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Abstract. In recent years, complex network models were developed to solve classification and time 

series prediction problems. In this paper, ensemble classifier based on complex network (mainly 

scale-free network) is firstly used to predict protein structural class. For the classifier design, genetic 

programming and particle swarm optimization algorithm are used alternately to evolve the structure 

and encoding parameters. The experimental results validate the good performance of the proposed 

method.   

Introduction 

To predict protein structural class is a very useful, while full of challenging task in protein community. 

With the development of protein science, researchers have known that proteins always manifest their 

functions through the three-dimensional structures, and the amino acid sequence of proteins 

determined their three-dimensional structures. However, the three-dimensional protein structure 

information acquired by people is quite limited due to high computational cost and expensive 

experimental methods such as x-ray crystallography and nuclear magnetic resonance to get them. To 

overcome this, machine learning methods or so-called computer simulating methods are therefore 

emerging as alternative or complementary approaches. The core issue of such approaches is how to 

predict the specific protein structural class type of proteins using their information of amino acid 

sequence. According to the definition by Levitt and Chothia [1], protein structural class can be 

classified into the following four types: (i) all-α that is formed essentially by α-helices, (ii) all-β 

essentially by β-strands, (iii) α/β containing both α-helices and β-strands that are largely interspersed 

in forming mainly parallel β-sheets, and (iv) α+β containing also both of the two secondary structure 

elements that are largely segregated in forming mainly anti-parallel β-sheets. The prediction problem 

can be formulated as a regular multiple-classification problem. Actually many classifiers such as 

Artificial Neural Network (ANN), LogitBoost and Support Vector Machines (SVMs) have been 

applied in prediction of the structural classes of proteins from their amino acid sequence [2, 3, 4, 5]. 

For achieving good performance through these classifiers, a sample protein with good discriminative 

information representing is needed. To deal with this problem, the following five features from 

protein sequences are usually extracted: (i) chemical composition, which describes the global percent 

composition of each group of amino acids in a protein and contains 21 components, (ii) dipeptide 

composition, which is the normalized pair-wise occurrence frequency of the 20 native amino acids 

and consists of a total of 400 descriptor value, (iii) chemical distribution, which describes the 

distribution pattern of the attribute along the sequence and consists of a total of 105 descriptor value, 

(iv) quasi-sequence-order, which consists of a total of 100 descriptor value, and (v) conjoint triad, 

which contains 343 components [6].  

In previous studies, complex network models were evolved to solve classification and time series 

prediction problems [13, 14, 15]. In this paper, a new ensemble classifier based on Complex Network 

(CN) is exploited to predict protein structural class, which has the same structure properties as CN 

(mainly scale-free network), and can be evolved by evolutionary algorithms such as Genetic 

Programming (GP) and Particle Swarm Optimization (PSO). The contributions of this paper includes: 
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(1) the classifier based on complex network is firstly used to predict protein structural class, which 

expands the range of applications of complex network model, and (2) instead of using a single feature 

type for all classes, combining a set of divers and complementary features is adopted.  

The rest of this paper is organized as follow. In section 2, we have discussed some related work; 

the classifier based on complex network and details of combining of features are described in section 

3; in section 4, a case study is reported, and finally the conclusion is given in section 5. 

Related Work 

The background knowledge related to proposed method, i.e. CN, GP and PSO, are briefly described in 

this section respectively. 

CN is well studied in many fields of sciences [7, 8]. Undeniably, one can find that many systems in 

the world can be represented by models of CN such as the Internet, World Wide Web, brain, food 

webs and the network of relationships among people. All of them can be well characterized by 

structures with non-trivial topological features, which consist of nodes or vertices connected by links 

or edges and can not be found in simple networks such as lattices or random graphs. CN has been 

successfully applied to lot of fields such as, the analysis of metabolic and genetic regulatory networks, 

design of robust and scalable communication networks both (wired and wireless), development of 

vaccination strategies for the control of disease, and a broad range of other practical applications. 

Small-world network and scale-free network are the most intensively studied for complex networks. 

For the small-world network, its average number of edges between any two vertices is very small, 

while the clustering coefficient is large. For the scale-free network, its degree distribution follows a 

particular mathematical function called a power law.  

Genetic programming [9] is a branch of genetic algorithm. Rather evolving a linear string as 

genetic algorithm does, genetic programming evolves computer programs which are usually tree 

structure. To evolve ensemble classifier based on complex network, the genetic operators, such as 

crossover and mutation are made some modification. 

PSO is a powerful intelligence technique, motivated by social behavior of bird flocking or fish 

schooling, which was proposed by James Kennedy and Russell Eberhart [10]. A PSO algorithm 

shares many similarities with evolutionary algorithm such as genetic algorithm, in which a number of 

particles representing potential solutions and moving through the problem space are called swarm 

similar to population. During every searching, two important values are record, which are pbi, that is 

referred as the particle’s personal best position, and gb, which is referred to as the swarm’s global best 

position. Iteratively, the positions of all the particles in the swarm are updated and the fitness of the 

new positions of the particles evaluated. The positional update is traditionally done according to Eq. 1 

and Eq. 2. Let xi(t) denote the position of particle i in the search space at time step t and vi(t) denote the 

velocity of particle i. The new velocity is calculated using Eq. 2, as follow,  

vi(t + 1) = vi(t) + c1φ1(pbi(t) - xi(t)) + c2φ2(gb(t) - xi(t)).                       (1) 

Here c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed random number in 

range of [0, 1]. 

The position of the particle is changed by adding a velocity, vi(t), to the current position, i.e. 

xi(t + 1) = xi(t) + vi(t + 1).                                                                   (2) 

In this study, PSO is used to tune the corresponding parameters of a complex network based 

classifier. 
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Ensemble classifier of complex network 

This section will describe how to construct a classifier based on complex network and how to 

ensemble the basic classifiers for achieving improved performance. 

The Description of Complex Network based Classifier. A directed and weighted graph is 

selected for representing a CN based classifier. We use the algorithm described in [11] to initialize a 

classifier (see Fig. 1). While learning the classifier, for any non-input node, i.e. represented by Nodei, 

where i real numbers are randomly generated and used to represent the connection strength between 

Nodei and its adjacent nodes. In addition, two adjustable parameters ai and bi are randomly selected as 

flexible activation function parameters. In the learning process of classifier, the flexible activation 

function is used, which is shown as follow, i.e. Eq. 3, 
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The output of a non-input node, calculated as a flexible neuron. The total excitation of Nodei is 

calculated as Eq. 4, 
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Where xj (j = 1, 2, . . . , n) is the input to Nodei. The overall output of a classifier can be computed by 

depth-first method, recursively. 

 

Fig. 1. An example of classifier based on CN (input nodes are black and the output node is grey). 

    The Optimization of Complex Network based Classifier. Finding an optimal or near-optimal 

complex network is formulated as a product of evolution. In this paper, GP with some modification is 

used to evolve the structure of a CN based classifier, which can be summarized as follows: 

1) Initialization. A population of CN (including the embedded parameters) is randomly 

generated. 

2) Evaluation. Each complex network genotype Pgi of current population is evaluated on the 

given task and assigned a fitness value Fit (Pgi ) according to the defined fitness function, 

i.e. root mean square error. 

3) Crossover. With a certain probability, Pc, using the tournament selection mechanism, i.e. m 

individuals are randomly selected from the population to go through a competition and the 

winner (in terms of fitness) is selected, to select two parents and create two children by 

swapping some vertexes with their adjacent edges between the two parent complex 

network genotypes. Fig. 2 depicts how crossover works. 
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Fig. 2. Crossover (input nodes are node1, node2, node3 and output node is node11) 

4) Mutation. With a probability, Pm, a complex network genotype is selected randomly for 

mutation. Four mutation operators are randomly chosen with the same probability, which 

are developed as follows: 

− Adding one edge: randomly select one node in the complex network and connect it to 

another randomly selected node. 

− Adding one node: add one node and connect it to a selected destination node with a 

preferential attachment function: this function defines the probability that a node in 

network receive a link from a newly inserted node [11]. The analytic form of this function, 

i.e. Eq. 5,  is defined as follow, 
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Where ki is the degree of node i. 

− Deleting one edge: select a random node and delete one of its conjoint edges. 

− Deleting one node: randomly select a non-output node in the complex network and delete 

all of its conjoint edges. 

− Selection. Pair wise comparison is conducted for the union of µ parents and offspring. For 

each individual, q opponents are chosen uniformly at random from all the parents and 

offspring. For each comparison, if the individual’s fitness is no smaller than the 

opponent’s, it receives a selection. Select some individuals out of parents and offspring 

that has most wins to form the next generation. Steps 3-5 are repeated until a new 

population is constructed. If satisfied solution is found, then stop; otherwise go to step 2. 

Parameters Optimization.  For the parameters optimization of a CN based classifier, a number of 

global and local search algorithms that are GA, EP and gradient based learning method can be 

employed. The basic PSO algorithm is selected for parameter optimization due to its fast convergence 

and easy to implementation. 

The General Hybrid Method.  The general procedure of constructing a CN based classifier can 

be described as follow: 

1) Create the initial population (complex network genotype and the corresponding 

parameters randomly); 

2) Structure optimization by GP; 

3) If the better structure is found, then go to step 4, otherwise go to step 2; 

4) Parameter optimization by PSO algorithm. In this stage, the complex network structure is 

fixed, and it is the best genotype taken from the end of run of the structure search. All of 

the parameters encoded in the best genotype formulated a parameter vector to be 

optimized by PSO; 
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5) If the maximum number of PSO search is reached, or no better parameter vector is found 

for a significantly long time then go to step 6; otherwise go to step 4; 

6) If satisfied solution is found, then stop; otherwise go to step 2. 

Classifier Ensemble Scheme.  Five different types of feature are extracted for each protein, i.e. 

chemical composition, dipeptide composition, chemical distribution pattern of the attribute, 

quasi-sequence-order, and conjoint triad. There are usually two ways of using these features, one of 

which is simply concatenating different feature vectors to a super vector, then constructing and 

integrating basic classifiers in the new feature vector space; the second is constructing basic 

classifiers in the different feature vector space separately, then integrating the basic classifiers. 

Considering the difference discriminative power of the five types of feature, simply concatenating is 

inappropriate, so the second method is adopted, in which the voting strategy is chosen when it comes 

to the last integrating stage. We can see it from Fig.3. 

 

Fig. 3. Flowchart of the ensemble classifier based on CN 

Case study 

This section will describe how to construct a classifier based on complex network and how to 

ensemble the basic classifiers for achieving improved performance. 

For comparison, we have used the same dataset with Chu [12], which consists 204 domains: 52 

all-α domains, 61 all-β domains, 45 α/β domains, and 46 α+β domains. The predicting performance of 

classifier is evaluated by the success rate of cross-validation by jackknifing, which is thought the most 

objective and rigorous way in comparison with the other two, which are sub-sampling test and 

independent dataset test. During the process of jackknife test, each protein in the dataset is taken as 

independent test sample and all the corresponding parameters are evolved without using this protein.  

The results of prediction by independently using the five types of features and integrating all of 

them are shown in Table 1. We can see from Table 1, using quasi-sequence-order yields the highest 

success overall rate, 91.7%, due to its combination of chemical composition and the normalized 

occurrence of them. On the contrary, the chemical composition alone gives the worst result which is 

only 73.5%, due to the lack of sufficient information. The eventual result of ensemble classifier based 

CN is 94.1%, which is higher than the other five results due to the efficiently exploiting all the five 

types of feature. 
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Table 1. Summary of success rate using different feature under the jackknife test 

Feature Success rate (%) 

all-α all-β α/β α+β overall 

Chemical composition 80.8 88.5 68.9 50 73.5 

Dipeptide composition 90.4 91.8 86.7 73.9 86.3 

Chemical distribution 76.9 83.6 93.3 45.6 75.5 

Quasi-sequence-order 92.3 95.1 97.8 80.4 91.7 

Conjoint triad 86.5 85.2 91.1 69.6 83.3 

Ensemble of all(our method) 94.2 96.7 97.8 86.9 94.1 

Table 2. Comparison of different methods by the jackknife test 

Method Success rate (%) 

all-α all-β α/β α+β overall 

LogitBoost [6] 90.4 88.5 80.0 73.9 83.8 

Complexity measure factor [6] 82.7 90.2 100 87.0 89.7 

Autocorrelation factor[6] 88.5 96.7 77.8 73.9 85.3 

AAPCA[6] 82.0 97.0 82.0 78.0 85.0 

BTSVM[6] 90.4 100.0 97.8 73.9 91.2 

IDQD[6] 90.4 93.4 100.0 89.1 93.1 

ApEn, hydrophobicity pattern[6] 96.2 98.4 100.0 93.5 97.0 

Best-first searching[6] 92.3 93.4 95.6 78.3 90.2 

Our method 94.2 96.7 97.8 86.9 94.1 

 

In order to compare with other methods, other experimental results on same dataset are listed in 

Table 2, in which the highest Jackknife-tested overall success rate is 97.0%. The result of ensemble 

classifier based on CN is very close to the state-of-the-art one due to the more flexible non-linear 

mapping power achieved by representing with a kind of sophisticated structure. 

Conclusion 

In this research, the ensemble classifier based on CN was used to predict protein structural class, and 

the promising experimental results validate the efficiency of our method. In the evolutionary 

algorithms which are genetic programming and particle swarm optimization are used alternately to 

evolve the structure and parameters of a classifier. We believe that the current research might help to 

open a new avenue to further study the complex networks in theory and application. 
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