanci A. E.,”Comparison of Domination Approaches for Diploid
Binary Genetic Algorithms”, Application and Science in Soft Computing: Advances
in Soft Computing, pp. 75-80, Springer, (2004).
http://www.gnu.org/software/gsl/ : GNU Scientific Library
http://www.aifb.uni-karlsruhe.de/~ jbr/MovPeaks/ : The Moving Peaks Bench-
mark.

