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ABSTRACT
This paper presents a study of differ-

ent methods of using incremental evolu-
tion with genetic programming.
Incremental evolution begins with a
population already trained for a simpler
but related task. No other systematic
study of this method seems to be avail-
able. Experimental evidence shows the
technique provides a dependable means
of speeding up the solution of complex
problems with genetic programming. A
novel approach that protects against
poor choices of problem simplifications
is proposed, improving performance.
Testing performed on tracking problems
of multiple stages is analyzed.

1.   Introduction
Some researchers in the field of computer learning have
expressed skepticism that genetic programming (GP) will
scale up from toy problems. This concern comes in part from
the difficulty of solving problems withchicken and egg
dilemmas. A chicken and egg dilemma occurs when the
interaction of multiple behaviors aids in the performance of
the task despite the fact that none of the behaviors individu-
ally increase performance. For instance, no performance
advantage exists for a program which writes to memory
without a later memory read. Likewise, no advantage is
gained by reading from memory unless something useful has
been written there. Yet the two behaviors interact to make
time-varying actions or responses to time-varying inputs
possible. Experience shows that GP can learn memory
usage, but what about more complicated activities? What
about problems where the chicken and egg dilemmas have
more depth or multiple dilemmas exist? Chance rather than
predictable progression seems to be required to solve such
problems, and chance can be fickle.

Incremental evolution, termed by Harvey et al. (1994), has
been used with various evolutionary learning methods to
solve complicated problems which may have intrinsic chick-
en and egg dilemmas. Rather than using a randomly-created
initial population, incremental evolution begins with a popu-
lation already trained for a simpler but related task. A compli-
cated problem is attacked by first training for a simplified
version of the problem. Then the difficulty of the problem is
incrementally increased by modifications of the fitness func-
tion or the training parameters and training continues.

The contributions of this paper are three-fold:
• The existing evolutionary learning technique of incre-

mental evolution is applied to GP. This is shown to
increase performance at complicated tasks.

• This paper presents a systematic study of incremental
evolution, in particular for a target tracking task. No
such study of the technique currently exists.

• A new method for organizing the population when
incrementally evolving a problem solution is proposed.
This method ofmixed incrementsdecreases the user’s
effort in applying incremental evolution without hurting
performance.

Incremental evolution is used to discover strategies for
tracking a moving object with a camera mounted on a pan-tilt
unit. Performance at the tracking task is measured based on
tracking error, the average distance of the object from the
center of the field of view over a period of time. In one exam-
ple, ten runs with standard GP achieves an average tracking
error of 9.690 pixels. After the same number of program eval-
uations, ten runs with mixed increments and incremental evo-
lution achieves an average tracking error of 0.075 pixels. The
performance improvement is shown to be statistically signif-
icant. This paper proposes the use of incremental evolution
with the novel modification of mixed increments when at-
tempting to solve complicated problems.

The rest of the paper is organized as follows. Section 2
presents previous work with incremental evolution. Section 3
details the use of incremental evolution and presents a num-
ber of possible configurations. Section 4 explains the general
parameters for the experiments and how the results are ana-
lyzed, without reference to a specific task. Section 5 discusses
the target tracking task and Section 6 presents the experimen-
tal results. Finally, Section 7 concludes the paper.



2.   Previous Work
While a number of researchers have used incremental evolu-
tion with various evolutionary learning methods, there seems
to be no general comparison of different implementations of
the technique.

Harvey et al. (1994) use incremental evolution to train ro-
bots to move towards a white triangle on a dark background,
but not towards a similarly-sized white rectangle. The robots
are first trained to orient themselves to face a large white rect-
angle. Then the target is changed to a smaller white rectangle
and robot pursuit is tested as this target is moved. Finally,
training focuses on the actual task of interest, which includes
not moving towards the very rectangles the robots have al-
ready been trained to pursue. Comparisons made to those
trained from scratch find incremental evolution provides
more robust solutions.

Nolfi et al. (1994) use incremental evolution to train con-
trollers for robots. Maneuvering physical hardware in real
time makes training with robots prohibitively expensive.
However, any simulation of the robot uses an approximate
model, which simplifies the noise and environment and can
influence learning. This research finds significant degrada-
tion in performance when solutions trained in simulation are
transferred to physical hardware. Training the simulation-
evolved controllers for a few generations with the actual ro-
bots raises the real-world performance to simulation levels.

Beer and Gallagher (1991) use a technique that may be
confused with incremental evolution to evolve controllers for
locomotion in simulated hexapod robots. A controller trained
from scratch is compared to a controller trained in two steps.
In the latter case, the single leg controllers are first trained
and then complete motion is trainedwith the single-leg pa-
rameters held constant. This alternative method results in so-
lutions which are not as robust as those trained from scratch.
In true incremental evolution, the single-leg parameters
would continue adapting during the second phase of training.

This paper presents a study of the different methods of in-
cremental evolution described in Nolfi et al. (1994) and Har-
vey et al. (1994), as well as some alternative methods. Mixed
incremental training, which is discussed more formally in the
next section, differs significantly from the methods in these
previous works. Standard incremental evolution begins with
a population already trained on a single task that is simpler
than, but related to, the task at hand. In mixed increments,
multiple populations trained on a number of simplified tasks
are combined to create the starting point. This new technique
is shown to be robust against poor choices of simplified tasks.

3.   Incremental evolution
Incremental evolution has been used with various evolution-
ary learning methods to solve complicated problems. Rather
than using a randomly-created initial population, incremen-
tal evolution begins with a population already trained for a

simpler but related task. A complicated problem is attacked
by first training for a simplified version of the problem. Then
the difficulty of the problem is incrementally increased by
modifications of the fitness function or the training parame-
ters. The advantages of this method are as follows.

(1) Chicken-and-egg dilemmas may be reduced by
directly solving portions of the problem along the way.

(2) The fitness function for the final problem may be
reduced in complexity. Or if the complexity is not reduced,
the progression of training makes it less likely that any
weaknesses in the final fitness function will be exploited.

(3) Fewer evaluations may be required when training for
the simplified problem, making it less costly to reach a given
level of performance on the complete problem.

(4) The programs evolved by incremental evolution do
not perform worse than those found by training from scratch.

(5) In many cases, the performance for programs trained
with incremental evolution is statistically superior to those
trained with standard GP.

3.1   An alternative: Fitness-based shaping
An alternative method of solving complicated problems con-
taining chicken-and-egg dilemmas is to guide or shape the
learning process through the fitness function. Any steps or
tools considered necessary can be directly rewarded. How-
ever, this presents some major problems:
• The burden of effort is being shifted to the user who

must design a complicated fitness function. One of the
main advantages of GP is that it enables the computer to
solve problems without being explicitly told what to do.
When the user must specify steps along the way, this
advantage is diminished.

• The user may incorrectly decide some behaviors are
necessary. In the worst case, the behaviors rewarded
may in fact make the problem more difficult.

• Complex fitness functions may result in interactions
which reward undesirable behavior. The exact effects of
complicated fitness functions are difficult to predict.
Degenerate solutions may result.

• For a complicated fitness function, it may be necessary
to evaluate the program many times to get an accurate
measure of fitness. Program evaluations have been
shown to dominate the computational cost of GP, so
extra evaluations will raise the overall cost.

3.2   Incremental evolution for problem solving
Incremental evolution provides a means for solving compli-
cated problems with evolutionary learning techniques. The
complicated problem is first divided into incremental pieces.
For many problems, these divisions are intuitive. The pieces
may be steps required along the way to completing the entire
solution, relatively independent dimensions of the problem,
or merely various problem simplifications. The complete
problem is solved by training the population of programs
incrementally, as the problem definition is gradually altered.



From another point of view, the population for each training
run is initialized with a population already trained on a sim-
pler, but related task.

Deciding how the problem should be divided or simplified
is an extra task the user has to perform with incremental evo-
lution. In exchange for this extra effort, the user receives a so-
lution for a lower processing cost. In some cases, the extra
effort may even make an apparently unsolvable problem
solvable.

Consider a tracking problem where the goal is to keep a
moving object centered in the camera’s field of view. Maybe
10 different velocities and 20 different object positions are
deemed necessary for a general solution. Solving this prob-
lem with a complete fitness assessment (testing each of the
velocities and image positions) requires 200 evaluations per
individual per generation. In incremental evolution, the ve-
locity may first be held constant while only the initial position
is varied. In this case, 20 evaluations per individual per gen-
eration are required for the first increment. Training on the
complete problem from scratch for 100 generations requires
20,000 evaluations per individual. Training with incremental
evolution for 100 generations on the simplified problem re-
quires 2000 evaluations per individual, or 10 generations of
training on the complete program. The population is now
partly tuned to the problem at a low computation cost. For
such multi-dimensional problems, incremental evolution can
save a lot of processing effort.

The incremental alterations to the problem can be imple-
mented through the fitness function or the problem parame-
ters. A complicated fitness function representing the
complete task may be progressively simplified to create the
initial problem increments. This should avoid some degener-
ate exploitations of the complicated final fitness function
since any weaknesses due to reward interactions will not exist
in the simplified versions of the fitness function. Or a simple
final fitness function, free of exploitable interactions, may
have rewards progressively added to encourage specific be-
haviors in the initial training runs. In the tracking problem,
the fitness function remains unchanged throughout all of the
training. The task is incremented by varying the problem pa-
rameters. Problems that lend themselves to this type of imple-
mentation are the most amenable to incremental evolution.

3.3   Termination criteria
Without considering any particular problem or method of
dividing a complicated problem into pieces, there are a num-
ber of methods for performing incremental evolution. Termi-
nation criteria and organization of the population are
controllable parameters which determine the various incre-
mental methods. The expected trade-offs involved in differ-
ent termination criteria are described in this subsection.

The initial increments of the training can be terminated
based on generation count or fitness measure. This differs
from standard GP only in that training will then continue with
an updated version of the problem. Training for a fixed num-

ber of generations requires a good knowledge of the problem.
The user may have to observe some initial runs to formulate
an intelligent choice of the generation parameter. In fact, a
single value may not be appropriate as some problems may
exhibit wide variance in the number of generations required
to achieve comparable performance.

Training until a performance score is reached is more in-
tuitive than training for a fixed number of generations. This
approach ensures some desired level of performance in the
population, while limiting the amount of training past that
point. Training for too long may lead to overfitting the incre-
ment or convergence of the population, either of which may
damage the population with respect to the complete problem.
The fitness score parameter in these performance-based in-
crements may be specified as a raw number. However, this
parameter is more naturally specified as a percentage of the
maximum score or a tolerance bound on the maximum score,
for a “partial” or “complete” solution, respectively.

3.4   Population organization
The organization of the population falls into two major cate-
gories: standard undivided population anddemetic grouping.
Demetic grouping is best thought of and implemented as a
generalization of the standard undivided population.
Demetic grouping has been used with GP to limit premature
convergence of a population and can easily be adapted for
use with incremental evolution. In demetic grouping, demes
or ‘islands’ of programs develop fairly independently of each
other. Within each deme, the normal methods of selection
are used with the standard genetic operations. However,
these operations are not performed across demes. One new
genetic operation is added when using demetic grouping:
migration. In migration, an individual is directly copied from
one deme to another. Demetic grouping allows GP to search
multiple areas of program space in unison, avoid premature
convergence, and perform computations in parallel.

A rough version of demetic grouping can be implemented
as part of incremental evolution by completely restricting the
migration between demes during the initial increment of
training. In the later increments, this restriction is relaxed. In
the extreme, the populations are completely combined. This
algorithm can be implemented with GP code that does not al-
low demetic grouping by initially training separate popula-
tions and then combining them when the problem definition
is incremented.

The major advantage of using demetic grouping with in-
cremental evolution is that the population’s convergence to a
single area of program space during the initial increments of
training is limited. Variance in the population enables evolu-
tionary learning to occur, as the differences in the population
are amplified by selection. However, the act of training itself
can cause population convergence. Training with demetic
grouping should counteract any convergence that may occur
during the initial training increments, and enable quicker
learning in the later increments.



Demetic grouping is normally performed with a single di-
vided population. The rough version of demetic grouping
previously described enables some interesting options to be
examined. For instance, two demes can each include as many
individuals as the final population, if some sort of selection is
used to draw individuals from these demes. This method
combines the better performance of a large initial population
with the lower computation cost of a small population as the
programs later grow longer.

Another technique unique to incremental evolution with
this form of demetic grouping is calledmixed increments. In
mixed increments, each deme initially attempts to solve a dif-
ferent piece of the problem. This allows multiple portions of
the problem to be trained at the same time. In the training that
follows, the two populations with different training back-
grounds not only compete for supremacy, but adopt and adapt
each other’s strategies. The hybrids which result are likely to
perform better than either of the populations on their own.
The user is no longer required to order the increments of the
problem for training; only problem division is needed. How-
ever, this method may be inappropriate for some methods of
dividing the problem.

4.   Methodology
This section presents the methodology used for the experi-
ments. The baseline training methods of standard GP are
briefly explained, followed by the test of statistical signifi-
cance used for comparing the baseline methods to those pro-
posed. Subsection 4.2 explains the parameters used for
genetic programming. The final subsection presents the con-
figurations of incremental evolution tested in this study.

4.1   Baseline training methods
The different methods of performing incremental evolution
discussed in Section 3 are systematically compared to the
more standardtraining from scratch. In training from
scratch, the population is trained for the entire complex
problem starting from a random initialization. This method
is expected to achieve adequate solutions and is used as a
baseline for comparison.

Since the population is initially trained on pieces of a larg-
er problem, testing should be performed on the programs re-
sulting from this initial training. If programs evolved on a
piece of the problem solve the entire problem, then continued
training is unnecessary. The strategy of training on only one
portion of the problem is tested asnaive dimension reduction.
This method is expected to quickly achieve solutions which
perform well on the simplified problem, but do not transfer
well to the complete problem.

Due to the small number of samples available,Student’s
one-tail t test(Naiman, 1972) is used in the comparison of re-
sults. The null hypothesis that the performance is the same for
any two methods is rejected only if there exists sufficient sta-
tistical evidence that one method outperforms the other. The

test can be performed at various significance levels, these lev-
els indicating the probability that the null hypothesis is reject-
ed in error. The test assumes the samples being compared are
drawn from Gaussian distributions, and the significance level
indicates the amount of overlap in the tails of the density
functions. This paper performs tests at both the 0.05 and 0.01
significance levels to obtain accurate assessments. The as-
sumption of Gaussian distributions for these results may not
be completely valid, for most ten-sample sets appear vaguely
Gaussian.

4.2   General GP parameters
Table 1 shows the complete tableau for the experiments.
Multi-tree modificationmeans that all the trees in the indi-
vidual are modified: the main program and each automati-
cally-defined function (ADF). In crossover, this is performed
by selecting a single ‘mother’ program. A different ‘father’
program is selected for each of the trees, and the subtree cut
from the father replaces the subtree cut from the mother. In
the alternative, single-tree modification, random selection is
used to choose which tree is altered.

Table 1 Tableau for all experiments

The experiments are performed with a GP tool which runs
steady-state genetic programming. Steady-state GP is a mem-
ory-saving method of performing GP. Standard GP requires
the storage of two populations: the current population upon
which the genetic operations are being performed, and the
next generation into which new individuals are being written.
Steady-state GP uses only one population. After a new indi-
vidual is created, the selection technique is used to find a
poorly performing program in the current deme or popula-
tion. The poorly performing program is replaced by the new
individual. The genetic operation of reproduction is implicit-

Objective Center an object in the image

Function set NEGATE, , , , ,
MIN, MAX, MIN3, MAX3, ADD3,
MULT3, IF_POSITIVE_ELSE

Terminal set constants:  and
.

X, the input variable.

Memory 2 variables, with read (R0, R1)
and write (W0, W1) access.

ADFs One with one argument and
one with two arguments.

Fitness See section 5.

Parameters Population: 5 demes of 100 indi-
viduals each.
Tournaments of size 5.
10% Mutation rate.
2% Migration rate.
30% Terminal selection rate.
90% multi-tree selection rate.

+ – × ÷

0 0.1 … 1.9, , ,
10 20 … 100, , ,



ly carried out, so only crossover, mutation, and migration
have to be explicitly performed.

4.3   Incremental evolution parameters
The following methods and parameters are used in the exper-
imental study. The results are compared based not on the
generations of training, but on the number of response-pro-
ducing evaluations per individual. This comparison does not
account for the re-use of pre-trained populations, but is a fair
comparison for the first attempt at solving a problem.

Problem increments: These simplified problems represent
only one dimension of the complete problem. These dimen-
sions are tested with a tighter sampling than the complete
problem requires in the hopes of achieving a more robust so-
lution. Since only one dimension is being tested, this sam-
pling represents negligible extra effort in terms of solving the
complete problem.

Generation incremental training: Training on one prob-
lem increment for 50 generations before training on the com-
plete problem.

Performance incremental training: Training on one prob-
lem increment until some performance measure is reached
and then training on the complete problem for 50 generations.
The performance measure is either seven-eighths of the max-
imum fitness score, or a score within 5 points tolerance of the
maximum score. These are considered “partially” and “com-
pletely” solved, respectively.

Demetic incremental training: Training on one problem
increment with two independent populations for either 50
generations or until a specified performance level is reached.
Each of the two populations trained on the first increment
contains 500 individuals. After the initial increment, two pop-
ulations containing a total of ten demes of 100 individuals
each have to be reduced to five demes of 100. In these exper-
iments a new 5 deme population is created by randomly se-
lecting two demes from one of the populations and three
demes from the other. A performance-based selection would
result in a more fit initial population, but at the cost of extra
evaluations.

Mixed incremental training: Training on two independent
populations for the two different problem increments. This
initial training lasts for 50 generations or until a specified per-
formance level is reached. The population is reduced from ten
demes to five as in demetic incremental training.

5.   Target tracking task
The previous section defined the genetic programming
parameters for solving a general problem. Except for the fit-
ness measure and the function and terminal sets, all of the
parameters discussed do not depend on the task itself. This
section presents the details of the target tracking task.

The target tracking task attempts to keep a moving object
centered in the field of view of a camera mounted on a pan-
tilt unit. The camera grabs a 120 by 160 pixel binary image of

the scene and locates the center of mass of the object. Seg-
mentation is simplified by using a black rectangular object set
on a white background. The image position of center of mass
of the object is input to the learning system. The learning sys-
tem output is then issued as a maneuver command to the pan-
tilt unit. The tracking cycle repeats with the next image grab.
During training, only a small number of image grabs and as-
sociated camera movements are tested.

The distance from the camera to the object ranges from ap-
proximately 3 to 30 feet. In both training and testing, the ob-
ject is constrained to move in the plane of the image. The
tracking problem is simplified so that only horizontal (pan)
direction tracking is trained.

Goal: Output the command which, when issued to the
pan-tilt unit, centers the object in the image. The first move is
not scored, so the camera can use this move to estimate the
depth or velocity of the object without incurring a penalty.
Anytime the object moves out of the image window, howev-
er, the position is reported as zero.

Performance is measured as

(1)

where is the complete number of different initial condi-
tions as starting position, distance from camera to object, and
object velocity are varied; is the number of camera move-

ments over which the tracking is performed; and is the dis-
tance (in pixels) from the object’s position in the image to
the center point of the camera’s field of view. The function
is defined as

(2)

and is some maximum distance from the center of the
field of view (in pixels), beyond which the reward is zero.
This formulation allows fitness scores to fall in the same
range for all values of  and .

For these experiments, and . The value of
depends on the specific problem increment. The complete

problem is divided into three increments: object position in
the image, object depth, and object velocity. This divides the
problem into three relatively independent dimensions.

Incremental evolution uses multiple training runs to dis-
cover strategies for the complete problem. For instance, the
initial population may be trained to position the camera when
velocity and object depth are held constant. Then the result-
ing population may be trained for various initial positions and
object depths while velocity remains constant. Finally, the re-
sulting population may be trained on the complete problem.

These experiments are performed with three different
“complete” tracking tasks. Three different problem incre-
ments, defined below, are used for the initial training. In these
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experiments, the tracking task is simulated, using parameters
obtained from the physical pan-tilt unit.

All of the complete problems examined require some sort
of memory usage for a perfect solution. The differences be-
tween inputs at different time steps contain the information
necessary to track objects at different depths or velocities.
The calculation of these differences requires memory, so
these tasks have at least one chicken-and-egg problem

Complete problem Position_Depthconsiders initial image
positions for an image that is 160 pixels
in width. The depth of the object is characterized as

. The object is stationary throughout
training, so  for the complete problem.

Complete problem Position_Velocityconsiders initial im-
age positions for an image that is 160
pixels in width. The depth of the object is characterized as .
The velocity of the image of the object is

and is held constant over every four-
move training. So  for the complete problem.

Complete problem Velocity_Depthconsiders initial image
positions for an image that is 160 pixels in width.
The depth of the object is characterized as

. The velocity of the image of the object
is and is held constant over every four-
move training. So  for the complete problem.

Problem increment Position_Only: The initial image posi-
tions in the range are trained, while the
velocity is held constant at zero and the depth parameter is
held constant at 5. For problem increment Position_Only,

.
Problem increment Depth_Only: The object depths in the

range are trained. The velocity is held con-
stant at zero, and the initial positions of are used.
For problem increment Depth_Only, .

Problem increment Velocity_Only: The image-viewed ve-
locity of the object in the range is
trained. The depth parameter is held constant at 5, and the ini-
tial positions of are used. For problem increment
Velocity_Only, .

6.   Experiments
This section begins with a systematic study of the effects on
final performance of two different parameters of incremental
evolution: termination criterion for the initial increment and
population organization. Training from scratch is compared
to naive dimension reduction to show empirically that the
dimensions of the problem are not artificial constructs.
Finally, programs evolved with incremental evolution are
compared to those evolved with standard GP.

The initial training increments are always one of the three
described in the previous section. Figure 1 shows the average
best-of-generation performance scores for training problem
increments Position_Only, Depth_Only and Velocity_Only
over the period of training. The average score is computed

over ten runs, and the minimum and maximum bounds are
also displayed. The x’s show the positions where the training
reaches seven-eights of the maximum score and the o’s show
where the score breaks the tolerance range of 5 points of the
maximum score. The evaluation count is the number of eval-
uations per individual in the population, and represents 50
generations of training in all cases.

Figure 1 Average best-of-generation performance scores
on (a) increment Position_Only, (b) increment
Depth_Only, and (c) increment Velocity_Only. The solid
curve represents the average score, while the dashed lines
represent the minimum and maximum over the ten runs.

6.1   Incremental training termination
As discussed in section 3.3, the two main methods of speci-
fying the criterion for terminating a training increment are
generation count and performance threshold. The experi-
ments in this section compare the performance obtained
using these two methods for a number of problems.

Figure 2 compares the results for training with demetic
grouping on complete problem Position_Depth using differ-
ent termination criteria for the initial training increment. In all
three cases, the first increment of training is for problem in-
crement Position_Only. The problem increment is considered
completely solved as soon as any program in the population
achieves a performance score within 5 points of the maxi-
mum score. A partial solution requires a score that is seven-
eighths of the maximum. The maximum score in these exper-
iments is 2500, so a complete solution requires a score of
2495 and a partial solution a score of 2187.

Training with a performance-based termination criterion
results in programs that visibly outperform those trained with
a generation-count termination criterion. A statistical test re-
jects the hypothesis of equal performance at the 0.01 signifi-
cance level. The same rejection rate results when a standard
undivided population is used instead of demetic grouping.
For this problem, terminating the initial increment when a
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specific level of performance is reached improves the perfor-
mance of the resulting programs.

An examination of Figure 1 can show why this is the case.
Training on problem increment Position_Only results in a
quick solution, well before 50 generations of training. The
subsequent training overfits the programs to the initial train-
ing increment and reduces the variance in the population. The
choice of 50 generations of training in this case is too large,
and the results are obvious.

Figure 2 Comparison of termination criteria with com-
plete problem Position_Depth.

Training on problem increment Velocity_Only, on the
other hand, results in a partial solution in only one case before
the 50th generation. In the other 9 cases, more training is re-
quired to achieve even a partial solution. Figure 3 shows the
results for training with a standard undivided population on
complete problem Position_Velocity when the first incre-
ment of training is on problem increment Velocity_Only.

For this problem as well, training with a performance-
based termination criterion outperforms a generation-count
termination criterion. As before, the statistical test rejects the
equal performance hypothesis at the 0.01 significance level.
Using the performance-based termination criteria improves
the performance of the resulting programs, this time much
more dramatically.

Figure 2 might seem to suggest that a population trained
on the initial increment until a complete solution is found out-
performs one trained until a partial solution is found. In fact,
after about 15,000 evaluations have been performed, there
exists no statistical evidence to choose one before the other.
Only in the initial generations is the advantage of using the
complete solution statistically significant. This result, which
holds for a standard undivided population as well, may be
task and increment dependent.

6.2   Population organization
As discussed in section 3, the two main methods of orga-

nizing the population are a standard undivided population and
demetic grouping. The rough version of demetic grouping

that is tested here completely separates the two populations
during the first increment of training and then uses a 2% mi-
gration rate when the complete problem is being trained.

Figure 3 Comparison of termination criteria with com-
plete problem Position_Velocity.

The first test compares the results of training with 2 differ-
ent methods of organizing the population: standard undivided
population and demetic grouping. In both cases, problem in-
crement Depth_Only is trained for 50 generations before the
task is incremented to complete problem Position_Depth. In
demetic grouping, both demes train on the same problem in-
crement. No statistically significant difference exists between
the two organization schemes. The demetic grouping results
do not lie far enough above the standard undivided population
results to reject the equal performance hypothesis.

Training on problem increment Position_Only with either
generation-count or performance-based termination gives the
same results. The demetic curve lies above the single popula-
tion curve, but not with enough difference to reject the hy-
pothesis that the same performance is being observed from
both methods.

Figure 4 compares the results for training with a standard
undivided population and mixed grouping. In the latter case,
the two demes are trained on different increments:
Position_Only and Velocity_Only. In all cases, the initial
training is terminated at partial solution (when a fitness score
of 2187 or higher is reached). Then the two populations are
combined, using the algorithm explained in section 4, for
training on the complete problem.

The curves in Figure 4 show the main advantage of mixed
grouping: the user does not have to select which problem in-
crement to train first. In this case, the choice between incre-
ments Position_Only and Velocity_Only as the initial
training increment makes a statistically significant differ-
ence. Training with increment Velocity_Only significantly
outperforms training with increment Position_Only. Mixed
grouping performs as well as the better of the two alterna-
tives, but does not require the user to select which training in-
crement to use. Mixed grouping is the safest population
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organization, even if the user is familiar with the problem.
The solutions evolved with GP can sometimes be surprising,
making it difficult to accurately predict what will act effec-
tively as an related task.

Figure 4 Comparison of population organization with
complete problem Position_Velocity.

6.3   Naive dimension reduction
Naive dimension reduction assumes that training for one
dimension or increment of the problem will produce a solu-
tion to the complete problem. If naive dimension reduction
performs well, no further training is necessary. Success with
this technique implies the intuitively-selected dimensions of
this problem are not actually independent.

Figure 5 compares naive dimension reduction to training
from scratch for complete problem Position_Depth. Training
from scratch performs better than both cases of naive dimen-
sion reduction before many generations of training have
elapsed. By the end of training with naive dimension reduc-
tion, the results are poor enough to require the rejection of the
hypothesis of equal performance. In the training increment
Depth_Only case, this rejection is made at the 0.01 signifi-
cance level. Similar results hold for complete problem
Position_Velocity.

Training with naive dimension reduction does not work as
well as training on the complete problem. The conclusion can
be drawn that the dimensions along which these problems are
divided are actually independent. These three dimensions
hold different types of information and all need to be trained.

6.4   Incremental evolution experiments
Different configurations of incremental evolution are com-
pared in the previous subsections. These comparisons allow
the selection of higher performance algorithms for incremen-
tal evolution. This subsection compares these incremental
evolution techniques to standard GP.

Table 2 specifies the relationship between performance
obtained by incremental evolution methods and performance
obtained by training from scratch. In the population organiza-

tion column, “std” refers to a standard undivided population.
The relationship column specifies whether incremental evo-
lution performs better than (>), worse than (<), or equal to (=)
training from scratch. The final column indicates the range
(in thousands of evaluations per individual) over which the
inequality holds before dropping to equality.

Figure 5 Comparison of naive dimension reduction to
training from scratch for complete problem
Position_Depth.

In the two cases where standard GP outperforms incre-
mental evolution, the first increment is trained far past the
point of solution. This has not just overfit the solution to the
training increment. It has allowed the population to converge
to a small portion of program space, with devastating effects.
In the cases cited as having equivalent performance, the fit-
ness curve of the incrementally evolved solution lies above
the curve for standard GP. However, the separation is not sta-
tistically significant over these small training sets.

Table 2 Comparison of incremental evolution and
training from scratch for complete problem
Position_Depth.

Table 3 displays results in terms of tracking error (in pix-
els) for the complete problems. The training set and two dif-
ferent interpolation sets are tested. “Int. A” denotes values
trained in the initial increment but not in the complete prob-
lem, while “Int. B” denotes values which have never been
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Position_Only gen50 std < 0.01 full
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trained. The letter in parentheses in the configuration column
specifies the initial training increment.

The solutions trained from scratch are shown to be so ro-
bust to interpolation values that no program can do better,
only as good. Performance on interpolation values is actually
better than the performance on the training values. Most of
the solutions trained with incremental evolution show a sim-
ilar trend. A few, such as the final entry of the table, however,
do show a decrease in performance when working with un-
trained values. These less robust solutions do not occur in
most cases, and performance does remain above that evolved
from scratch.

Table 3 Comparison of tracking errors for the training
set and two interpolation sets.

7.   Conclusions
Training with incremental evolution reduces the number

of evaluations necessary to reach a given level of performance
with genetic programming. In the experiments persented in
this paper, the training data performance for programs trained
with incremental evolution is often statistically superior to
those trained with standard GP. Most of the programs evolved
by incremental evolution are as robust to untrained data as
those found by training from scratch. These experiments have
found no cases where training with intuitively selected incre-
ments does harm, as long as a reasonable termination criteria
is used.

The best termination criteria is based on reaching some
percentage of the maximum possible fitness score. Training
on the initial increments for not long enough, or especially
too long, is shown to degrade performance when the problem
is incremented. The precise percentage seems to matter little,
but this may be dependent on the task and the choice of prob-
lem increments.

Mixed incremental training, introduced in this paper, is
the safest choice for any user, especially one unfamiliar with
GP and the particular problem being trained. For some prob-
lems, intuitive simplifications do not seem to capture the es-
sence of the problem well enough to act as ‘related’ tasks.
However, as long as the population retains some variance, it

should eventually be able to recover from a poor choice of in-
cremental training.

In section 3, four problems were mentioned with using the
fitness function to reward specific steps considered neces-
sary: additional user effort, poor decisions on reward, fitness
function interactions, and more evaluations. Incremental evo-
lution does not solve these problems, but reduces them:
• The user must do more work than with standard GP: the

problem must be divided and the training increments
implemented. However, mixed incremental training
lessens the effort by reducing the cost of a poor choice
of problem increment.

• The user can still make poor reward or problem division
decisions, but mixed incremental training keeps these
from affecting the entire result.

• Incremental training can be formulated to avoid degen-
erate solutions due to fitness interactions. Increments
implemented in problem parameters do not require com-
plicated fitness functions.

• Incremental training requires fewer costly evaluations to
achieve the same level of performance as standard GP.

The solutions found in this research have overcome at
least one chicken-and-egg dilemma, memory usage, without
being explicitly rewarded. For difficult problems where effi-
cient solutions to chicken-and-egg problems are required, in-
cremental evolution with mixed increments is worth using. In
the best cases, performance is dramatically increased.
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Problem Configuration
Tracking error (pixels)

train int. A int. B

Position_
Depth

from scratch 3.886 3.171 3.187

gen50 (Depth), deme 3.837 3.246 3.229

part (Pos.), std 3.535 2.936 2.920

Position_
Velocity

from scratch 9.690 9.166 9.566

part (Vel.), std 0.075 0.095 0.755

part (Pos.), std 9.839 9.154 9.851

Depth_
Velocity

from scratch 22.551 21.130 21.760

part (Vel.), std 16.459 18.592 19.292


