

An Adaptive Inductive Logic
Programming System using Genetic
Programming

Man Leung Wong
Department of Computing and
Decision Sciences
Lingnan University, Tuen Mun
Hong Kong
mlwong@ln.edu.hk

Kwong Sak Leung
Department of Computer Science and
Engineering
The Chinese University of Hong Kong
Hong Kong
ksleung@cse.cuhk.edu.hk

1 INTRODUCTION

Recently, there has been increasing interest in systems that induce first-
order logic programs. In this formalism, domain knowledge represented
in the forms of first-order relations can be used in the induced programs.
The task of inducing a logic program can be formulated as a search
problem (Mitchell 1982) in a hypotheses space of logic programs. Various
approaches (Quinlan 1990; Muggleton and Feng 1990) differ mainly in the
search strategy and the heuristics used to guide the search. The search

Abstract

Recently, there have been increasing interests in Inductive Logic
Programming (ILP) systems. But existing ILP systems cannot improve
themselves automatically. This paper describes an Adaptive Inductive
Logic Programming (Adaptive ILP) system that evolves during learning.
An adaptive ILP system is composed of an external interface, a biases base,
a knowledge base of background knowledge, an example database, an
empirical ILP learner, a meta-level learner, and a learning controller. A
preliminary adaptive ILP system has been implemented. In this
implementation, the empirical ILP learner performs top-down search in
the hypothesis space defined by the concept description language, the
language bias, and the background knowledge. The search is directed by
search biases which can be induced and refined by genetic programming
(Koza 1992).

It has been demonstrated that the adaptive ILP system performs better
than FOIL, a famous ILP system (Quinlan 1990), in inducing logic
programs from perfect or noisy training examples. The experimentation
illustrates the benefit of an adaptive ILP system over existing ILP systems.
The result implies that the search bias induced by genetic programming
(GP) is better than that of FOIL, which is designed by a top researcher in
the field. Consequently, GP is a promising technique for implementing a
meta-level learning system. The result is very encouraging as it suggests
that the process of natural selection and evolution can successfully evolve
a high performance ILP system.

space is extremely large, so strong heuristics are required to manage the
problem. Most systems are based on a greedy search strategy. They
generate a sequence of logic programs from general to specific (or from
specific to general) until a consistent program is found. Each program in
the sequence is obtained by specializing (or generalizing) the previous
one. For example, FOIL (Quinlan 1990) applies a hill climbing search
strategy guide by an information-gain heuristic to search programs from
general to specific. But these strategies and heuristics are not always
applicable because the systems may become trapped in local maxima. In
order to overcome this problem, non greedy strategies should be adopted.

Genetic algorithms (GAs) are alternative search strategies which
perform an implicitly parallel search (Goldberg 1989). Genetic algorithms
perform both exploitation of the most promising solutions and an
exploration of the search space. Wong and Leung have developed a
system called Genetic Logic Programming System (GLPS) that employs
GAs to induce logic programs (Wong and Leung 1994a, 1994b).

Moreover, existing ILP systems cannot improve themselves
automatically and this paper describes an Adaptive Inductive Logic
Programming (Adaptive ILP) system that can evolve during learning
based on genetic programming (Koza 1992). The next section formulates
the definitions of inductive concept learning and adaptive inductive logic
programming. Section three describes a generic top-down ILP algorithm.
The fourth section presents a meta-level learner that induces search bias.
Section five delineates the experimentation and some evaluations of the
system followed by a conclusion.

2 INDUCTIVE CONCEPT LEARNING AND ADAPTIVE

INDUCTIVE LOGIC PROGRAMMING

The goal of machine learning is to develop techniques and tools for
building intelligent learning machines. Machine learning paradigms
include inductive, deductive, genetic-based, and connectionist learning.
Multi-strategy learning integrates several learning paradigms. This section
focuses on supervised inductive concept learning. If U is a universal set of
observations, a concept C is formalized as a subset of observations in U.
Inductive concept learning finds descriptions for various target concepts
from positive and negative training instances of these concepts.

In machine learning, formal languages for describing observations and
concepts are called object and concept description languages respectively.
Typically, object description languages are attribute-value pair
descriptions and first-order languages of Horn clauses. Concepts can be
described extensionally or intensionally. A concept is described
extensionally by listing the descriptions of all of its instances
(observations). Thus extensional concepts are represented in the object
description language. On the other hand, intensional concepts are
expressed in a separate concept description language that permits compact
and concise concept descriptions. Typical concept description languages
are decision trees, decision lists, production rules, and first-order logic.

Inductive concept learning can be viewed as searching the space of
hypothesis descriptions. A bias is a mechanism employed by a learning
system to constrain the search for target hypotheses. A search bias

determines how to conduct the search in the hypothesis space while a
language bias determines the size and structure of the hypothesis space.

A strong search bias, such as the hill-climbing search strategy, employs
existing knowledge about the size and structure of the hypothesis space to
exploit promising solutions of the space, thus it can find the target concept
quickly. But it may trap the system in a local maximum. A weak search
bias, such as depth-first and breath-first search, explores the space
completely; the learner is guaranteed to find the target concept that can be
represented by the concept description language. Nevertheless, a weak
bias is very inefficient. In other words, the search bias introduces the
efficiency/completeness tradeoff into a learning system.

A strong language bias defines a less expressive description language
such as the propositional logic. The hypothesis space created by the bias is
comparatively smaller and the learning can be performed more efficiently.
But the learner may fail to find the target concept which is not contained in
the small hypothesis space. A weak bias defines a larger space and thus
the target concept is more likely to be expressible in the space. The
disadvantage is that the learner is less efficient. The language bias
introduces the efficiency/expressiveness tradeoff into a learning system.

Background knowledge B is declarative prior knowledge that can be
used by either the search bias to direct the search more efficiently, or the
language bias to express the hypothesis space in a more natural and
concise way. Background knowledge plays an important role in relational
concept learning. Relational concept learning induces a new relation for
the target concept (i.e., the target predicate) from training examples and
known relations from the background knowledge. An inductive Logic
Programming (ILP) system is a relational concept learner. The training
examples, the hypothesis space and the background knowledge are
represented in first order Horn clause languages (Muggleton and Feng
1990). Tradeoffs between expressiveness and efficiency are introduced by
some additional restrictions on the three languages. The background
knowledge B provides definitions of known predicates qi which can be
used in the definition of the target predicate p. It also provides additional
information to ease the learning. The information includes argument
types, symmetry of predicates in pairs of arguments, input/output modes,
rule models, predicate sets, parametrized languages, integrity constraints,
determinations and any knowledge that can modify the operation of the
search and language biases.

An Adaptive Inductive Learning Programming (Adaptive ILP) system is
an ILP system that can improve itself on the learning capability. It
maintains various sets of background knowledge and biases. It improves
itself by modifying its biases and background knowledge. A hypothesis
space for learning is defined through the concept description language, the
language bias and the background knowledge. Therefore, by changing the
language bias and the background knowledge, the size and structure of
the hypothesis space can be modified accordingly. The search strategy and
heuristics are changed if the system's search biases are modified. Here, we
formulate the task of an Adaptive ILP system as follows:

Given:

 -A set E of positive E+ and negative E- training examples of
 the target predicate p.
 -A concept description language L
 -A set of learning biases BIASES
 -A set of various background knowledge BKs

Find:

 -A modified set of learning biases BIASES'

 -A modified set of background knowledge BKs'
 -A concept definition H for the target predicate p
 expressible in L such that H is complete and consistent
 with respect to (w.r.t.) the training examples E and a

 background knowledge B' in BKs'

 H is complete if every positive example e+ in E+ is covered

 by H w.r.t. the background knowledge B. i.e. B ∪ H |= e+

 H is consistent if no negative example e- in E- is covered

 by H w.r.t. the background knowledge B. i.e. B ∪ H |• e-

The logical organization of our adaptive ILP system is depicted in
Figure 1. Its components are introduced as follows:

(1) External interface: It provides a user-friendly interface
between the system and users. It accepts training
examples, a set BKs of background knowledge, and a set
BIASES of biases and transfers them through the learning
controller to the example database, BKbase and biases base
respectively. The interface also provides commands for
users to query about the results of an adaptive learning
task and to directly control the operations of the learning
controller.

(2) Biases base: It is a knowledge base that stores all learning
biases.

(3) BKbase: It stores various background learning knowledge
that can be used in inductive learning. Background
knowledge can be retrieved, added, deleted and modified
through the interface of BKbase.

(4) Examples database: It stores the training examples.
(5) Empirical ILP learner: It induces a logic program from the

training examples, given a concept description language, a
specific background knowledge, a search bias and a
language bias. A search of the hypothesis space can be
performed bottom-up or top-down. Bottom-up techniques
start from the training examples and search the space by
employing various generalization operators. Top-down
techniques start from the most general concept
descriptions, and search the space by using various
specialization operators. Top-down techniques are better
suited for learning from imperfect examples because a
large number of data are available in every specialization
step and the system can employ various statistical
techniques to decide how to perform the specialization.
Moreover, top-down search can easily be guided by the

search bias. In section 3, a generic top-down ILP algorithm
will be described.

(6) Meta-level learner: It learns search biases, language biases,
and background knowledge. Search and language biases
can be represented declaratively or procedurally. Section 4
describes a meta-level learner implemented in genetic
programming (Koza 1992) to induce procedural biases.
The induced definition of the current target predicate is
stored to facilitate the learning of higher level predicates,
thus an adaptive ILP system is a closed learning system. It
can also learn other meta-knowledge such as the
conditions under which various learning biases and
background knowledge can be employed. Since the meta-
level learner performs a variety of learning tasks, it is
implemented as a multi-strategy learning system.

(7) Learning controller: It is a knowledge-based system that
controls the empirical ILP learner and the meta-level
learner. The knowledge used by the learning controller
can be updated by the meta-level learner.

3 A GENERIC TOP-DOWN ILP ALGORITHM

This section presents a generic top-down ILP algorithm. The algorithm is
depicted in Figure 2. The algorithm consists of three steps. In the pre-
processing step, missing argument values in training examples are
handled by assigning default or random values to them. A training
example will be removed if it has too many missing values. If there are no
or inadequate negative examples in the training set, they can be generated.

External Interface

Learning
Controller

BKbase Biases
Base

Example
database

Meta-Level
Learner

Empirical ILP
Learner

Data flow

Control flow
Figure 1. The logical organization of an adaptive ILP system

Different ways of creating negative examples have been proposed (Lavrac
and Dzeroski 1994).

The second step performs the construction of a program. This step
employs four local variables: Ecurrent (Current training examples set),
E'current (Updated training examples set), P (Current program) and P'
(Modified program). The main component of this step is the covering loop
which implements Michalski's covering algorithm (Michalski et al. 1986).
The covering loop construct a program by iteratively executing the
following sub-steps:

(a) Construct a clause that covers some positive examples in
Ecurrent.

(b) Append the clause to the current program P and generate
a modified program P'.

(c) Remove all positive examples from Ecurrent which are
covered by P' w.r.t. the background knowledge B.

The covering loop terminates if the terminating conditions are satisfied.

A typical condition is that either all positive examples are covered or no
more improvement can be achieved by searching for a new clause. The
final step attempts to improve the accuracy of the program induced when
classifying unseen examples and to simplify the program.

The covering loop calls the 'Clause-Construct' function which is the core
of the generic algorithm. The function constructs a clause Cn = T ← l1, l2,
..., ln starting from the most general clause C0 = T ← with an empty
body. A sequence of clauses C0, C1, C2, C3, Cn are generated by a
number of specialization steps. At each step, the current clause Ci = T←
l1,l2, ..., li is refined by appending a specific literal lj to its body. A literal lj
is constructed from the background knowledge B restricted by the concept
description language L and language bias BIASlang. The language may
limit lj to be function-free while BIASlang may prevent new variable to be
introduced in lj. The aim of the procedure is to find a clause which covers
most positive examples while excludes all or most negative examples. In a
hill-climbing search, the procedure keeps the current best clause and
refines it using the estimated best specialization at each step, until the
stopping condition is satisfied. A hill-climbing 'Clause-Construct'
algorithm is presented in Figure 3.

The 'Clause-Construct' function calls the 'Find-Extension' function to
find the extension Ei of the current training examples given the partially
developed clause Ci = T(X1, X2, ..., Xn) ← l1, l2, ..., li and the background
knowledge B. Each training example <x1, x2, ...xn> is a n-tuple where xi,
1≤ i≤n, are some constants. To find the extension, the function initializes a
clause C0 = T(X1, X2, ..., Xn), then the literal l1 is added to the body of C0
to produce a new clause C1. The literal l1 is either of the form Xj = Xk, Xj
≠ Xk, pm(Y1, Y2, ...,Ysm) or not pm(Y1, Y2, ...,Ysm).

Input:
Training examples E
Concept description language L
Search bias BIASsearch and Language bias BIASlang
background knowledge B
Target concept T

Output:

A program P which contains a set of program clauses. Each clause
C ∈ L.

Function ILP(E, L, BIASsearch, BIASlang, B, T)

(1) Pre-processing of the training examples E and producing a

modified set of examples E': E' := Preprocessing(E).

(2) Let Ecurrent := E
';

Let P := {};
Repeat
 -Let C := T ←;

 -Find a specialization C' of C. This step constructs a

 clause C' from C by calling Clause-Construct(C,
 Ecurrent, B, L, BIASsearch, BIASlang);
 -If a specialization can be found

 -Add C' to P to produce a new program P'. i.e.

 P' := P ∪ {C'};

 -Remove all positive examples covered by P' from

 Ecurrent to get an updated training set E
'

 E'current := Ecurrent - { positive examples in

 Ecurrent covered by P
' w.r.t. the background

 knowledge B};

 -Let Ecurrent := E
'
current;

 -Let P := P'
 Else
 -Set the flag No-More-Improvement to true;
Until
 The Covering termination criterion is satisfied. i.e.
 covering-termination(P, No-More-Improvement, Ecurrent, B)
 returns true;

(3) Post-processing the program P and producing P'. i.e.

P' := Post-processing(P);

Return(P');

Figure 2. A generic top-down ILP algorithm

If the literal contains one or more new variables {NewY1, NewY2, ...,
NewYk}, the arity of each tuple in the generated training set E1 increases
to (n + k). E1 can be found by performing a natural join of Ecurrent with

Input:
An initial clause C = T←
The current training examples Ecurrent
Background knowledge B
Concept description language L
Search bias BIASsearch and language bias BIASlang

Output:

A clause that covers some positive examples in Ecurrent while
excludes all or most negatives examples in Ecurrent

Function Clause-Construct(C, Ecurrent, B, L, BIASsearch,
 BIASlang)

There is a scoring function stored in BIASsearch, save this
function to scoring;

Repeat
 -Set BEST to a bad literal such as X = X where X is a
 variable appearing in the head of the clause;
 -Set Best-score to 0;
 -Find the extension Ei of Ecurrent using the clause C w.r.t.
 B. i.e. Ei := Find-Extension(C, Ecurrent, B);

 -Let ni
+
 be the number of positive tuples in Ei;

 -Let ni
−
 be the number of negative tuples in Ei;

 -Current-information := − log2(ni
+ / (ni

+ + ni
−));

 -For all literal l from B that satisfy the constraints
 imposed by the language L and bias BIASlang

 -Set C
' = C ∪ {l};

 -Find the extension Ei+1 of Ecurrent using the clause C
'

 i.e. Ei+1 := Find-Extension(C
', Ecurrent, B);

 -Let ni+1
+

 be the number of positive tuples in Ei+1;

 -Let ni+1
−

 be the number of negative tuples in Ei+1;

 -Let the number of positive tuples in Ei that have been

 represented by one or more tuples in Ei+1 be ni
++

;

 -Find the score of the literal l by using the scoring

 function i.e. literal-score := scoring (ni
++

, ni+1
+

, ni+1
−

,

 Current-information);
 -If literal-score > Best-score then
 -BEST := l;
 -Best-score := literal-score;
 -If BEST == X=X then
 -No-More-Improvement := true;
 Else
 -Append BEST to the body of C;
Until Clause-Termination(C, No-More-Improvement, Ecurrent, B)
 is true;

Post-processing the clause C to find an improvement i.e.

C' := Find-Improvement(C);

If Acceptable(C')

 -Return(C');
Else
 -Return(No-Specialization-Can-Be-Found);

Figure 3. A hill-climbing 'Clause-Construct' algorithm

the relation corresponding to literal l1. The process is repeated for literals
l2, l3, ...li until the extension Ei is found.

The most important component of the hill-climbing 'Clause-Construct'
algorithm is the 'scoring' function that estimates the performance of each
literal. An accurate estimation directs the search towards the global
maxima while a misleading one traps the system into local-maxima. By
providing different 'scoring' functions to the generic ILP algorithm,
various learning algorithms can be generated. The performances of a good
and a bad learners can be significant different as shown in section 4.

4 INDUCING PROCEDURAL SEARCH BIAS

In this section, genetic programming (Koza 1992) is used in the meta-level
learner to induce procedural search bias (i.e. the 'scoring' function). GAs
(Holland 1975) have proven successful in finding optimal points in a
search space for a wide variety of problems (Goldberg 1989). Genetic
programming (GP) extends traditional GAs to learn a program composed
of functions. Koza (1992) demonstrates that populations of computational
functions can be genetically bred to solve a variety of problems in a wide
variety of fields.

Primitive Definitions

In order to employ GP to induce the 'scoring' function, a list of terminals
and primitive functions sufficient to solve the problem must be defined.
The terminal set T includes the formal parameters of the 'scoring' function
and the ephemeral random floating point constant , i.e.,

T = {ni+1
+ , ni+1

− , ni
+ + , current-information, }

With reference to the algorithms in figures 2 and 3, assume that Ei is the

extension of current training examples Ecurrent by current clause Ci, ni
+

and ni
− are respectively the number of positive and negative tuples in Ei.

Ei can be extended by using the literal l to Ei+1. ni+1
+ and ni+1

− are

respectively the number of positive and negative tuples in Ei+1. ni
++ is the

number of positive tuples in Ei that have been represented by one or more
tuples in Ei+1. Current-information is defined as − log2(ni

+ / (ni
+ + ni

−)) .
The ephemeral random floating point constant takes on a different
random floating point value between -10.0 and +10.0 whenever it appears
in the initial population.

The function set F includes the arithmetic functions +, -, *, %, protected-
log and Info, their arities are respectively 2, 2, 2, 2, 1 and 2, i.e.

F = {+/2, -/2, */2, %/2, protected-log/1, Info/2}

Typically, the protected division % and the protected logarithm
protected-log return the quotient and logarithm respectively. However, if
division by zero is attempted, % returns 1.0. If logarithmic of zero is

evaluated, protected-log returns 0.0. The basic function Info calculates
− log2(X / (X + Y)) given X and Y as inputs.

The evolution process

The evolution process of the Adaptive ILP system is depicted in figure 4.
Firstly, the Biases base is initialized with a population of different 'scoring'
functions generated randomly using the primitives in T and F. To estimate
the fitness of a specific 'scoring' function, it is combined with the generic
top-down ILP learner to produce a specific ILP learner. The performance
of this ILP learner is then evaluated by using a fitness function. This
measure is assigned as the fitness of the specific 'scoring' function. GP
employs crossover, selection, mutation, and other genetic operators to
generate potentially better functions. The modified functions are stored in
the Biases base and the whole evolution process iterates until the best
function is found or no computational resource is available.

The experimentation setup

In this paper, learning curves are frequently used to estimate the
performances of various learning systems. The example space is divided
randomly into disjoint training and testing sets. The learner is trained on
progressively larger portions of the training set and the performance of the
induced logic program is estimated on the disjoint testing set. This process
of dividing, training and testing is repeated for 20 trials and the results are
averaged to generate a learning curve.

aaAs a running example, we use a traditional problem discussed in the
literature (Muggleton and Feng 1990). In the problem of learning the list
predicate member, the data consist of all lists of lengths 0 to 3 defined over
three constants. The background knowledge B contains definitions of list
construction predicates: null which holds for an empty list and component

Empirical ILP
Learner

BKbase Example
database

Biases
Base

GP

Initial
Biases

Modified
Biases

Bias Performance
of bias

Figure 4. The evolution process of the adaptive ILP system

which decomposes a list into its head and tail. The example space contains
75 positive and 45 negative examples. The training sets contain 20 to 52
examples, one-half of each training set is positive examples. The testing set
consists of 45 positive and 15 negative examples.

Fitness calculation

Adjusted and normalized fitness are used as in Koza (1992). They are
calculated from the raw fitness which is estimated by the fitness function.
Various fitness functions have been tried and two of them are described
here. The impact of fitness function on the generality of the evolved
function is also demonstrated. The problem domain of learning the
member predicate is used here.

For the first fitness function, a random set of 24 positive and 21 negative
examples is used. A specific 'scoring' function is combined with the
generic top-down ILP learner to produce a specific ILP learner called GP-
ILP hereafter. GP-ILP induces a logic program using the random example
set. The quality of the induced logic program is evaluated by counting the
total number of misclassified examples from the same training set. This
measure is used as the raw fitness of the specific 'scoring' function. Using
this fitness function, only poor 'scoring' functions have been evolved. The
learning curve of a poor learner is depicted in figure 5.

For the second fitness function, the raw fitness is developed in several
steps. At the beginning of each generation, four instances of the learning
task are created randomly from the member domain. Each learning task
has a training and a disjoint testing data. The training set contains 20
positive and 20 negative examples. For each learning task, a specific GP-
ILP induces a logic program from the training set and the logic program is
evaluated by counting the number of misclassified examples from the
testing set. The performance of the GP-ILP is the sum of numbers of
misclassified examples for all learning tasks. This measure is then used as
the raw fitness of the corresponding 'scoring' function. This fitness
function can force the evolution of good 'scoring' functions. The learning
curve of a good learner is shown in figure 5.

20 24 28 32 36 40 44 48 52
Training size

0.7
0.75

0.8
0.85

0.9
0.95

1

A
cc

ur
ac

y

Poor ILP learner
Good ILP learner

Figure 5. The learning curves of good and poor
ILP learner

5 EXPERIMENTATION AND EVALUATIONS

This section compares the performance of the adaptive ILP system with
that of FOIL which is a famous ILP system (Quinlan 1990). Standard
learning tasks in the literature are used in these experiments (Quinlan
1990; Muggleton and Feng 1990).

The member predicate

The learning curves for this problem are depicted in Figure 6. It is
interested to find that the adaptive ILP system has higher accuracy than
FOIL. The difference is significant at 95% confidence interval when the
training size is less than 36.

The member predicate in a noisy environment

Difference amount of noise is introduced into the training examples in
order to study the performances of both systems in learning programs in
noisy environment. To introduce n% of noise into the examples, n%
positive examples are labeled as negative ones while n% negative
examples are labeled as positive ones. In this experiment, the percentages
of introduced noise are 10% (0.1) and 40% (0.4). Their learning curves are
summarized in figure 7. The adaptive ILP system performs better than
FOIL at all noise level.

The multiply predicate

In the problem of learning the arithmetic predicate multiply (Muggletion
and Feng 1990), the data contain integers in the range from zero to ten. The
background knowledge is composed of definitions for arithmetic
predicates plus, decrement, zero and one. The example space has 73 positive
and 1258 negative examples respectively. The training sets consist of 400
to 500 examples, one-tenth of each training set is positive and the
remainder is negative. The learning curves for multiply are presented in
Figure 8. The Adaptive ILP system performs better than FOIL when the
size of training set is less than 460. The difference is significant at 99.5%
confidence interval.

The uncle predicate

Another traditional testbed for relational learners is the domain of family
relationships (Quinlan 1990). In this experiment, the uncle predicate is
induced and the background predicates are parent, sibling, married, male
and female. The learning curves are presented in Figure 9.

20 24 28 32 36 40 44 48 52
Training size

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 6. Learning curves for the member
problem

20 24 28 32 36 40 44 48 52
Training size

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Foil (0.1)
The Adaptive ILP system (0.1)
Foil (0.4)
The Adaptive ILP system (0.4)

Figure 7. Learning curves for the member
problem in a noisy environment

400 420 440 460 480 500
Training size

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 8. Learning curves for the multiply
problem

6 CONCLUSION

In this paper, we formulate an Adaptive Inductive Logic Program system
which is composed of an external interface, a biases base, a knowledge
base of background knowledge, an example database, an empirical ILP
learner, a meta-level learner and a learning controller. A preliminary
implementation of an adaptive ILP system has been completed. In the
implementation, the empirical ILP learner performs top-down search in
the hypothesis space defined by the concept description language, the
language bias and the background knowledge. The search is directed by
search biases which can be induced and refined by genetic programming.

It has been demonstrated that the induced bias is better than that of
FOIL on many standard learning tasks. From these experiments, it can be
concluded that the Adaptive ILP system has superior learning ability
compared to FOIL. Since they are different in their search biases only, the
result implies that the search bias induced by GP is better than that of
FOIL for the learning problems. This result is surprising because the
search biases of the Adaptive ILP system are initialized by a random
process. These biases are normally poor, but the process of natural
selection and evolution can successfully evolve a good bias.

It is important to mention that the search bias is rather general because it
has reasonable performance on many traditional learning problems using
the same bias acquired automatically. This paper illustrates that GP is a
plausible technique for implementing a meta-level learning system. For
future work, in order to find a general, efficient and effective bias, a large
number of learning tasks of different kinds, such as the member, append,
quick sort, ackermann, uncle, and grandfather problems, of various
characteristics should be used. This adaptive learning approach, though
computationally intensive, is rather exciting, as it opens up many
opportunities for creating or improving learning algorithms.

Acknowledgments

The first author is sponsored by a scholarship of the Croucher Foundation.

50 70 90 110 130 150
Training size

0.75

0.8

0.85

0.9

0.95

1

1.05

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 9. Learning curves for the uncle problem

References

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,
MI: The University of Michigan Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Lavrac, N., and S. Dzeroski (1994). Inductive Logic Programming: Techniques
and Applications. London: Ellis Horword.

Michalski, R. S., I. Mozetic, J. Hong, and N. Lavrac. (1986). The multi-
purpose incremental learning system AQ15 and its testing application on
tree medical domains. In Proceedings of the National Conference on Artificial
Intelligence, 1041-1045. San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence 10:
203-226.

Muggleton, S., and C. Feng. (1990). Efficient induction of logic programs.
In Proceedings of the First Conference on Algorithmic Learning Theory, 1-14.
Tokyo: Ohmsha.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine
Learning; 10: 239-266.

Wong, M. L., and K. S. Leung. (1994a). Inductive logic programming using
genetic algorithms. In Advances in Artificial Intelligence - Theory and
Application II, eds. J. W. Brahan and G. E. Lasker, 119-124. Ontario: I.I.A.S.

Wong, M. L., and K. S. Leung. (1994b). Learning first-order relations from
noisy databases using genetic algorithms. In Proceedings of the Second
Singapore International Conference on Intelligent Systems. B159-164.

