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1 INTRODUCTION 
 
Recently, there has been increasing interest in systems that induce first-
order logic programs. In this formalism, domain knowledge represented 
in the forms of first-order relations can be used in the induced programs. 
The task of inducing a logic program can be formulated as a search 
problem (Mitchell 1982) in a hypotheses space of logic programs. Various 
approaches (Quinlan 1990; Muggleton and Feng 1990) differ mainly in the 
search strategy and the heuristics used to guide the search. The search 
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Recently, there have been increasing interests in Inductive Logic 
Programming (ILP) systems. But existing ILP systems cannot improve 
themselves automatically. This paper describes an Adaptive Inductive 
Logic Programming (Adaptive ILP) system that evolves during learning. 
An adaptive ILP system is composed of an external interface, a biases base, 
a knowledge base of background knowledge, an example database, an 
empirical ILP learner, a meta-level learner, and a learning controller. A 
preliminary adaptive ILP system has been implemented. In this 
implementation, the empirical ILP learner performs top-down search in 
the hypothesis space defined by the concept description language, the 
language bias, and the background knowledge. The search is directed by 
search biases which can be induced and refined by genetic programming 
(Koza 1992). 

It has been demonstrated that the adaptive ILP system performs better 
than FOIL, a famous ILP system (Quinlan 1990), in inducing logic 
programs from perfect or noisy training examples. The experimentation 
illustrates the benefit of an adaptive ILP system over existing ILP systems. 
The result implies that the search bias induced by genetic programming 
(GP) is better than that of FOIL, which is designed by a top researcher in 
the field. Consequently, GP is a promising technique for implementing a 
meta-level learning system. The result is very encouraging as it suggests 
that the process of natural selection and evolution can successfully evolve 
a high performance ILP system.  



 

space is extremely large, so strong heuristics are required to manage the 
problem. Most systems are based on a greedy search strategy. They 
generate a sequence of logic programs from general to specific (or from 
specific to general) until a consistent program is found. Each program in 
the sequence is obtained by specializing (or generalizing) the previous 
one. For example, FOIL (Quinlan 1990) applies a hill climbing search 
strategy guide by an information-gain heuristic to search programs from 
general to specific. But these strategies and heuristics are not always 
applicable because the systems may become trapped in local maxima. In 
order to overcome this problem, non greedy strategies should be adopted. 

Genetic algorithms (GAs) are alternative search strategies which 
perform an implicitly parallel search (Goldberg 1989). Genetic algorithms 
perform both exploitation of the most promising solutions and an 
exploration of the search space. Wong and Leung have developed a 
system called Genetic Logic Programming System (GLPS) that employs 
GAs to induce logic programs (Wong and Leung 1994a, 1994b). 

Moreover, existing ILP systems cannot improve themselves 
automatically and this paper describes an Adaptive Inductive Logic 
Programming (Adaptive ILP) system that can evolve during learning 
based on genetic programming (Koza 1992). The next section formulates 
the definitions of inductive concept learning and adaptive inductive logic 
programming. Section three describes a generic top-down ILP algorithm. 
The fourth section presents a meta-level learner that induces search bias. 
Section five delineates the  experimentation and some evaluations of the 
system followed by a conclusion. 
 
2 INDUCTIVE CONCEPT LEARNING AND ADAPTIVE 

INDUCTIVE LOGIC PROGRAMMING 
 
The goal of machine learning is to develop techniques and tools for 
building intelligent learning machines. Machine learning paradigms 
include inductive, deductive, genetic-based, and connectionist learning. 
Multi-strategy learning integrates several learning paradigms. This section 
focuses on supervised inductive concept learning. If U is a universal set of 
observations, a concept C is formalized as a subset of observations in U. 
Inductive concept learning finds descriptions for various target concepts 
from positive and negative training instances of these concepts. 

In machine learning, formal languages for describing observations and 
concepts are called object and concept description languages respectively. 
Typically, object description languages are attribute-value pair 
descriptions and first-order languages of Horn clauses. Concepts can be 
described extensionally or intensionally. A concept is described 
extensionally by listing the descriptions of all of its instances 
(observations). Thus extensional concepts are represented in the object 
description language. On the other hand, intensional concepts are 
expressed in a separate concept description language that permits compact 
and concise concept descriptions. Typical concept description languages 
are decision trees, decision lists, production rules, and first-order logic. 

Inductive concept learning can be viewed as searching the space of 
hypothesis descriptions. A bias is a mechanism employed by a learning 
system to constrain the search for target hypotheses. A search bias 



 

determines how to conduct the search in the hypothesis space while a 
language bias determines the size and structure of the hypothesis space.  

A strong search bias, such as the hill-climbing search strategy, employs 
existing knowledge about the size and structure of the hypothesis space to 
exploit promising solutions of the space, thus it can find the target concept 
quickly. But it may trap the system in a local maximum. A weak search 
bias, such as depth-first and breath-first search, explores the space 
completely; the learner is guaranteed to find the target concept that can be 
represented by the concept description language. Nevertheless, a weak 
bias is very inefficient. In other words, the search bias introduces the 
efficiency/completeness tradeoff into a learning system. 

A strong language bias defines a less expressive description language 
such as the propositional logic. The hypothesis space created by the bias is 
comparatively smaller and the learning can be performed more efficiently. 
But the learner may fail to find the target concept which is not contained in 
the small hypothesis space. A weak bias defines a larger space and thus 
the target concept is more likely to be expressible in the space. The 
disadvantage is that the learner is less efficient. The language bias 
introduces the efficiency/expressiveness tradeoff into a learning system.  

Background knowledge B is declarative prior knowledge that can be 
used by either the search bias to direct the search more efficiently, or the 
language bias to express the hypothesis space in a more natural and 
concise way. Background knowledge plays an important role in relational 
concept learning. Relational concept learning induces a new relation for 
the target concept (i.e., the target predicate) from training examples and 
known relations from the background knowledge. An inductive Logic 
Programming (ILP) system is a relational concept learner. The training 
examples, the hypothesis space and the background knowledge are 
represented in first order Horn clause languages (Muggleton and Feng 
1990). Tradeoffs between expressiveness and efficiency are introduced by 
some additional restrictions on the three languages. The background 
knowledge B provides definitions of known predicates qi which can be 
used in the definition of the target predicate p. It also provides additional 
information to ease the learning. The information includes argument 
types, symmetry of predicates in pairs of arguments, input/output modes, 
rule models, predicate sets, parametrized languages, integrity constraints, 
determinations and any knowledge that can modify the operation of the 
search and language biases. 

An Adaptive Inductive Learning Programming (Adaptive ILP) system is 
an ILP system that can improve itself on the learning capability. It 
maintains various sets of background knowledge and biases. It improves 
itself by modifying its biases and background knowledge. A hypothesis 
space for learning is defined through the concept description language, the 
language bias and the background knowledge. Therefore, by changing the 
language bias and the background knowledge, the size and structure of 
the hypothesis space can be modified accordingly. The search strategy and 
heuristics are changed if the system's search biases are modified. Here, we 
formulate the task of an Adaptive ILP system as follows: 
 



 

Given: 

 -A set E of positive E+ and negative E- training examples of 
  the target predicate p. 
 -A concept description language L 
 -A set of learning biases BIASES 
 -A set of various background knowledge BKs 
 
Find: 

 -A modified set of learning biases BIASES' 

 -A modified set of background knowledge BKs' 
 -A concept definition H for the target predicate p 
  expressible in L such that H is complete and consistent  
  with respect to (w.r.t.) the training examples E and a  

  background knowledge B' in BKs' 

 

 H is complete if every positive example e+ in E+ is covered 

 by H w.r.t. the background knowledge B. i.e. B ∪  H |= e+ 
 

 H is consistent if no negative example e- in E- is covered 

 by H w.r.t. the background knowledge B. i.e. B ∪  H |• e- 

 

The logical organization of our adaptive ILP system is depicted in 
Figure 1. Its components are introduced as follows: 
 

(1) External interface: It provides a user-friendly interface 
between the system and users. It accepts training 
examples, a set BKs of background knowledge, and a set 
BIASES of biases and transfers them through the learning 
controller to the example database, BKbase and biases base 
respectively. The interface also provides commands for 
users to query about the results of an adaptive learning 
task and to directly control the operations of the learning 
controller. 

(2) Biases base: It is a knowledge base that stores all learning 
biases. 

(3) BKbase: It stores various background learning knowledge 
that can be used in inductive learning. Background 
knowledge can be retrieved, added, deleted and modified 
through the interface of BKbase. 

(4) Examples database: It stores the training examples. 
(5) Empirical ILP learner: It induces a logic program from the 

training examples, given a concept description language, a 
specific background knowledge, a search bias and a 
language bias. A search of the hypothesis space can be 
performed bottom-up or top-down. Bottom-up techniques 
start from the training examples and search the space by 
employing various generalization operators. Top-down 
techniques start from the most general concept 
descriptions, and search the space by using various 
specialization operators. Top-down techniques are better 
suited for learning from imperfect examples because a 
large number of data are available in every specialization 
step and the system can employ various statistical 
techniques to decide how to perform the specialization. 
Moreover, top-down search can easily be guided by the 



 

search bias. In section 3, a generic top-down ILP algorithm 
will be described. 

(6) Meta-level learner: It learns search biases, language biases, 
and background knowledge. Search and language biases 
can be represented declaratively or procedurally. Section 4 
describes a meta-level learner implemented in genetic 
programming (Koza 1992) to induce procedural biases. 
The induced definition of the current target predicate is 
stored to facilitate the learning of higher level predicates, 
thus an adaptive ILP system is a closed learning system. It 
can also learn other meta-knowledge such as the 
conditions under which various learning biases and 
background knowledge can be employed. Since the meta-
level learner performs a variety of learning tasks, it is 
implemented as a multi-strategy learning system. 

(7) Learning controller: It is a knowledge-based system that 
controls the empirical ILP learner and the meta-level 
learner. The knowledge used by the learning controller 
can be updated by the meta-level learner. 

 
3 A GENERIC TOP-DOWN ILP ALGORITHM 
 
This section presents a generic top-down ILP algorithm. The algorithm is 
depicted in Figure 2. The algorithm consists of three steps. In the pre-
processing step, missing argument values in training examples are 
handled by assigning default or random values to them. A training 
example will be removed if it has too many missing values. If there are no 
or inadequate negative examples in the training set, they can be generated. 

External Interface

Learning 
Controller

BKbase Biases 
Base

Example 
database

Meta-Level 
Learner

Empirical ILP 
Learner

Data flow

Control flow  
Figure 1. The logical organization of an adaptive ILP system 

 



 

Different ways of creating negative examples have been proposed (Lavrac 
and Dzeroski 1994). 

The second step performs the construction of a program. This step 
employs four local variables: Ecurrent (Current training examples set), 
E'current (Updated training examples set), P (Current program) and P' 
(Modified program). The main component of this step is the covering loop 
which implements Michalski's covering algorithm (Michalski et al. 1986). 
The covering loop construct a program by iteratively executing the 
following sub-steps: 
 

(a) Construct a clause that covers some positive examples in 
Ecurrent. 

(b) Append the clause to the current program P and generate 
a modified program P'. 

(c) Remove all positive examples from Ecurrent which are 
covered by P' w.r.t. the background knowledge B. 

 
The covering loop terminates if the terminating conditions are satisfied. 

A typical condition is that either all positive examples are covered or no 
more improvement can be achieved by searching for a new clause. The 
final step attempts to improve the accuracy of the program induced when 
classifying unseen examples and to simplify the program.  

The covering loop calls the 'Clause-Construct' function which is the core 
of the generic algorithm. The function constructs a clause Cn = T ←   l1, l2, 
..., ln starting from the most general clause C0 = T ←   with an empty 
body. A sequence of clauses C0, C1, C2, C3, .... Cn are generated by a 
number of specialization steps. At each step, the current clause Ci = T←   
l1,l2, ..., li is refined by appending a specific literal lj to its body. A literal lj 
is constructed from the background knowledge B restricted by the concept 
description language L and language bias BIASlang. The language may 
limit lj to be function-free while BIASlang may prevent new variable to be 
introduced in lj. The aim of the procedure is to find a clause which covers 
most positive examples while excludes all or most negative examples. In a 
hill-climbing search, the procedure keeps the current best clause and 
refines it using the estimated best specialization at each step, until the 
stopping condition is satisfied. A hill-climbing 'Clause-Construct' 
algorithm is presented in Figure 3. 



 

The 'Clause-Construct' function calls the 'Find-Extension' function to 
find the extension Ei of the current training examples given the partially 
developed clause Ci = T(X1, X2, ..., Xn) ←   l1, l2, ..., li and the background 
knowledge B. Each training example <x1, x2, ...xn> is a n-tuple where xi, 
1≤ i≤n, are some constants. To find the extension, the function initializes a 
clause C0 = T(X1, X2, ..., Xn), then the literal l1 is added to the body of C0 
to produce a new clause C1. The literal l1 is either of the form Xj = Xk, Xj 
≠  Xk, pm(Y1, Y2, ...,Ysm ) or not pm(Y1, Y2, ...,Ysm ).  

Input: 
Training examples E 
Concept description language L 
Search bias BIASsearch and Language bias BIASlang 
background knowledge B 
Target concept T 

 
Output: 

A program P which contains a set of program clauses. Each  clause 
C ∈ L. 

 
Function ILP(E, L, BIASsearch, BIASlang, B, T) 
 
(1) Pre-processing of the training examples E and producing a 

modified set of examples E': E' := Preprocessing(E). 
 

(2) Let Ecurrent := E
'; 

Let P := {}; 
Repeat 
 -Let C := T ←; 

 -Find a specialization C' of C. This step constructs a  

  clause C' from C by calling Clause-Construct(C,  
  Ecurrent, B, L,  BIASsearch, BIASlang); 
 -If a specialization can be found 

  -Add C' to P to produce a new program P'. i.e. 

   P' := P ∪  {C'}; 

  -Remove all positive examples covered by P' from 

   Ecurrent to get an updated training set E
' 

   E'current := Ecurrent - { positive examples in 

   Ecurrent covered by P
' w.r.t. the background 

   knowledge B}; 

  -Let Ecurrent := E
'
current; 

  -Let P := P' 
  Else 
  -Set the flag No-More-Improvement to true; 
Until 
 The Covering termination criterion is satisfied. i.e. 
 covering-termination(P, No-More-Improvement, Ecurrent, B) 
 returns true; 

 

(3) Post-processing the program P and producing P'. i.e. 

P' := Post-processing(P); 

Return(P'); 

 
Figure 2. A generic top-down ILP algorithm 



 

If the literal contains one or more new variables {NewY1, NewY2, ..., 
NewYk}, the arity of each tuple in the generated training set E1 increases 
to (n + k). E1 can be found by performing a natural join of Ecurrent with 

Input: 
An initial clause C = T← 
The current training examples Ecurrent 
Background knowledge B 
Concept description language L 
Search bias BIASsearch and language bias BIASlang 

 
Output: 

A clause that covers some positive examples in Ecurrent while 
excludes all or most negatives examples in Ecurrent 

 
Function Clause-Construct(C, Ecurrent, B, L, BIASsearch, 
                          BIASlang) 
 
There is a scoring function stored in BIASsearch, save this  
function to scoring;  
 
Repeat 
 -Set BEST to a bad literal such as X = X where X is a  
  variable appearing in the head of the clause; 
 -Set Best-score to 0; 
 -Find the extension Ei of Ecurrent using the clause C w.r.t. 
  B. i.e. Ei := Find-Extension(C, Ecurrent, B); 

 -Let ni
+
 be the number of positive tuples in Ei; 

 -Let ni
−
 be the number of negative tuples in Ei; 

 -Current-information := − log2(ni
+ / (ni

+ + ni
− )); 

 -For all literal l from B that satisfy the constraints  
  imposed by the language L and bias BIASlang 

  -Set C
' = C ∪  {l}; 

  -Find the extension Ei+1 of Ecurrent using the clause C
' 

   i.e. Ei+1 := Find-Extension(C
', Ecurrent, B); 

  -Let ni+1
+

 be the number of positive tuples in Ei+1; 

  -Let ni+1
−

 be the number of negative tuples in Ei+1; 

  -Let the number of positive tuples in Ei that have been  

   represented by one or more tuples in Ei+1 be ni
++

; 

  -Find the score of the literal l by using the scoring  

   function i.e. literal-score := scoring (ni
++

, ni+1
+

, ni+1
−

, 

   Current-information); 
  -If literal-score > Best-score then 
   -BEST := l; 
   -Best-score := literal-score; 
 -If BEST == X=X then 
  -No-More-Improvement := true; 
  Else 
  -Append BEST to the body of C; 
Until Clause-Termination(C, No-More-Improvement, Ecurrent, B) 
      is true; 
 
Post-processing the clause C to find an improvement i.e. 

C' := Find-Improvement(C); 
 

If Acceptable(C') 

 -Return(C'); 
Else 
 -Return(No-Specialization-Can-Be-Found); 

 
Figure 3. A hill-climbing 'Clause-Construct' algorithm 



 

the relation corresponding to literal l1. The process is repeated for literals 
l2, l3, ...li until the extension Ei is found. 

The most important component of the hill-climbing 'Clause-Construct' 
algorithm is the 'scoring' function that estimates the performance of each 
literal. An accurate estimation directs the search towards the global 
maxima while a misleading one traps the system into local-maxima. By 
providing different 'scoring' functions to the generic ILP algorithm, 
various learning algorithms can be generated. The performances of a good 
and a bad learners can be significant different as shown in section 4. 
 
4 INDUCING PROCEDURAL SEARCH BIAS 
 
In this section, genetic programming (Koza 1992) is used in the meta-level 
learner to induce procedural search bias (i.e. the 'scoring' function). GAs 
(Holland 1975) have proven successful in finding optimal points in a 
search space for a wide variety of problems (Goldberg 1989). Genetic 
programming (GP) extends traditional GAs to learn a program composed 
of functions. Koza (1992) demonstrates that populations of computational 
functions can be genetically bred to solve a variety of problems in a wide 
variety of fields. 
 
Primitive Definitions 

 
In order to employ GP to induce the 'scoring' function, a list of terminals 
and primitive functions sufficient to solve the problem must be defined. 
The terminal set T includes the formal parameters of the 'scoring' function 
and the ephemeral random floating point constant , i.e., 
 

T = {ni+1
+ , ni+1

− , ni
+ + , current-information, } 

 
With reference to the algorithms in figures 2 and 3, assume that Ei is the 

extension of current training examples Ecurrent by current clause Ci, ni
+  

and ni
−  are respectively the number of positive and negative tuples in Ei. 

Ei can be extended by using the literal l to Ei+1. ni+1
+  and ni+1

−  are 

respectively the number of positive and negative tuples in Ei+1. ni
++  is the 

number of positive tuples in Ei that have been represented by one or more 
tuples in Ei+1. Current-information is defined as − log2(ni

+ / (ni
+ + ni

− )) . 
The ephemeral random floating point constant  takes on a different 
random floating point value between -10.0 and +10.0 whenever it appears 
in the initial population.  

The function set F includes the arithmetic functions +, -, *, %, protected-
log and Info, their arities are respectively 2, 2, 2, 2, 1 and 2, i.e. 

 
F = {+/2, -/2, */2, %/2, protected-log/1, Info/2} 
 

Typically, the protected division % and the protected logarithm 
protected-log return the quotient and logarithm respectively. However, if 
division by zero is attempted, % returns 1.0. If logarithmic of zero is 



 

evaluated, protected-log returns 0.0. The basic function Info calculates 
− log2(X / (X + Y ))  given X and Y as inputs. 
 
The evolution process 

 
The evolution process of the Adaptive ILP system is depicted in figure 4. 
Firstly, the Biases base is initialized with a population of different 'scoring' 
functions generated randomly using the primitives in T and F. To estimate 
the fitness of a specific 'scoring' function, it is combined with the generic 
top-down ILP learner to produce a specific ILP learner. The performance 
of this ILP learner is then evaluated by using a fitness function. This 
measure is assigned as the fitness of the specific 'scoring' function. GP 
employs crossover, selection, mutation, and other genetic operators to 
generate potentially better functions. The modified functions are stored in 
the Biases base and the whole evolution process iterates until the best 
function is found or no computational resource is available. 
 
The experimentation setup 
 
In this paper, learning curves are frequently used to estimate the 
performances of various learning systems. The example space is divided 
randomly into disjoint training and testing sets. The learner is trained on 
progressively larger portions of the training set and the performance of the 
induced logic program is estimated on the disjoint testing set. This process 
of dividing, training and testing is repeated for 20 trials and the results are 
averaged to generate a learning curve. 

aaAs a running example, we use a traditional problem discussed in the 
literature (Muggleton and Feng 1990). In the problem of learning the list 
predicate member, the data consist of all lists of lengths 0 to 3 defined over 
three constants. The background knowledge B contains definitions of list 
construction predicates: null which holds for an empty list and component 
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Bias Performance 
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Figure 4. The evolution process of the adaptive ILP system 



 

which decomposes a list into its head and tail. The example space contains 
75 positive and 45 negative examples. The training sets contain 20 to 52 
examples, one-half of each training set is positive examples. The testing set 
consists of 45 positive and 15 negative examples.  

 
Fitness calculation 
 
Adjusted and normalized fitness are used as in Koza (1992). They are 
calculated from the raw fitness which is estimated by the fitness function. 
Various fitness functions have been tried and two of them are described 
here. The impact of fitness function on the generality of the evolved 
function is also demonstrated. The problem domain of learning the 
member predicate is used here. 

For the first fitness function, a random set of 24 positive and 21 negative 
examples is used. A specific 'scoring' function is combined with the 
generic top-down ILP learner to produce a specific ILP learner called GP-
ILP hereafter. GP-ILP induces a logic program using the random example 
set. The quality of the induced logic program is evaluated by counting the 
total number of misclassified examples from the same training set. This 
measure is used as the raw fitness of the specific 'scoring' function. Using 
this fitness function, only poor 'scoring' functions have been evolved. The 
learning curve of a poor learner is depicted in figure 5. 

For the second fitness function, the raw fitness is developed in several 
steps. At the beginning of each generation, four instances of the learning 
task are created randomly from the member domain. Each learning task 
has a training and a disjoint testing data. The training set contains 20 
positive and 20 negative examples. For each learning task, a specific GP-
ILP induces a logic program from the training set and the logic program is 
evaluated by counting the number of misclassified examples from the 
testing set. The performance of the GP-ILP is the sum of numbers of 
misclassified examples for all learning tasks. This measure is then used as 
the raw fitness of the corresponding 'scoring' function. This fitness 
function can force the evolution of good 'scoring' functions. The learning 
curve of a good learner is shown in figure 5. 
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5 EXPERIMENTATION AND EVALUATIONS 
 
This section compares the performance of the adaptive ILP system with 
that of FOIL which is a famous ILP system (Quinlan 1990). Standard 
learning tasks in the literature are used in these experiments (Quinlan 
1990; Muggleton and Feng 1990). 
 
The member predicate 
 
The learning curves for this problem are depicted in Figure 6. It is 
interested to find that the adaptive ILP system has higher accuracy than 
FOIL. The difference is significant at 95% confidence interval when the 
training size is less than 36. 

 
The member predicate in a noisy environment 

 
Difference amount of noise is introduced into the training examples in 
order to study the performances of both systems in learning programs in 
noisy environment. To introduce n% of noise into the examples, n% 
positive examples are labeled as negative ones while n% negative 
examples are labeled as positive ones. In this experiment, the percentages 
of introduced noise are 10% (0.1) and 40% (0.4). Their learning curves are 
summarized in figure 7. The adaptive ILP system performs better than 
FOIL at all noise level.  

 
The multiply predicate 

 
In the problem of learning the arithmetic predicate multiply (Muggletion 
and Feng 1990), the data contain integers in the range from zero to ten. The 
background knowledge is composed of definitions for arithmetic 
predicates plus, decrement, zero and one. The example space has 73 positive 
and 1258 negative examples respectively. The training sets consist of 400 
to 500 examples, one-tenth of each training set is positive and the 
remainder is negative. The learning curves for multiply are presented in 
Figure 8. The Adaptive ILP system performs better than FOIL when the 
size of training set is less than 460. The difference is significant at 99.5% 
confidence interval.  



 

 
The uncle predicate 

 
Another traditional testbed for relational learners is the domain of family 
relationships (Quinlan 1990). In this experiment, the uncle predicate is 
induced and the background predicates are parent, sibling, married, male 
and female. The learning curves are presented in Figure 9. 
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Figure 6. Learning curves for the member 
problem 
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Figure 7. Learning curves for the member 
problem in a noisy environment 
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6 CONCLUSION 
 
In this paper, we formulate an Adaptive Inductive Logic Program system 
which is composed of an external interface, a biases base, a knowledge 
base of background knowledge, an example database, an empirical ILP 
learner, a meta-level learner and a learning controller. A preliminary 
implementation of an adaptive ILP system has been completed. In the 
implementation, the empirical ILP learner performs top-down search in 
the hypothesis space defined by the concept description language, the 
language bias and the background knowledge. The search is directed by 
search biases which can be induced and refined by genetic programming. 

It has been demonstrated that the induced bias is better than that of 
FOIL on many standard learning tasks. From these experiments, it can be 
concluded that the Adaptive ILP system has superior learning ability 
compared to FOIL. Since they are different in their search biases only,  the 
result implies that the search bias induced by GP is better than that of 
FOIL for the learning problems. This result is surprising because the 
search biases of the Adaptive ILP system are initialized by a random 
process. These biases are normally poor, but the process of natural 
selection and evolution can successfully evolve a good bias.  

It is important to mention that the search bias is rather general because it 
has reasonable performance on many traditional learning problems using 
the same bias acquired automatically. This paper illustrates that GP is a 
plausible technique for implementing a meta-level learning system. For 
future work, in order to find a general, efficient and effective bias, a large 
number of learning tasks of different kinds, such as the member, append, 
quick sort, ackermann, uncle, and grandfather problems, of various 
characteristics should be used. This adaptive learning approach, though 
computationally intensive, is rather exciting, as it opens up many 
opportunities for creating or improving learning algorithms. 

 
Acknowledgments 
 
The first author is sponsored by a scholarship of the Croucher Foundation. 
 

50 70 90 110 130 150
Training size

0.75

0.8

0.85

0.9

0.95

1

1.05

A
cc

ur
ac

y

Foil
The Adaptive ILP system

 
Figure 9. Learning curves for the uncle problem 
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