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Abstract

Understanding price impact is a fundamental task in finance. Many ex-

ecution algorithms, used to execute a large order by dividing and spreading

it over time, are based on price effects and in particular on the way how

volume affects prices. Moreover, the analysis of price impact is helpful for

understanding how financial markets function as price impact is one of the

mechanisms determining price formation.

The thesis is motivated by the recent emergence of algorithmic trading

which requires a good understanding of price impact. This thesis addresses

three questions concerning price impact in order to gain a better understand-

ing on the intraday behaviour of price impact, and the factors affecting price

impact.

The first study examines the intraday behaviours of price impact and

market liquidity. The data is drawn from the NYSE-Euronext TAQ database

and the LSE ROB database. Six stocks from the US markets and six stocks

from the UK markets are analysed. The intraday patterns on price volatility,

bid-ask spread, trading volume and market depth are documented and gener-

ally confirm findings in prior studies on intraday phenomena. In particular,

a reverse S-shaped intraday pattern on price impact is found for both US and

UK stocks for the first time.

The second study investigates whether agent intelligence plays an im-

portant role in determining the magnitude of price impact. This chapter

constructs an artificial stock market composed of zero-intelligence agents,

and calibrates it using the LSE ROB data. The result shows that the price

impact in the artificial market is generally larger than that in the real mar-

ket. This is consistent with the hypothesis that agent intelligence plays an

important role in determining the magnitude of price impact. It supports the

selective liquidity argument in Farmer et al. (2004) & Hopman (2007).

The third study addresses whether order choice affects the price impact
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of trading a large order. A typical approach in trading a large order is to

devise a strategy which divides it into numerous pieces and spreads it over

time (usually one trading day). In this study, several execution strategies

with various order types, and a number of simple strategies with one order

type as benchmarks are constructed and evaluated by their effects on prices.

Novelly, these strategies are evolved and evaluated in simulated artificial

markets. The results show that the combined strategies outperform the sim-

ple strategies significantly, suggesting that order choice plays an important

role in determining the price impact of trading large orders.

The results in this thesis suggest that time-of-the-day, agent intelligence

and order choice are important factors affecting price impact, and need to

be considered in the theoretical microstructure models and in the design of

trading strategies.
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Chapter 1

Introduction

This thesis is concerned with the effect of trading on the price of a financial se-

curity, that is price impact. Understanding price impact is a fundamental task in

finance, as price impact is one of the basic mechanisms determining price forma-

tion. In one of the seminal papers on price impact, Black (1971) stated that large

order execution would always exert an impact on price, irrespective of the method

of execution or technological advances in market structure. Due to the availabil-

ity of transaction-level financial data, an increasing number of studies have been

devoted to the analysis of price impact in the last two decades (Bouchaud et al.,

2009).

Recent years have seen the emergence of an important technological prod-

uct of electronic trading, namely Algorithmic Trading (AT), which has received

considerable public attention and is commonly defined as the use of computer

programs to automate the trading process which encompasses making trading de-

cisions, submitting orders and managing orders after their submissions (Hender-

shott et al., 2011). AT now makes up a large portion of the market activity in

multiple financial markets ranging from equities to foreign exchange (Chaboud

et al., 2009), to derivative (Mishra et al., 2012) markets. It accounted for more
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than 70% of equity trades in the U.S. by 2009 (Hendershott et al., 2011). Signif-

icant volumes traded using AT are also found in Asian markets (Decovny, 2008;

Grant, 2012) and European markets (Hendershott & Riordan, 2012).

The widespread use of AT has stressed the importance of studying price im-

pact as understanding price impact is crucial for the design of algorithmic trading

strategies. Moreover, the significance of the study of price impact is also illus-

trated by the “Flash Crash” of May 6, 2010. An important contribution in trig-

gering this event was the extremely rapid execution of a large order of futures

contracts. From this point of view, understanding price impact is helpful for fi-

nancial regulators to monitor markets.

The research objective of this thesis is to empirically investigate price impact,

aiming to gain a better understanding of the intraday behaviours of price impact

and the factors affecting price impact. This thesis contributes to the literature on

market microstructure.

The rest of this chapter is organised as follows. The next section offers some

background information relevant to this thesis, including a description of market

mechanism and a brief introduction to trade execution. The research aims and

objectives of this thesis are then outlined. Following from this is a short overview

of the research framework, along with the contribution of the thesis and its scope

limitations. An overview of the structure of the remainder of this thesis then

completes the chapter.

1.1 Limit Order Market and Trade Execution

Traditional exchanges are organised as dealer markets, where designated market

makers set the quotes and directly trade with other market participants. With

the developments of information technology over the last few decades, electronic
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trading systems have gradually replaced the role of designated market makers.

Many securities exchanges have set up new limit order markets, or converted tra-

ditional dealer markets to hybrid ones, which allow trading via a blend of an elec-

tronic trading platform and a traditional floor broker system.

• Examples of pure limit order markets include Tokyo Stock Exchange, Hong

Kong Stock Exchange, Paris Bourse, Toronto Stock Exchange, Australian

Stock Exchange, Shanghai Stock Exchange, and Singapore Exchange.

• Examples of newly set-up limit order markets in traditional exchanges in-

clude the Stock Exchange Electronic Trading Service (SETS) system in the

London Stock Exchange (LSE), the Globex trading system in the Chicago

Mercantile Exchange (CME), and the electronic option trading platform in

the International Securities Exchange.

• Examples of hybrid markets include the New York Stock Exchange (NYSE)

and NASDAQ.

The electronic revolution has also brought many off-exchange trading venues,

including electronic communication networks (ECNs) and dark pools. Examples

of ECNs include ArcaEdge, BATS Chi-X, and Turquoise. In contrast to ECNs and

limit order markets where order and quote information are visible, participants in

dark pools cannot see the orders placed by the other participants. Examples of

dark pools include Instinet, Liquidnet, and POSIT.

This thesis focusses attention on limit order markets which are the prevalent

trading mechanism in the world’s major stock exchanges. A brief introduction to

the limit order market mechanism is provided in the next section followed by a

description of the trade execution problem.
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1.1.1 Limit Order Book

Today more than half of the stock exchanges around the world are limit order

markets which operate a limit order book to match buyers and sellers (Jain, 2003).

One advantage of an electronic limit-order-book is the greater transparency of-

fered by these systems when compared with dealer market settings. Price quotes

and transactions are visible to all participants which generally improves the effi-

ciency of price discovery, thus promoting market confidence (Gould et al., 2011;

Parlour & Seppi, 2008). It also promotes competition as dealers/market makers

are encouraged to post the best prices to attract order flow (CFA, 2009).

In a limit order market, traders can either submit a limit order or a market

order. A market order is an order to buy or to sell a specified number of shares. It

guarantees immediate execution but provides no control over its execution price.

In contrast, a limit order is an order to buy or to sell a specified number of shares at

a specified price. It provides control over its execution price but does not guarantee

its execution.

Table 1.1: Order Book 1

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
200 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 1.2: Order Book 2

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 1.1 shows a sample order book, where all the buy and sell orders are

visible/transparent to traders in the market. It consists of two queues which store

buy and sell limit orders, respectively. Buy limit orders are called bids, and sell

limit orders are called offers or asks. The highest bid price on the order book is

called best bid, and the lowest ask price on the order book is called best ask. The
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Table 1.3: Order Book 3

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 100
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 1.4: Order Book 4

Bid Ask
Shares Prices Prices Shares

300 50.19 50.23 100
500 50.18 50.24 100
400 50.17 50.25 300
500 50.16 50.26 200
300 50.15 50.27 400
100 50.14 50.28 300

difference between best bid and best ask is called bid-ask spread. Prices on the

order book are not continuous, but rather change in discrete quanta called ticks.

Orders in a limit order market arrive stochastically in time. The price limit of

a newly arrived order is compared to those of orders already held in the system to

ascertain whether there is a match. If so, the trade occurs at the price set by the

first order. The set of unexecuted limit orders held by the system constitutes the

dynamic order book, where limit orders can be cancelled or modified at any time

prior to their execution. Limit orders on the order book are typically (depending

on market rules) executed strictly according to (1) price priority and (2) time pri-

ority. Bid (ask) orders with higher (lower) prices get executed first with time of

placement being used to break ties. A buy (sell) market order is executed at the

best ask (bid) price. The limit order book is highly dynamic, because new limit

orders will be added into the order book, and current limit orders will get executed

or cancelled from the order book throughout the trading day. Table 1.2 shows the

order book after a trader submits a buy limit order with 300 shares placed at price

50.18. Table 1.3 shows the order book after a trader submits a buy market or-

der with 100 shares. Table 1.4 shows the order book after a trader submits a buy

market order with 300 shares.

Apart from market and limit orders, some stock exchanges also offer hid-

den/iceberg orders to allow traders to conceal the total size of a large limit order.
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Such orders consist of two components, a small component whose size is visi-

ble in the order book and a larger hidden component with a size known only to

the order submitter. The hidden component is exposed to the market gradually

through execution of the visible part of the order (Aitken et al., 2001; Biais et al.,

1995). Many electronic trading platforms have introduced this kind of order, in-

cluding Euronext, the Toronto Stock Exchange, the London Stock Exchange, and

XETRA. Hidden limit orders are often used by large liquidity traders to hide their

intent to trade (Bongiovanni et al., 2006). However, iceberg orders typically ex-

hibit a less favorable time priority compared with pure limit orders (Bessembinder

et al., 2009; Esser & Monch, 2007). After the visible portion of an iceberg order

is completely matched, other visible limit orders at the same limit price that were

entered before the new portion is displayed take priority.

1.1.2 Trade Execution

“The investment process has been described as a three-legged

stool supported equally by securities research, portfolio management,

and securities trading. Of the three, trading is often the least under-

stood and the least appreciated function.”

A. Madhavan, J.L. Treynor and W.H. Wagner (2007)

Trade execution is the implementation of trading decisions. The costs that

arise during the execution process are called trading costs. Understanding trading

costs is important for the design of efficient and effective trade execution strat-

egy, as well as for the assessment of performance of traders, brokers and trading

algorithms.

Trading costs involve commissions paid to brokers, fees paid to exchanges,

spread, market impact, and opportunity cost. The first three items are visible,
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which can be known before any trade is made. The last two items are not directly

measurable a priori. These five costs are explained as follows.

1. Commission is the payment made to brokers, which varies from broker to

broker. Commissions have been greatly reduced over recent years. Goldstein

et al. (2009) analysing institutional commissions using the data provided by

Greenwich Associates find that the average commission per share in 2004 is

under 5 cents, about one third of that in 1977.

2. Fees are charged by exchanges during the execution process. These are often

bundled into the total commission paid to brokers.

3. Bid-ask spread is the difference between the best available bid and ask price

in markets.

4. Market impact, also known as price impact, is the effect of a trade on the price

of the asset. The most obvious illustration of price impact is that a buying

event always drives the price up and a selling action pushes the price down.

For example, the mid-quote (the average of the best bid and the best ask)

of a stock drops from $200 to $199.6 (supposed) after a market sell order is

executed, where the price decline is the effect caused by trading the sell order.

5. Opportunity cost arises when an order fails to be fully executed. For example,

a trading task of selling 120,000 shares at $200 per share is supposed to be

finished by the end of the trading day, but only 100,000 shares are sold by the

end of the day. At that time, the price drops to $198. The opportunity cost

of failing to execute this entire order is $40,000 which is calculated as 20,000

multiplied by the $2 price decline per share.

Many empirical studies (Chan & Lakonishok, 1995, 1997; Collins, 1991; Kraus

& Stoll, 1972) indicate that the visible components of trading costs are much

7



smaller than the invisible components and price impact always dominates total

trading cost. As markets have become electronic, commissions and fees have

been driven down. In the optimal trading literature (Alfonsi et al., 2010; Almgren

& Chriss, 1999, 2000; Bertsimas & Lo, 1998; Hora, 2006; Obizhaeva & Wang,

2012), price impact cost is equated with trading cost.

A practical problem arising in limit order markets is how to buy or sell large

quantities of an asset with minimum execution costs. Executing a large order at

once will cause significant price impact cost. The most obvious way to reduce this

cost is to break the large order into a number of smaller pieces and spread them

over time. A trade execution strategy is devised to minimise the price impact cost.

1.2 Research Aims

In this thesis, three broad questions are addressed in order to gain a better under-

standing of price impact:

1. Does price impact on the LSE and the NYSE exhibit an intraday pattern? The

literature on market microstructure has discovered many intraday patterns of

a number of interesting variables in financial markets. For example, bid-ask

spread on the NYSE exhibits a U-shaped intraday pattern (Lee et al., 1993):

the spread is relatively higher at market open and market close than during

the middle of the trading day. However, only a few studies pay attention to

the intraday behaviour of price impact. Chan (2000) finds that price impact

displays a U-shaped pattern over the trading day on the Hong Kong Stock

Exchange. This thesis aims to examines the intraday behaviour of price impact

in US and UK markets, using the data drawn from the NYSE-Euronext TAQ

database and the LSE ROB database.

2. Does agent intelligence affect the magnitude of price impact? Previous studies
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(e.g. Farmer et al. (2004); Hasbrouck (1991); Lillo et al. (2003)) concerning

price impact find that price impact is influenced by trade size and the state

of the limit order book, and is a concave function of trade size. Some of

these studies (Farmer et al., 2004; Hopman, 2007; Weber & Rosenow, 2006)

argue that this concavity is due to agent’s selective liquidity taking, namely

agents conditioning their trade size on market liquidity. The second aim of

this thesis is to investigate whether agent intelligence plays an important role

in determining price impact.

3. Does order choice affect price impact when trading large orders? Controlling

price impact when trading a large order is an important issue in financial mar-

kets. Many studies have been devoted to this problem. However, only market

orders are examined in these studies. The third aim of this thesis is to examine

the influence of order choice on the price impact of trading a large order.

These questions have practical significance. Without an understanding of the in-

fluences of these three factors on price impact, our understanding of price impact

is incomplete. Answering these questions will help us gain a better understanding

of price formation, thus will help us to better understand how securities markets

function, and help practitioners to devise better trading strategies leading to re-

duced execution costs and therefore improved investment returns.

In the first experiment, an intraday pattern on price impact is expected to be

observed in US and UK markets. In the second experiment, the price impact gen-

erated from the artificial market is expected to be higher than the price impact

produced from the real market, which will support the hypothesis that agent in-

telligence is an important determinant of the magnitude of price impact. In the

third experiment, it is expected that the trade execution strategies adopting mul-

tiple order types outperform those using single order type, which indicates that
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order choice between market order and limit order plays an important role in de-

termining price impact when trading a large order.

1.2.1 Objectives of Research

The following objectives need to be achieved in order to fulfill the research aims

of this thesis.

1. Review relevant literature on market microstructure and price impact.

2. Develop an algorithm for preprocessing TAQ data.

3. Develop an algorithm for rebuilding the limit order book using the LSE ROB

data.

4. Develop an agent-based model of a limit order market.

5. Design trade execution strategies.

6. Analyse price impact.

7. Draw conclusions from the results.

1.3 Framework of Research

To address the first research aim, an empirical analysis of intraday market liq-

uidity and price impact is undertaken using ultra high-frequency datasets from

the London Stock Exchange (LSE) and the NYSE-Euronext. The datasets record

trade and quote information on each trading day. This enables us to identify the

price before and after each single trade, and thus measure the price impact of each

trade. Before its use for analysis, the data has to be preprocessed.
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To address research aims two and three, an agent-based modelling (ABM)

approach is adopted. This is a computerised simulation consisting of a number

of agents. The emergent properties of an agent-based model are the result of

“bottom-up” processes, where the decisions of individual and interacting agents at

a microscopic level determine the macroscopic behavior of the system (LeBaron,

2006; Samanidou et al., 2007; Tesfatsion, 2006). Unlike classical micro-economic

models, the concept of equilibrium has little meaning in ABM-simulated systems,

as the interactions of the agents result in continual movement between system

states. The collective emergent property of the complex system makes the whole

become more than the sum of its parts.

Agent-based modelling approach has been applied in the fields of economics

and finance for many years. One of the earliest agent-based models in concepts

was developed by the Nobel laureate Thomas Schelling (1971). It is now widely

used in economic and finance as an alternative research methodology and offers

a number of advantages. The first is that most agent-based stock markets exhibit

some stylised facts, like volatility clustering and fat tails of price returns, which

can not be explained by traditional theoretical models (Chen et al., 2012). Another

advantage is that it is very easy to analyse one specific factor by isolating it in the

simulation. On the contrary, it is often difficult to isolate the effects resulting from

a specific factor from others with econometric approaches.

In order to investigate whether agent intelligence and order choice decision

affect price impact, agent-based modelling is used to simulate artificial markets

which isolate these two factors. Chapter 6 simulates an artificial market consist-

ing of intelligence-isolated agents, namely zero-intelligence agents, in order to

investigate the price impact generated by zero-intelligence agents. In Chapter 7,

artificial markets considering agent’s order choice decisions are simulated, as well

as artificial markets isolating agent’s order choice decisions, in order to evaluate
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the effect of order choice on the price impact when trading a large order. In this

thesis, the artificial market settings possess the salient features of electronic limit

order markets: continuous trading, a visible book of orders, price-time priority

rules, instantaneous trade reporting rules, order cancellation capabilities, and both

limit order and market order functionality.

1.4 Contributions of Thesis

The work presented in this thesis has given rise to a number of contributions as

described below.

• Up-to-date review of relevant literature

This thesis presents an up-to-date survey of relevant literature on market

microstructure, price impact, and agent-based modellings of financial mar-

kets. The review in Chapter 2 covers up-to-date studies on the relation-

ship between price impact and trade size, studies on large price impact are

covered, studies of intraday phenomena on price volatility, bid-ask spread,

trading volume and market depth, studies on optimal trading strategies for

a single asset, and studies on order submission strategies. The literature

review of agent-based financial markets in Chapter 3 covers various appli-

cations of agent-based modelling to financial markets.

• Analysis of intraday behaviours of price impact in UK and US markets

This thesis analyses intraday behaviours of price impact, using the recent

data drawn from the NYSE-Euronext TAQ database and the LSE ROB

database. While many studies analyse intraday behaviours of price volatil-

ity, bid-ask spread, trading volume and market depth, little attention has

been paid to price impact in UK and US markets. This thesis aims to shed
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light on this, and for the first time documents intraday patterns of price im-

pact in UK and US markets.

• Up-to-date evidence on intraday behaviours of market liquidity in UK

and US markets

This thesis analyses intraday behaviours of market liquidity, using the data

drawn from the NYSE-Euronext TAQ database and the LSE ROB database.

Unlike previous studies on intraday phenomena which only examined the

market depth at the best level of the limit order book, this thesis for the first

time analyses the intraday behaviour of market depth for up to ten levels

of the limit order book in the UK market. Moreover, since the previous

studies on intraday phenomena are dated, this thesis aims to provide up-

to-date evidence on intraday behaviours of price volatility, bid-ask spread,

market depth, trading volume, trading frequency and trade size in UK and

US markets.

• Investigation of the role of agent intelligence in determining the magni-

tude of price impact

Several studies argue that the concavity of price impact is due to selective

liquidity taking. However, no studies have been conducted to investigate

this. This thesis for the first time investigates whether agent intelligence

plays an important role in determining the magnitude of price impact, and

provides evidence supporting this hypothesis.

• Examination of the effect of order choice on the price impact when

trading a large order

Many studies examine how to control price impact when trading a large or-

der. However, these studies only consider market orders. This thesis for the
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first time analyses whether order choice affects the price impact of trading

a large order, and demonstrates that it does.

• Use of ABM for investigating price impact

Various applications of agent-based modelling to economics and finance can

be found in prior literature, but there has been little attempt to use ABM for

investigating price impact. This thesis makes the first attempt to investigate

price impact using ABM in its two experimental studies. In Chapter 6,

agent-based modelling is used to simulate an artificial limit order market

consisting of zero-intelligence agents, in order to examine the price impact

produced by zero-intelligence agents. In Chapter 7, agent-based artificial

markets are also simulated in order to analyse the price impact of trading a

large order.

1.5 Scope Limitations

This thesis makes a useful contribution to our understanding of price impact.

However, it does not conduct an exhaustive analysis of all possible avenues. There

are a number of areas worthy of further research that fall outside the scope of this

work. The following parts of this section list some of these areas.

When examining the intraday behaviours of price impact, the focus of the

present work is on the price impact caused by market orders. The analysis can

be extended to price impact of other types of orders. For example, Eisler et al.

(2012); Hautsch & Huang (2012) examine the price impact caused by limit orders,

and Gabaix et al. (2006); Keim & Madhavan (1996) investigate the price impact

of upstairs orders.

In this thesis, an agent-based modelling approach is used to model price im-

pact, that is the immediate effect of trading on prices. This could be extended to

14



consider the resilience of price impact. For example, Gatheral et al. (2011) models

that the price impact decays exponentially over time.

While studying the issue of controlling price impact, attention is limited to the

trading of a large order occurring in one trading venue. This could be extended to

the case where a large order is being traded across multiple trading venues. For

example, Foucault & Menkveld (2008) empirically examine the smart order rout-

ing systems, and Rawal (2010) discusses the importance of intelligent decision-

making in order routings.

1.6 Structure of Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 - Review of Relevant Literature

A review of the literature on intraday patterns, price impact, trade execution

strategies is provided. Some research gaps in the current state of the art are

identified at the end of the chapter.

• Chapter 3 - Agent-based Modelling in Finance

A brief introduction to agent-based modelling and its applications to finance

are given in this chapter, along with an introduction to the Genetic Algo-

rithm, a technique often adopted for simulating agent learning.

• Chapter 4 - Datasets and Data Processing

A description of the datasets used to analyse price impact, as well as the

data preprocessing steps required is provided.

• Chapter 5 - Intraday Behaviour of Price Impact
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Ultra high-frequency data from the LSE and the NYSE-Euronext is used to

analyse the intraday behaviour of price impact, as well as intraday features

of market activity and market liquidity.

• Chapter 6 - An Investigation of Price Impact and Agent Intelligence

An agent-based modelling approach is adopted to simulate the market for a

particular stock in the LSE, where every aspect of the order flow in the LSE

market is imitated in the artificial market except the trader’s intelligence.

Then the price impact reproduced from the artificial market is compared

with that in real market, in order to understand whether agent intelligence

plays an important role in determining the magnitude of price impact.

• Chapter 7 - Dynamic Trade Execution with Limit and Market Orders

A number of trade execution strategies which adopt different types of orders

are devised as well as some benchmark strategies which use single order

type. These strategies are evaluated by their trading impact on the market,

in order to examine the effect of order choice on price impact when trading

a large order.

• Chapter 8 - Conclusions

A summary of the thesis is provided in this chapter, along with an overview

of its contributions and limitations. Opportunities for future work are also

outlined.
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Part I

Literature Review
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In Part I the relevant literature is reviewed and the main methodology of re-

search is described.

In Chapter 2, the theoretical background of this thesis, that is market mi-

crostructure, is introduced, and a brief overview is provided. Previous work on

price impacts, intraday patterns and trade execution is reviewed, and gaps of re-

search are revealed.

In Chapter 3, agent-based modelling approach is introduced, and framework

of modelling is described. Prior work on artificial markets modelling is reviewed.
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Chapter 2

Market Microstructure

This chapter provides a literature review on relevant work, including an overview

of market microstructure, a review of literature on intraday phenomena, a review

of studies concerning price impact, and a review of literature on trade execution

strategies. At the end of the literature review, a few research gaps in the current

state of the art are identified which lead to the three experimental studies of this

thesis.

2.1 Introduction

The theoretical foundation for the studies in this thesis is found primarily in the

field of market microstructure. Market microstructure is formally defined by

O’Hara (1995) as “the study of the process and outcomes of exchanging assets

under explicit trading rules”.

Studies on market microstructure are helpful in understanding the returns to

financial assets and how financial markets become efficient. Moreover, it has

immediate application in understanding the design of trading strategies and the

regulation of financial markets.
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The domain of market microstructure is wide and broad. An overview of this

area is provided in section 2.2. This thesis is related to several streams of market

microstructure research. The following topics will form the focus of this chapter.

• Price impact.

• Intraday pattern.

• Trade execution strategies.

2.2 Overview of Market Microstructure

The study of market microstructure involves every aspect of the trading process.

There has been a vast number of studies on market microstructure since its emer-

gence. Several papers and books have provided a valuable survey of the literature

in this area. O’Hara (1995) gives a comprehensive review of theoretical work

on market microstructure. Madhavan (2000) provides an overview of market mi-

crostructure literature from the viewpoint of informational economics. Also, he

distinctively summarises the issues examined in market microstructure and clas-

sifies them into the four following categories.

1. Price formation. It is also known as price discovery, is the process by which

prices come to impound new information. This theme concerns every aspect

of the trading process.

2. Market structure and design. This theme focuses on how different market

structures affect the speed and quality of price discovery, liquidity, and the

cost of trading, and concerns how to design a better market. The design of

a market determines its market microstructure, and thus affects the quality of

the market.
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3. Market transparency. It is defined as the ability of market participants to

observe information about the trading process (O’Hara, 1995). This theme

focuses on how various levels of market transparency influence the process of

price formation.

4. Applications to other areas in finance. This theme concerns the interface of

market microstructure with other areas of finance including corporate finance,

asset pricing and international finance.

2.2.1 Market Liquidity

Market liquidity is an important quality characteristic of a financial market and is

also a significant research topic in the area of market microstructure. Understand-

ing liquidity is beneficial for both market participants and the exchange. O’Hara

(1995) interprets liquidity as a measure of the cost of waiting and a function of the

scale of trading. High liquidity means the ability to trade securities quickly and at

desirable prices. Market liquidity is a crucial consideration when market partic-

ipants make their investment decisions and trading decisions. Moreover, a more

liquid exchange can attract more participants which has a network externality ef-

fect. The more participants the exchange has, the more valuable the exchange

is.

Market liquidity is a multi-dimensional variable. The following four dimen-

sions of liquidity are distinguished by the literature (Black, 1971; Kyle, 1985).

1. Market tightness is the ability to execute a buy order and a sell order of an asset

at the same price at the same time. The proportional quoted spread (Copeland

& Galai, 1983) is often used as an approximation of liquidity costs, measuring

hypothetical trading cost.
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2. Market depth is the ability to execute a sale / purchase of a certain amount of

an asset without influence on the price.

3. Market immediacy is the ability to execute an order immediately at the pre-

vailing price.

4. Market resiliency measures the speed at which liquidity recovers from shocks.

Market liquidity is affected by market structure. Market makers are the only

suppliers of liquidity in dealer markets. However, the role of market makers

has largely been superceded, as most market have adopted electronic limit or-

der books. In a limit order market, liquidity is supplied by market participants

themselves, and is illustratd by the state of the limit order book. The limit order

book evolves over time as matched limit orders are deleted from the order book

and as new incoming limit orders are added into the order book.

2.2.2 Theoretical Market Microstructure Models

One of the crucial aims of market microstructure is to understand how price is

formed. Theoretical market microstructure models of price formation fall into the

three types of models. This section briefly introduce the three types of models.

1. Inventory based model. These models try to explain security prices from in-

ventory imbalances of market makers. The market maker maintains the bid-

ask spread in order to compensate the risk of holding inventory.

2. Information based model. The second class of models is based on the idea of

asymmetric information. Traders can either be informed or uninformed (Bage-

hot, 1971). If they posses private information on the value of the asset, they

are called informed traders. If they trade in order to rebalance their positions,
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they are called liquidity or uninformed traders. A consequence of asymmetric

information is that trading itself conveys information.

3. Limit order market model. The third class of models tries to explain the price

formation process on the limit-order-book market. In a limit order market, the

difference between informed traders and uninformed traders is not obvious.

Moreover, unlike the dealer market, the limit order market has no specific

market maker who maintains market liquidity. The roles of supplying and

demanding liquidity are played by the market participants by using either limit

orders or market orders. This category of models has a particular focus on

analysing how order submission strategies and other aspects of trading affect

the price of an asset in limit order markets.

Financial markets are constantly evolving and becoming more complex. From

2005 to 2009, the average trade size on the NYSE has decreased from 724 shares

to 268 shares and the average daily trades have increased from 2.9 million to

22.1 million (Durbin, 2010). Thus, one challenge faced by researchers in market

microstructure is the dramatically growing amount of data.

2.3 Price Impact

The effect of trading on the price of the asset is called price/market impact, which

is considered a dynamic property of liquidity. A sell trade is always associated

with a following fall in market price and a buy trade is always followed by a

rise in market price. Black (1971) states that large order execution would always

exert an impact on price, irrespective of the method of execution or technological

advances in market structure.

The earliest research empirically examining the effects of trading large orders

on a market dates back to Kraus & Stoll (1972), who found that the execution of
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large orders on the NYSE had a temporary price impact and a permanent price

impact. This fact is later confirmed by Biais et al. (1995), Coppejans et al. (2003),

Evans & Lyons (2002), Holthausen et al. (1987), and Holthausen et al. (1990).

They argue that the temporary impact is related to the trade size and market liq-

uidity, and the permanent impact is associated with information. Recently, a few

studies have different views on price impact. Bouchaud et al. (2004) present the

view that price impact is fixed and temporary. Farmer et al. (2006) argue that price

impact is variable and permanent.

The explanation for price impact in earlier studies asserts that trade affects

price because it contains information, and this effect increases with trade size.

French & Roll (1986) show that price movements are due to private information

conveyed through trading. Hasbrouck (1991) proposes a method to measure the

information content in a trade.

2.3.1 Price Impact and Trade Size

The relationship between price impact and trade volume has been extensively

studied in the financial market microstructure literature. The conclusion of previ-

ous studies is that the price impact of a market order is a concave function of order

size, and this has been validated using transaction-level data in Lillo et al. (2003);

Farmer & Lillo (2004); Farmer et al. (2005b); Lim & Coggins (2005a); Hopman

(2007).

Price impact is typically measured as the difference of mid-quote price before

the order arrives and the mid-quote price after it has been executed. The functional

form is

p = γ ∗ vµ
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where p is the price impact of a market order with order size v, γ and µ are

constants of the function. The specific constants of the function vary in different

markets and at different time periods. Although previous literature has agreement

on the concavity functional form of price impact, it is inconclusive in the specific

functional form. A comparison of the empirical studies on immediate price impact

is shown in Table 2.1.

Previous empirical studies show that large trades have less marginal price im-

pact than small trades. Three explanations for the concavity result from previous

literature are summarised in Bouchaud et al. (2009).

The first one is from the information context as postulated by Barclay &

Warner (1993). The price impact reflects the informativeness of trades, which

increase with their private information content. The concavity is due to informed

traders’ “stealthy trading”, keeping their orders small in order to avoid revealing

their superior knowledge. Hasbrouck (1991) propose a VAR approach to measure

the information content in each trade.

The second explanation claims that the concavity is due to the shape of the

limit order book. The depth in the order book as a function of the price will

determine the market impact for a market order as a function of its size (Daniels

et al., 2003). Bouchaud et al. (2002) have observed that the average order book

on the Paris Bourse has a maximum away from the best bid/ask. Smaller market

orders are faced with less liquidity than larger ones in such limit order markets.

This explanation is ruled out by Weber & Rosenow (2006) and Farmer & Zamani

(2007). In Bouchaud et al. (2004), the concave shape of the impact as a function

of the volume is understood as an order book effect, where the average size of the

queue increases with depth.

The third explanation is called selective liquidity taking (Farmer et al., 2004).

Traders with large orders to trade are more patient while smaller order traders are
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less patient. Large order traders may wait for periods of higher liquidity (Weber

& Rosenow, 2006; Hopman, 2007).

2.3.2 Large Price Fluctuations and the Order Book

Market liquidity plays a significant role in the price formation process. The role of

real information appears to be rather thin when there are large price fluctuations.

Price impact is affected by the market liquidity. The price responses to trades of

the same size is highly variable. Many studies show that the random walk nature

of price changes on short timescales is not due to the unpredictable nature of in-

coming news, but appears as a dynamic consequence of the competition between

market participants (Bouchaud et al., 2004). Recent work suggest that liquid-

ity fluctuations play an essential role in price formation (Farmer & Lillo, 2004;

Farmer et al., 2004; Gillemot et al., 2005; Lillo et al., 2005; Weber & Rosenow,

2006). In price formation, liquidity fluctuations dominate over fluctuations in

transaction size. Joulin et al. (2008) provide direct evidence that large transac-

tion volumes are not responsible for large price jumps, and conjecture that most

price jumps are induced by order flow fluctuations close to the point of vanishing

liquidity.

Recently, several papers cast doubts on concavity, and provide evidence that

the concave shape cannot be a property of the true price impact a trader in an actual

market would observe. Weber & Rosenow (2005) found a strong anticorrelation

between price changes and order flow. Weber & Rosenow (2006) found little

evidence that price changes larger than five standard deviations can be explained

by an extreme order flow alone. They found that a low density of limit orders in the

order book, i.e. limited liquidity, was a necessary prerequisite for the occurrence

of extreme price fluctuations. Taking into account both order flow and liquidity,

large stock price changes can be explained quantitatively. There are two reasons to
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explain why this concave shape (of volume imbalance) cannot be a property of the

true price impact a trader in an actual market would observe (Weber & Rosenow,

2005). Firstly, such a concave price impact would be an incentive to do large

trades in one step instead of breaking them up into many smaller ones as is done

in practice. Secondly, in the presence of bluffers in the market, the enforcement of

a strictly linear price impact is the only way in which a market maker or liquidity

trader can protect herself against suffering losses.

The above review of literature on price impact has shown that price impact is

determined by trade size as well as the state of the limit order book when the trade

occurs. However, the two following questions concerning price impact are still

unanswered.

1. It is still unknown about the up-to-date intraday behaviour of price impact.

Chan (2000) showed that price impact displayed a U-shaped pattern over the

trading day on the HKSE. The review of literature on intraday phenomena

will show that many financial variables exhibit intraday patterns which differ

across markets and time periods.

2. No study has been conducted to investigate whether agent intelligence plays

an important role in determining the magnitude of price impact. Farmer et al.

(2004); Hopman (2007); Weber & Rosenow (2006) all argue that trader’s

choice of trading time affect price impact.

A better understanding of the two questions concerning price impact is helpful

for developing more comprehensive price impact models than those reviewed in

Section 2.3.1.
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2.4 Intraday Patterns

Intraday behaviour of different market variables have been analysed extensively

in previous literature which dates back to Wood et al. (1985) and Harris (1986).

One of the interesting findings is that many of these variables demonstrate a U-

shaped pattern over the trading day: the levels of these variables are relatively

high at the beginning and at the end of the trading day, and relatively low in the

middle of the day. The empirical evidence on intraday behaviours of these market

variables helps us build theoretical models explaining the intraday behaviour of

the underlying market.

Different shapes of intraday patterns are defined as below.

• U-shaped pattern: values at market open and close are relatively higher than

the values in the middle of the trading day

• Inverted U-shaped pattern: values at market open and close are relatively

lower than the values in the middle of the trading day

• J-shaped pattern: values at market close are relatively higher than the values

at the rest of the trading day

• Reverse J-shaped pattern: values at market open are relatively higher than

the values at the rest of the trading day

• S-shaped pattern: values at market open are relatively lower than the values

in the middle of the trading day, and values at market close are relatively

higher than the values in the middle of the trading day.

• Reverse S-shaped pattern: values at market open are relatively higher than

the values in the middle of the trading day, and values at market close are

relatively lower than the values in the middle of the trading day.
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(a) U-shaped (b) Inverted U-shaped

(c) J-shaped (d) Reverse J-shaped

(e) S-shaped (f) Reverse S-shaped

Figure 2.1: Different Shapes of Intraday Patterns
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There have been a number of studies which have analysed intraday patterns

in financial markets. Admati & Pfleiderer (1988) developed the theoretical foun-

dations of intraday patterns found in financial markets. They argue that both in-

formed and liquidity traders prefer to trade when market is thick, that is when

their trades have little impact on price. Thus at periods when market is thick, both

informed and liquidity traders are willing to trade. Also the strategic interaction

between informed and liquidity traders intensifies the concentration of trading at

these periods of the trading day, leading to the observed intraday pattern of trading

volume.

Another explanation is provided by Brock & Kleidon (1992). They explain the

intraday pattern in a dealer market. They relate the intraday patterns to investors’

demand of transactions during the trading period. Due to the accumulation of

overnight information or due to the imminent non-trading period, investors have

a higher demand for transactions in order to achieve an optimal portfolio mix or

transfer overnight risk at market open and close than for the rest of the trading

day. This motivates the specialist’s interest in exploiting the liquidity inelasticity

at these periods, leading to wide spread and high trading volume at open and close.

More recent studies have attributed the intraday pattern to limit order traders.

Ahn & Cheung (1999) & Chung et al. (1999) show that limit order traders keep the

spread wide in order to offset the high risks of trading against informed traders.

2.4.1 Intraday Price Volatility

Numerous studies examine the intraday variation of bid-ask spread and document

a U-shaped intraday pattern (as summarised in Table 2.2). The price volatility is

relatively high at market open and close, and relatively low during the middle of

the day. The Hong Kong Stock Exchange exhibits a double U-shaped intraday

pattern on bid-ask spread as shown by Cheung et al. (1994). This is because that
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Table 2.2: Intraday Pattern: Price Volatility

Exchange Intraday Pattern Period of Data Authors

NYSE U-shaped
Sep. 1971 - Feb. 1972

Wood et al. (1985)
Jan. - Dec. 1982

NYSE U-shaped before 1986 Harris (1986)
NYSE U-shaped Jan. 1979 - Dec. 1983 Jain & Gun-Ho (1988)
NYSE U-shaped 1980,1981,1983,1984 McInish & Wood (1990b)
NYSE U-shaped Jan. 1964 - Feb. 1989 Lockwood & Linn (1990)
NYSE U-shaped Jan. - Jun. 1989 McInish & Wood (1992)
NYSE U-shaped Jan. - Dec. 1988 Foster & Viswanathan (1993)
NYSE U-shaped Jan. - Dec. 1991 Werner & Kleidon (1996)
NYSE U-shaped Jan. - Dec. 1990 Madhavan et al. (1997)

NASDAQ U-shaped
Oct. - Dec. 1991

Chan et al. (1995)
Aug. - Sep. 1992

LSE U-shaped Jan. - Dec. 1991 Werner & Kleidon (1996)
LSE U-shaped Jan. - Mar. 1991 Abhyankar et al. (1997)
LSE U-shaped Mar. - May 2001 Cai et al. (2004)

HKSE double U-shaped before 1994 Cheung et al. (1994)

TkySE U-shaped
Jan. - Nov. 1991

Lehmann & Modest (1994)
Feb. 1992 - Apr. 1993

FSE reverse J-shaped May 2004 - Sep. 2005 Hussain (2011)

Note: HKSE is short for Hong Kong Stock Exchange.
TkySE is short for Tokyo Stock Exchange.
FSE is short for Frankfurt Stock Exchange.
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there was a lunchbreak session for two hours in the middle of the trading day at

that time period, dividing the trading day into a morning trading session and an

afternoon trading session, leading to two U-shaped patterns in the morning and in

the afternoon. Hussain (2011), however, observe a reverse J-shaped pattern while

examining the intraday price volatility in the Frankfurt Stock Exchange.

Admati & Pfleiderer (1988) provide an explanation for the U-shaped intraday

pattern on price volatility. Their model predicts that price volatility is related to

informed trading. Prices are more volatile in high-volume periods than in low-

volume periods because high-volume periods attract more informed traders than

low-volume periods which makes prices are more informative at high-volume pe-

riods.

2.4.2 Intraday Bid-ask Spread

A number of studies examine the intraday behaviour of bid-ask spreads in the

NYSE and report a U-shaped intraday pattern (Chung et al., 1999; Lee et al., 1993;

Madhavan et al., 1997). The spread is wider near the market open and close than

during the middle of the day. The U-shaped intraday pattern on bid-ask spread

is also observed in the Toronto Stock Exchange (Vo, 2007), the LSE (Abhyankar

et al., 1997), the HKSE (Ahn & Cheung, 1999) and the Tokyo Stock Exchange

(Lehmann & Modest, 1994).

Some studies have proposed explanations for the U-shaped intraday pattern on

bid-ask spread. Brock & Kleidon (1992) attribute the wide spread at market open

and close to the actions of the specialists who exploit the liquidity inelasticity at

these time periods. Chan et al. (1995) attribute the narrowing of the spread at

market close to the improved quotes from dealers who need to balance their in-

ventories. More recent research (Ahn & Cheung, 1999) argues that the U-shaped

pattern in spreads is driven by limit order traders who keep spreads wide at the
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Table 2.3: Intraday Pattern: Bid-Ask Spread

Exchange Intraday Pattern Period of Data Authors

NYSE U-shaped Jan. - Dec. 1988 Lee et al. (1993)
NYSE reverse J-shaped Jan. - Jun. 1989 McInish & Wood (1992)
NYSE U-shaped Jan. - Dec. 1990 Madhavan et al. (1997)
NYSE U-shaped Nov. 1990 - Jan. 1991 Chung et al. (1999)
NYSE reverse S-shaped Jan. - Dec. 1999 Henker & Wang (2006)

NASDAQ reverse S-shaped Oct. - Dec. 1991 Chan et al. (1995)
Aug. - Sep. 1992

TrtSE U-shaped Sep. 1999 - Nov 1999 Vo (2007)
LSE reverse S-shaped Jan. - Dec. 1991 Werner & Kleidon (1996)
LSE U-shaped Jan. - Mar. 1991 Abhyankar et al. (1997)
LSE reverse J-shaped Mar. - May 2001 Cai et al. (2004)

HKSE U-shaped Oct. 1996 - Mar. 1997 Ahn & Cheung (1999)

TkySE U-shaped Jan. - Nov. 1991 Lehmann & Modest (1994)
Feb. 1992 - Apr. 1993

FSE reverse J-shaped May 2004 - Sep. 2005 Hussain (2011)
ISE reverse J-shaped May - Jul. 2008 Koksal (2012)

Note: TrtSE is short for Toronto Stock Exchange.
HKSE is short for Hong Kong Stock Exchange.
TkySE is short for Tokyo Stock Exchange.
FSE is short for Frankfurt Stock Exchange.
ISE is short for Istanbul Stock Exchange.
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open and close to offset high adverse selection costs. Similar arguments are pro-

posed by Chung et al. (1999) who show that the U-shaped intraday pattern of

spread on the NYSE largely reflects the intraday behaviour of the spread estab-

lished by limit order traders.

In contrast to the U-shaped pattern noted above, reverse J-shaped intraday

patterns on bid-ask spread are demonstrated by Cai et al. (2004), Hussain (2011),

Koksal (2012) and McInish & Wood (1992). The spread opens wide, narrows

down in the first few hours and is relatively stable for the rest of the trading day.

As explained by the model of Madhavan (1992), the high spread in the morning

is due to greater uncertainty. As information asymmetry is gradually resolved

over the trading day, more market participants become informed by observing the

market, leading to a decline in the spread during the day.

Besides, some studies (Chan et al., 1995; Henker & Wang, 2006; Werner &

Kleidon, 1996) document that the spread declines over the trading day. As pointed

out by Chan et al. (1995), the difference of spread pattern between various markets

can be attributed to the differences in trading structure. A summary of the studies

documenting intraday patterns of the bid-ask spread is provided in Table 2.3.

2.4.3 Intraday Trading Volume

U-shaped intraday patterns on trading volume are documented in many studies

(summarised in Table 2.4). Trading volume is high at market open, is relatively

low during the day, and rises again as market close approaches. Jain & Gun-Ho

(1988) explain that high trading volumes at market open arise because investors

trade on information received overnight, and high volumes at market close arise

because investors close open positions that they can not monitor overnight. Atkins

& Basu (1995) examine the public announcements after trading hours and have

the same speculation.
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Table 2.4: Intraday Pattern: Trading Volume

Exchange Intraday Pattern Period of Data Authors

NYSE U-shaped Sep. 1971 - Feb. 1972 Wood et al. (1985)Jan. - Dec. 1982
NYSE U-shaped Jan. 1979 - Dec. 1983 Jain & Gun-Ho (1988)
NYSE U-shaped before 1990 Lockwood & Linn (1990)
NYSE U-shaped 1980,1981,1983,1984 McInish & Wood (1990b)
NYSE U-shaped Jan. - Jun. 1989 McInish & Wood (1992)
NYSE U-shaped Jan. - Dec. 1988 Foster & Viswanathan (1993)
NYSE U-shaped Jan. - Dec. 1988 Lee et al. (1993)

NASDAQ U-shaped Oct. - Dec. 1991 Chan et al. (1995)Aug. - Sep. 1992
TrtSE U-shaped before 1990 McInish & Wood (1990a)
TrtSE S-shaped Sep. 1999 - Nov 1999 Vo (2007)
LSE double-humped Jan. - Mar. 1991 Abhyankar et al. (1997)
LSE U-shaped Jan. - Dec. 1991 Werner & Kleidon (1996)
FSE reverse J-shaped May 2004 - Sep. 2005 Hussain (2011)

HKSE U-shaped before 1991 Ho & Cheung (1991)
HKSE U-shaped Oct 1996 - Mar 1997 Ahn & Cheung (1999)
TWSE J-shaped Mar. 1995 Lee et al. (2001)

TkySE U-shaped Jan. - Nov. 1991 Lehmann & Modest (1994)Feb. 1992 - Apr. 1993
ASX U-shaped Sep. 1990 - Aug. 1993 Aitken et al. (1995)
SSE U-shaped Nov. 1996 - Jan. 1997 Al-Suhaibani & Kryzanowski (2000)
ISE U-shaped May - Jul. 2008 Koksal (2012)

Note: TrtSE is short for Toronto Stock Exchange.
FSE is short for Frankfurt Stock Exchange.
HKSE is short for Hong Kong Stock Exchange.
TWSE is short for Taiwan Stock Exchange.
TkySE is short for Tokyo Stock Exchange.
ASE is short for Australia Stock Exchange.
SSE is short for Saudi Stock Exchange.
ISE is short for Istanbul Stock Exchange.
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Other shapes of intraday patterns on trading volume are also observed in prior

literature. Abhyankar et al. (1997) find a two-humped pattern with highs at 9:00

a.m. and 3:00 p.m. on the LSE. This confirms the prediction in Admati & Pflei-

derer (1988), who argue that periods of concentrated trading may occur at some

points in the trading day not necessarily at market open or close. Lee et al. (2001)

show that trading volume exhibits a J-shaped pattern in the Taiwan Stock Ex-

change (TSE): the volume is stable during the day, but increases as market close

approaches and reaches a peak at market close. Vo (2007) observes that trading

volume increases over the trading day in the Toronto Stock Exchange (TrtSe), and

attributes the difference of U-shaped pattern in the NYSE and increasing pattern

in TrtSE to the structural difference between the two exchanges. Hussain (2011)

finds a reverse J-shaped pattern of trading volume in the Frankfurt Stock Exchange

(FSE): the volume is highest at market open, decreases in the first ten minutes and

is stable for the rest of the day.

2.4.4 Intraday Market Depth

Market depth has received relatively less attention in the literature on intraday

market phenomena. Both Lee et al. (1993) and Li et al. (2005) document an

inverted U-shaped intraday pattern of market depth on the NYSE. Market depth is

lowest at the opening and then rises monotonically until the close, at which point

it suddenly drops. These findings are corroborated by Ahn & Cheung (1999) and

Vo (2007) who examine the depth on the Hong Kong Stock Exchange and Toronto

Stock Exchange respectively. A summary of these studies is given in Table 2.5.

These studies all report a negative association between intraday spreads and

depth. The depth displays a reverse pattern of the spread: wide spreads are as-

sociated with small depths and narrow spreads are accompanied by large depths.

Lee et al. (1993) show that both depth and spread are associated with trading vol-
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Table 2.5: Intraday Pattern: Market Depth

Exchange Intraday Pattern Period of Data Authors

NYSE inverted U-shaped Jan. - Dec. 1988 Lee et al. (1993)
NYSE inverted U-shaped Nov. 1990 - Jan. 1991 Li et al. (2005)
HKSE inverted U-shaped Oct. 1996 - Mar. 1997 Ahn & Cheung (1999)
TrtSE inverted U-shaped Sep. 1999 - Nov 1999 Vo (2007)

Note: HKSE is short for Hong Kong Stock Exchange.
TrtSE is short for Toronto Stock Exchange.

ume. In response to increased volume, spread widens and depth drops. This is

consistent with the prediction of the theoretical model of market microstructure in

Easley & O’Hara (1992).

Ahn & Cheung (1999) attribute the reversed U-shaped pattern on depth to the

adverse selection problem for limit order traders. Due to high information asym-

metry at market open and close, limit order traders suffer high expected adverse

selection cost, and thus place passive limit orders in order to protect themselves

from informed trades, leading to an inverted U-shaped intraday pattern on market

depth, as well as a U-shaped intraday pattern on spread. Li et al. (2005) and Vo

(2007) also find limit order traders play an important role in forming the intraday

pattern on market depth.

The above review of literature on intraday phenomena shows that intraday

patterns have been observed in different markets and in different time periods.

However, the shapes of intraday patterns differ across markets and time periods.

Thus, it is necessary to provide up-to-date evidences on intraday phenomena as

the above literature is dated.

38



2.5 Trade Execution Strategies

Trade execution strategies are predefined sets of instructions for trade execution,

which include how best to break up a large order for execution and the actual

mechanisms for placing and managing the orders. When deciding whether or not

to submit an order to the market place an algorithm must decide on an order’s:

• Submission Time - when should the order be placed?

• Size - what size order should be sent to the market?

• Type - should the order be a market, limit or a hidden order?

• Pricing - at what price should the order be placed?

• Destination - there are many market destinations and types, which one will

provide the best conditions of execution for the order?

• Management - if a limit order has been submitted, how should this order be

managed post submission?

The literature on trade execution strategies can be classified into two cate-

gories: optimal trading strategies and order submission strategies. The first cat-

egory of studies focuses on how to split a large order in order to minimise price

impact cost. The other investigates how to choose order type and order aggres-

siveness. The following sections review these two streams of research separately.

2.5.1 Optimal Trading Strategy

Bertsimas & Lo (1998) are the first to analyse how to control the implicit execution

cost of trading a large order. They argue that large-order execution problem is a
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dynamic optimisation problem, and form the basic framework to solve for this

problem.

Supposing that an investor wants to trade a large order S of shares within

a fixed finite number of periods T , 1 and denoting St as the number of shares

traded in period t and Pt as the corresponding execution price, the optimal trade

execution problem is how to split the order in order to achieve minimised expected

execution cost, namely E
[∑T

t=1 PtSt

]
, where t = 1, ..., T and

∑T
t=1 St = S..

Subsequent studies are largely extensions of their work.

Recent years have seen a burgeoning range of studies on this issue. Some

have extended this model to the case of portfolios (e.g., Moazeni et al. (2010),

Kharroubi & Pham (2010)). Some have considered the case of FX markets (e.g.,

Schmidt (2010)). In this thesis only the studies focusing on single asset are re-

viewed.

The previous work on optimal trading execution differs in the way of mod-

elling price/liquidity dynamics. One stream of research led by Bertsimas & Lo

(1998) and Almgren & Chriss (1999) decomposes the price impact into a tempo-

rary component and a permanent component. The other stream of research led by

Obizhaeva & Wang (2012) and Alfonsi et al. (2010) models the price impact in

the limit order book and explicitly models the resilience of price impact. The first

approach is denoted by Almgren approach, and the other is denoted by Obizhaeva

approach.

Almgren Approach

Within this approach, the design of optimal execution strategies are primarily con-

ducted in the context of markets in which the law of one price holds. Trades have

two different types of price impact on the price process of the market. One is
1The length of a ‘period’ can be some fraction of a single day, e.g., 30 minute interval (Bert-

simas & Lo, 1998).
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permanent price impact which alters the market price permanently. The other is

temporary price impact which affect only the execution price of the corresponding

trade.

Bertsimas & Lo (1998) assume a linear and permanent price impact function

depending on the trade size, with the objective of minimising the expected cost

of execution. They derive optimal trade execution strategies using stochastic dy-

namic programming. In the case when the asset price process follows a zero-drift

arithmetic random walk, they show that the optimal execution strategy is to break

the trade equally across time. This optimal strategy is independent of the func-

tion of permanent price impact and the dynamic of the asset price, because the

dynamic of the asset price is only affected by the whole trade size and indepen-

dent of the divided pieces. Although the optimal execution strategy derived in this

work seems counter-intuitive, it provides a basic framework to solve the optimal

trade execution problem.

Based on the work of Bertsimas & Lo (1998), Almgren & Chriss (1999, 2000)

introduce a temporary price impact function of trade size. The temporary price

impact depends on the pace of trades. Fast trading causes larger impact on the

dynamic of the asset price than slow trading. In other words, the temporary im-

pact function is used to penalize speedy trades. Thus, the optimal trade execution

strategy depends on the dynamic of the asset price, the permanent impact function

and the temporary impact function. Their objective function is a mean-variance

criterion. With a linear specification of price impact, Almgren & Chriss (1999)

show that the optimal execution strategy quickly finishes all trades over the first

several periods, and Almgren & Chriss (2000) demonstrate that the optimal strat-

egy becomes more aggressive after the volatility increases, and becomes passive

after the volatility decreases.

Although Almgren’s model (Almgren & Chriss, 1999, 2000) is tractable, the
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assumption of a linear price impact function is inconsistent with empirical find-

ings. A number of studies have extended the model of Almgren/Chriss by con-

sidering nonlinear price impact functions. With a nonlinear specification of tem-

porary price impact, Almgren (2003) shows that the optimal execution strategy is

independent of the scale of trading period and the whole trade size.

Obizhaeva Approach

While Bertsimas & Lo (1998) and Almgren & Chriss (1999, 2000) make compu-

tations feasible and lead to relatively nice and robust trading strategies, they do

not adequately model the empirically observed transience of price impact.

The price-impact-function based models do not take into account the dynamic

property of supply and demand of market liquidity. This property is explicitly

obvious in an limit order market, where the order book is able to rebuild itself

after being hit by a trade, which is referred to as the resilience of the order book.

Obizhaeva & Wang (2012) are the first to model the dynamic supply and de-

mand in a limit-order-book market. They consider a limit order market with an

order book which has a constant density, namely the financial securities are uni-

formly distributed at different levels of the order book. In the case when the price

impact of a trade decays exponentially over time, they show that the optimal ex-

ecution strategy crucially depends on shape of the limit order book and the speed

of its resilience.

Alfonsi et al. (2010) extend Obizhaeva & Wang (2012)’s model by allowing

for nonuniformly distributed shares within the limit order book. In other words,

the density of limit orders is not constant, but varies as a function of price. They

demonstrate that trading is discrete and for an optimal purchasing strategy all

purchases except the first and last are of the same size. Furthermore, the sizes of

the intermediate purchases are chosen so that the price impact of each purchase is
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exactly offset by the order book resiliency before the next purchase.

A continuous-time generalization of the volume impact version of the model

has been introduced by Predoiu et al. (2011). They restrict trading to buy-only or

sell-only strategies, so price manipulation is excluded by definition. Predoiu et al.

(2011) permit the order book shape to be completely general. All price impact is

transient. Assuming exponential decay of price impact, Fruth et al. (2011) anal-

yse the specific form and regularity of optimal order execution strategies when

liquidity can be time-dependent or even stochastic. Gatheral (2010) analyse the

existence and the behaviour of optimal order execution strategies for certain mar-

ket microstructure parameters. As shown by Alfonsi & Schied (2010) and further

discussed in Gatheral et al. (2011), these results depend strongly on the way in

which nonlinearity of price impact is modelled.

2.5.2 Order Submission Strategy

Market and limit orders can be categorised into various aggressivenesses in terms

of their quantities and prices (Biais et al., 1995). For example, a buying limit

order’s level of aggressiveness increases with its limit price and its quantity.

Specifying an order’s aggressiveness is a critical decision which a trader has

to make when he wants to transact an order. This decision directly affects the

quality of trade execution, and indirectly influences the final investment return.

An understanding of the dynamic order submission behaviours will contribute to

our understanding of the dynamic price formation process.

Market orders and limit orders both have their advantages and disadvantages.

Although market orders guarantee order executions, they suffer the cost of paying

higher execution prices. While limit orders provide price improvement over mar-

ket orders, their submissions involve two risks (Handa & Schwartz, 1996). The

first risk is adverse selection risk, also known as free trading option risk (Glosten
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& Milgrom, 1985), arising from adverse information events which trigger an un-

desirable execution. The other risk is nonexecution risk, which arises when the

market price moves away from the limit price and results in the limit order not

executing. The outcome of the second risk is that the limit order traders suffer

opportunity cost as they have to accept inferior prices.

Empirical studies have shown that different types of market participants have

distinguished preferences concerning order aggressiveness. Keim & Madhavan

(1995a) find that value investors are more likely to use limit orders instead of mar-

ket orders. Aitken et al. (2007) find that limit orders placed by proprietary trading

desks and hedge funds are more aggressive than mutual funds, index funds and in-

surance companies. While Glosten (1994) and Seppi (1997) argue that informed

traders are more likely to use market orders, Bloomfield et al. (2005), Chakravarty

& Holden (1995), Kaniel & Liu (2006), Harris (1998) and Wald & Horriga (2005)

suggest that informed traders use limit orders more often than market orders.

The execution performance of aggressive and passive orders have been in-

vestigated in the previous studies. Generally, passive orders outperform aggres-

sive orders in terms of investment return (Handa & Schwartz, 1996) and trading

cost (Harris & Hasbrouck, 1996). Aggressive orders have larger price impact but

smaller opportunity cost than passive orders (Griffiths et al., 2000). Moreover, the

execution performance of institutional traders and individual traders is compared

by Anand et al. (2005), which finds that aggressive orders placed by institutional

traders outperform those placed by individual traders.

Order Aggressiveness and State of The Order Book

The state of the order book is a critical determinant of traders’ order aggressive-

ness. This assertion has been suggested by recent theoretical developments (Fou-

cault, 1999; Foucault et al., 2005; Goettler et al., 2005; Handa et al., 2003; Liu,

44



2009; Menkhoff et al., 2010; Parlour, 1998; Rosu, 2009), and is supported by

many studies in different markets and over different sample periods. The rest of

this section discusses how various order-book related variables affect the aggres-

siveness of incoming orders.

Bid-ask Spread

Bid-ask spread has a positive relationship with incoming order’s aggressive-

ness (Al-Suhaibani & Kryzanowski, 2000; Beber & Caglio, 2005; Bae et al., 2003;

Biais et al., 1995; Cao et al., 2008; Duong et al., 2009; Ellul et al., 2007; Griffiths

et al., 2000; Hall & Hautsch, 2007; Pascual & Verdas, 2009; Ranaldo, 2004; Ver-

hoeven et al., 2004; Xu, 2009). A decrease in the bid-ask spread makes the use

of aggressive orders more attractive for incoming traders, and an increase in the

spread makes the use of passive orders more tempting. However, this relationship

is influenced by the proportion of patient traders in the trading population (Fou-

cault et al., 2005). If patient (impatient) traders dominate the trading population,

more (less) aggressive orders are submitted than passive orders when the spread

is wide.

Volatility

Prior empirical research is inconclusive on the effect of transient volatility

on order aggressiveness. Most studies (Ahn et al., 2001; Beber & Caglio, 2005;

Bae et al., 2003; Chung et al., 1999; Hall & Hautsch, 2007; Ranaldo, 2004; Ver-

hoeven et al., 2004) support an inverse relation between order aggressiveness and

volatility: when market volatility increases, passive orders are more attractive than

aggressive orders for incoming traders. Ahn et al. (2001) examine the relationship

between order placement and the transitory volatility from different sides of the

markets, and find that more buy (ask) limit orders are placed than buy (ask) market

orders when the volatility arises from the bid (ask) side.

This inverse relation can be explained by the high probability of mispricing an
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asset in a volatile market which thus raises the cost of market order trading (Fou-

cault, 1999). In other words, higher price volatility means a greater opportunity

of execution an order at a better price. Consistently, Lo et al. (2002) show that

in periods of high volatility, the execution probability of limit orders increases,

which makes passive orders more tempting than aggressive orders.

Other studies provide different results. A positive relationship between order

aggressiveness and volatility is reported in Hasbrouck & Saar (2002); Lo & Sapp

(2010); Wald & Horriga (2005). This positive relation is only documented for

institutional traders in large cap stocks in Duong et al. (2009). Hall & Hautsch

(2006) observe an increase of all kinds of order submission during periods of

high volatility. Cao et al. (2008) find that volatility has a minimal effect on order

aggressiveness. Pascual & Verdas (2009) find that the relationship is affected by

market capitalisation: higher historic volatility suggests limit order submission in

mid-cap stocks, but the opposite phenomenon is observed in large-cap stocks.

Some theoretical models (Foucault, 1999; Handa & Schwartz, 1996) of limit

order market have predicted that price volatility determines the choice between

market and limit orders. Foucault (1999) and Handa & Schwartz (1996) predict

that market order is less attractive than limit orders and thus more limit orders are

submitted to the market than market orders when price is volatile. They attribute

this to asymmetric information between investors. When the market is volatile,

the probability of trading against informed investors increases, leading to higher

expected loss.

Market Depth

Market depth has also been found to matter. The limit order book at the best

quotes generates a crowding out effect which affects subsequent order submis-

sions (Parlour, 1998). The incoming trader is more likely to submit a market

order if the book has a deep depth on the same side, and is more likely to submit
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a less aggressive order if the book is deep on the opposite side (Al-Suhaibani &

Kryzanowski, 2000; Beber & Caglio, 2005; Cao et al., 2009; Duong et al., 2009;

Ellul et al., 2007; Foucault, 1999; Griffiths et al., 2000; Hall & Hautsch, 2007;

Omura et al., 2000; Parlour, 1998; Peterson & Sirri, 2002; Potters & Bouchaud,

2003; Ranaldo, 2004; Verhoeven et al., 2004; Xu, 2009) . Especially when both

sides of the book are thick, ‘fleeting’ limit orders may happen (Rosu, 2009): some

limit orders placed inside the spread are immediately accepted by some traders

from the other side of the book. These studies reveal that time-to-execution is a

significant concern of limit order traders when execution cost less matters.

In contrast, depth beyond the best quotes has an inverse relation with order

aggressiveness (Goettler et al., 2005). Higher depth above the best ask signals that

the best ask may be too low compared with the fundamental value of the asset, so

that incoming buyers are more likely to use aggressive orders and incoming sellers

are more likely to use passive orders, and vice versa for the case of higher depth

below the best bid.

Eisler et al. (2012) show that market orders on one side of the book attract

compensating limit orders, leading to smaller conditional impact of subsequent

market orders on the same side.

Time of the Day

Order submission strategy is also affected by time of the day (Biais et al., 1995;

Ellul et al., 2007). The placement of less aggressive orders tend to be concentrated

in the morning, whereas more aggressive orders tends to occur late in the trading

day. Passive orders are more likely to happen at the end of the day than in an

earlier period (Foucault et al., 2005), because spread improvement via the use of

limit order is small.

Controlling price impact is important in financial markets. An increasing num-

ber of studies have been denoted to this problem. However, these studies, as
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reviewed in Section 2.5.1, only adopt market orders, although limit orders are

equally important when traders make decisions on order choice as shown in Sec-

tion 2.5.2. It is still unknown whether order choice plays an important role in

determining price impact when trading a large order.

2.6 Summary

The aim of this chapter was to provide a brief overview of market microstructure

literature and a review of relevant work to this thesis.

Section 2.2 provided a brief overview of the literature on market microstruc-

ture. Market microstructure concerns every aspect of the trading process. The-

oretical models on market microstructure can be classified into three categories:

inventory-based models, information-based models, and limit-order-book models.

As more and more markets adopt limit order books, the number of studies on the

trading process in limit order markets is significantly increasing in recent years.

Section 2.3 offered a review of the literature on price impact. Most prior stud-

ies on price impact have been devoted to the relationship between price impact

caused by market orders and their trade sizes. A nonlinear relationship was dis-

covered by these studies. However, the order size does not tell the whole story

about price impact. Recently, a number of studies have found that most of the ex-

treme price changes are not caused by large trading size, but by the gaps between

different levels of the order book.

Section 2.4 reviewed the literature on intraday phenomena in financial mar-

kets. Previous studies concentrate on four variables measuring market liquidity

and trading activity, which are price volatility, bid-ask spread, trading volume and

market depth. A number intraday patterns with different shapes were observed in

prior literature and were summarised in this section.
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Section 2.5 reviewed the literature on trade execution strategies. This review

focuses on the literature concerning large-order trading strategies and order sub-

mission strategies. The studies on large-order trading strategies differ in how to

model price impact. One stream of studies decomposes price impact into a tempo-

rary component and a permanent component, while the other stream specifically

considers price impact in the limit order book and models both the immediate ef-

fect of trading on the order book and the resilience of price impact. Most studies

on order submission strategies focus on the relation between order aggressiveness

and the state of the order book.

The review in this chapter identifies a number of research gaps. These are

summarised as follows:

1. Analysis of the intraday behaviour of price impact

It is unknown about up-to-date intraday behaviour of price impact. An analysis

of intraday behaviour of price impact is of great interest to both academics and

practitioners. It is helpful for developing a more comprehensive price impact

model than those reviewed in Section 2.3.1, as well as the design of trade

execution strategies as reviewed in Section 2.3.2. Chapter 5 conducts such

analysis using the data drawn from the NYSE-Euronext TAQ database and the

LSE ROB database.

2. Examination of the relation between agent intelligence and price impact

No study has been conducted to investigate whether agent intelligence plays an

important role in determining the magnitude of price impact. This examination

is of great importance to understand the driving factors of the concavity of

price impact. An examination of this is undertaken in Chapter 6.

3. Investigation of the effect of order choice on price impact of trading large

orders
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It is unknown that whether order choice plays an important role in determining

price impact when trading a large order. This gap is addressed in Chapter 7.

The next chapter will present the methodology adopted in two experimental

studies of this thesis.
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Chapter 3

Agent-based Modelling in Finance

“... the possibility of building a mathematical theory of a system

or of simulating that system does not depend on having an adequate

microtheory of the natural laws that govern the system components.

Such a microtheory might indeed be simply irrelevant.”

Nobel laureate in Economics: Simon (1996) (p. 19)

This thesis adopts an agent-based modelling approach in two of its experimen-

tal chapters. This chapter reviews studies on agent-based modelling in financial

markets, and describes the core elements of agent-based market simulation as well

as the Genetic Algorithm as a learning algorithm in agent-based modelling.

Agent-based modeling (ABM) is a computer modelling approach to construct

complex systems consisting of a number of decision makers (agents) and insti-

tutions interacting through prescribed rules (Farmer & Foley, 2009). It creates a

virtual universe in which agents act in complex and realistic ways.

The potential scope of applications of ABM is wide. Economics and finance

are among the most promising areas where ABM can be applied. Financial mar-

kets are always considered as complex systems, which are constantly evolving
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and becoming more complex, and thus difficult to analyse and understand. ABM

has provided a powerful tool to analyse market behaviours and the effects of the

market mechanism in financial markets. The applications of ABM to financial

markets are vast. The review here can not be exhaustive. For general reviews,

see for example Chen (2007, 2012); Chen et al. (2012); Chiarella et al. (2009a);

Consiglio (2007); Cristelli et al. (2011); Hommes & Wagener (2009); LeBaron

(2000, 2001, 2006); Lux (2009); Samanidou et al. (2007); Tesfatsion (2006).

The rest of this chapter is organised as follows. Section 3.1 briefly reviews the

literature on agent-based financial markets, followed by a description of the core

elements of agent-based market simulation in Section 3.2. An introduction to a

learning algorithm in agent-based modelling, the Genetic Algorithm, is given in

Section 3.3. A summary of this chapter is provided in Section 3.4.

3.1 Agent-based Financial Markets

Agent-based modelling has been applied to economics and finance since 1971

(Schelling, 1971). As defined by Tesfatsion (2006), agent-based computational

economics is “the computational study of economic processes modelled as dy-

namic systems of interacting agents”. It offers an alternative approach to mod-

elling and studying financial markets. It differs from the traditional equilibrium

models which can not always provide analytical solutions (Parlour & Seppi, 2008).

Agent-based models of financial markets can help us to understand how markets

operate and can guide policy formulation.

Agent-based markets have been used to study price bubbles and market crashes

in a number of studies, like Feldman & Friedman (2010), Kim & Markowitz

(1989), Miller (2008) and Palmer et al. (1994). The Nobel laureate Harry Markowitz

(Kim & Markowitz, 1989) is among the earliest researchers using an agent-based
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market simulation. Their study proposes an agent-based simulation to explain the

1987 crash. The agent-based artificial market with agents that learn their trad-

ing behaviours using genetic algorithm in Palmer et al. (1994) exhibit financial

bubbles. Feldman & Friedman (2010) investigate how human traders and robot

traders behave and interact in a market prone to bubbles and crashes. They find

that human traders have little impact on market crashes as they are more expe-

rienced. Miller (2008) finds that the bubbles and crashes seen in experiments

conducted with robot traders are much less drastic than those with human sub-

jects. This difference is caused by the restriction that robot agents are prohibited

from engaging in actions that could result in a loss and are thus not allowed to

speculate.

Some studies have used agent-based financial markets to study the statistical

regularities, often know as stylised facts, observed in real markets. Examples of

stylised facts are fat tails of price return and volatility clustering (Cont, 2001).

An foreign exchange market with chartist and fundamentalist agents is simulated

in Lux (1998) and exhibits fat tails of price return. LiCalzi & Pellizzari (2003)

produces a leptokurtic distribution of short-term log-returns in an artificial order-

driven market consisting of fundamentalist and Zero Intelligence (ZI) value-based

agents under budget constraints. Their results support the conjecture in Bouchaud

et al. (2002) and Daniels et al. (2003) that the emergence of some of the statistical

properties of order-driven markets is mostly due to their microstructure. Chiarella

& Iori (2002) produce volatility clustering in an artificial markets composed of

fundamentalist, chartist and noise traders. Chiarella et al. (2009b) show that the

chartist strategy is mainly responsible of the fat tails and clustering in their ar-

tificial markets. Their results offer evidence that large price impacts are mostly

caused by the presence of large gaps in the order book.

In addition, ABM has been applied to other problems in finance, like tests of
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economic theories (Chen & Yeh, 2002), market design (Darley & Outkin, 2007),

option pricing (Suzuki et al., 2009), evaluation of automated trading strategies

(Izumi et al., 2009), and analysis of liquidity costs (Huang et al., 2012). Chen &

Yeh (2002) use an agent-based stock market with a number of evolving agents to

test both the efficient market hypothesis and the rational expectations hypothesis,

and show that their agent-based model can replicate some economic behaviours

empirically. Darley & Outkin (2007) examine the effect of the tick-size reduc-

tion in the NASDAQ market using an agent-based artificial market. Suzuki et al.

(2009) analyse implied volatility smile and the skewness premium using an agent-

based modelling approach. Izumi et al. (2009) use an artificial market to evaluate

the risks and returns of automated trading strategies in various market environ-

ments and test the market impact of the trading strategies. Huang et al. (2012)

report a higher liquidity costs of market orders in their agent-based order-driven

stock market than in the Taiwan Stock Market.

3.2 The Core Elements of Agent-based Market Sim-

ulation

The core elements of constructing an agent-based artificial market are

• agents,

• market mechanism.

3.2.1 Agents

Agents are the essential elements of an agent-based market (LeBaron, 2001). The

agents can range from “active data-gathering decision-makers with sophisticated
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learning capabilities to passive world features with no cognitive functioning”, ac-

cording to Tesfatsion (2006). Chen (2012) undertakes a comprehensive review of

various types of agents designs.

Intelligent Agents

At one end of the spectrum are intelligent agents who can learn, adapt and evolve.

A variety of techniques from artificial intelligence have been used to model agent

learning. The celebrated example is the Sante Fe Institute Artificial Stock Mar-

ket (SFI ASM) (Arthur et al., 1997). In their model, agents are heterogeneous

in the way they form their expectations. Each agent, possessing a number of

linear forecasting models at any time, learns and evolves by discovering which

forecasting model works best as well as developing new ones from time to time,

via an inductive algorithm, namely the Genetic Algorithm. They show that both

herd effects and systematic speculative profits are possible in an endogenous-

expectations market.

Zero-intelligence Agents

The zero-intelligence (ZI) agents are the other extreme of the spectrum of agent

types. Zero-intelligence modelling was originally pioneered by the Nobel laure-

ate Becker (1962), who showed that some aspects of supply and demand curves

could be understood without any reliance on strategic thinking. Later, it was pop-

ularised by Gode & Sunder (1993). As characterised in the work of Gode &

Sunder (1993), these agents are random behaving agents who randomly generate

buying and selling orders subject to budget constraints. The orders submitted by

impatient traders are executed against patient orders previously submitted to the

market. The patient orders are placed in the order book according to price and

time priorities. Despite their simplicity, ZI agents are able to get a remarkable
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allocation efficiency in the artificial double auction market. A good review of ZI

agents based artificial markets is given by Iori et al. (2003); Ladley & Schenk

(2009); Zovko & Farmer (2002).

Despite their simplicity, the zero-intelligence artificial markets are able to gen-

erate many non-trivial behaviours seen in real markets. Bak et al. (1997) show that

their zero-intelligence model is able to reproduce phenomena seen in actual mar-

kets, including larger than Gaussian fluctuations at short time scales and some of

the power-law forms of price variations. The zero-intelligence model in Maslov

(2000) can produce approximate several regularities observed in actual markets,

including the autocorrelation of the absolute value of price changes and short-

range correlations in the signs of price movements, as well as the fat tails of price

changes.

3.2.2 Trading Mechanism

Trading Mechanism is a critical design decision which the builder has to con-

sider when creating an agent-based financial market. It relates the agents’ trading

demands represented by their orders and the prices of the market.

Most artificial financial markets implement simplified market mechanisms,

which omit some institutional details of trading, but serve their research needs

sufficiently. One example is the SFI market (Arthur et al., 1997), which imple-

ments a simple market-clearing mechanism. At the end of each trading period, the

market specialist collects the accumulated buy and sell orders of all the agents, and

clears the market at a new market price. If the demand excesses the supply, the

specialist increases the market price, otherwise he decreases the price.

A number of studies have implemented a fairly realistic market, which incor-

porates explicit market microstructure, like a continuous double auction mech-

anism with limit order books. As pointed out in LeBaron (2001), this type of
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trading mechanism is “most appealing for modelling high-frequency data” and is

only easy to implement when there is no human intervention (like specialists or

market makers) in the price formation process. All ZI artificial markets replicat-

ing a limit order market are of this type. Some examples are Chan et al. (2001);

Raberto & Cincotti (2005); Yang (2002).

The next section presents the Genetic Algorithm, which is often used to simu-

late agent learning in agent-based modellings.

3.3 Genetic Algorithm

The genetic algorithm (GA) is an optimisation algorithm, founded upon the evo-

lutionary principle, “survival of the fittest”. It provides a systematic search pro-

cess directed by performance feedback. In financial markets, GA methodologies

have been successfully used for solving a broad selection of problems, ranging

from predicting movements in current values to optimizing equity portfolio com-

position. Examples of applications of GA in economics and finance are Allen

& Karjalainen (1999), Arifovic (1995), Arifovic (1996), Brabazon et al. (2008),

Chavez-Demoulin & McGill (2012), Chen & Yeh (1997), Dempster & Jones

(2001), Dworman et al. (1996), Kozhan & Salmon (2011), Neely et al. (1997),

Neely & Weller (1999), Neely & Weller (2001), Neely & Weller (2003), and Se-

fiane & Benbouziane (2012).

The evolutionary processes in GA represent an archetype, whose application

transcends their biological root. In biological evolution, species are positively or

negatively selected depending on their relative success in surviving and reproduc-

ing in the environment. Differential survival, and variety generation during repro-

duction, provide the engine for evolution (Darwin, 1859; Spencer, 1864) (Figure

3.1).
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Figure 3.1: Evolutionary Cycle

These concepts have metaphorically inspired the field of evolutionary com-

putation (EC). Algorithm 1 outlines the evolutionary meta-algorithm. There are

many ways of operationalising each of the steps in this meta-algorithm, conse-

quently, there are many different, but related, evolutionary algorithms (EA). Just

as in biological evolution, the selection step is a pivotal driver of the algorithm’s

workings. The selection step is biased in order to preferentially select better (or

‘more fit’) members of the current population. The generation of new individuals

creates children which bear some similarity to their parents but are not identical

to them. Hence, each individual represents a trial solution in the environment,

with better individuals having increased chance of influencing the composition of

individuals in future generations. This process can be considered as a ‘search’ pro-

cess, where the objective is to continually improve the quality of individuals in the

population. In financial markets, EC methodologies including Genetic Algorithm
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(GA), Genetic Programming (GP) and Grammatical Evolution (GE), have been

used for solving a broad selection of problems, ranging from prediction, asset se-

lection, portfolio optimization, derivatives pricing and credit risk assessment. An

overview of some EC applications in finance can be seen in Brabazon & O’Neill

(2006) and Brabazon et al. (2008).

Initialise the population of candidate solutions;
repeat

Select individuals (parents) for breeding from the current population;
Generate new individuals (children) from these parents;
Replace some / all of the current population with the newly-generated individuals;

until terminating condition;

Algorithm 1: Evolutionary Algorithm

3.3.1 Grammar-based Genetic Algorithm

The grammar-based genetic algorithm, which is Grammatical Evolution (Dempsey

et al., 2009; O’Neill & Ryan, 2003), is an evolutionary methodology, and can be

used to evolve structures, programs or ‘rule sets’. These rule sets can be as gen-

eral as a functional expression which produces a good mapping between a series

of known input-output data vectors.

GE is an Evolutionary Automatic Programming (EAP) technique which al-

lows the generation of computer programs (or ‘rule sets’) in an arbitrary language.

GE can conduct an efficient exploration of a search space, and notably permits

the incorporation of existing domain knowledge in order to generate ‘solutions’

with a desired structure. In finance (for example), this allows the users to seed

the evolutionary process with their current trading strategies in order to see what

improvements the evolutionary process can uncover. Recently GE has been suc-

cessfully applied to a number of financial problems. These include financial time

series modelling, intraday financial asset trading, corporate credit rating, and the
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uncovering of technical trading rules (Brabazon & O’Neill, 2006).

A particular strength of the methodology is that the form of the model need

not be specified a priori by the modeler. This is of particular utility in cases,

such as in this study, where there is a theoretical or intuitive idea of the nature

of the relevant explanatory variables, but a weak understanding of the functional

relationship between the explanatory and the dependent variable(s). GE does not

require that the model form is linear, nor does the method require that the measure

of model error used in model construction is a continuous or differentiable func-

tion. Another useful feature of a GE approach is that it produces human-readable

rules that have the potential to enhance understanding of the problem domain.

Interestingly, GP/GE methods enjoy wide application beyond finance (O’Neill &

Brabazon, 2009), and routinely produce human-competitive performance, with

some solutions being patentable in their own right (Koza, 2010).

Genotype-phenotype Mapping

A genotype-phenotype mapping is employed such that each individual’s variable

length binary string, contains in its codons (groups of 8 bits) the information to

select production rules from a Backus Naur Form (BNF) grammar. GE is there-

fore a grammar-based approach to GP (McKay et al., 2010). The user can tailor

the grammar to produce solutions that incorporate domain knowledge by biasing

the grammar to produce very specific forms of sentences. BNF is a notation that

represents a language in the form of production rules. It is comprised of a set of

non-terminals that can be mapped to elements of the set of terminals (the primitive

symbols that can be used to construct the output program or sentence(s)), accord-

ing to the production rules. A simple example BNF grammar is given below,

where <expr> is the start symbol from which all programs are generated. The

grammar states that <expr> can be replaced with either <expr><op><expr>
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or <var>. An <op> can become either +, -, or *, and a <var> can become

either x, or y.

<expr> ::= <expr><op><expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| * (2)

<var> ::= x (0)

| y (1)

The grammar is used in a developmental process to construct a program by apply-

ing production rules, selected by the genome, beginning from the start symbol of

the grammar. In order to select a production rule in GE, the next codon value on

the genome is read, interpreted, and placed in the following formula:

Rule = Codon V alue Mod Num. Rules

where Mod represents the modulus operator. Given the example individual’s

genome (where each 8-bit codon has been represented as an integer for ease of

reading) in Fig.3.2, the first codon integer value is 20, and given that there are 2

rules to select from for <expr> as in the above example, 20 Mod 2 = 0 is

obtained. <expr> will therefore be replaced with <expr><op><expr>.

Beginning from the left hand side of the genome codon integer values are

generated and used to select appropriate rules for the left-most non-terminal in the

developing program from the BNF grammar, until one of the following situations

arise:
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• A complete program is generated. This occurs when all the non-terminals

in the expression being mapped are transformed into elements from the ter-

minal set of the BNF grammar.

• The end of the genome is reached, in which case the wrapping operator

is invoked. This results in the return of the genome reading frame to the

left hand side of the genome once again. The reading of codons will then

continue unless an upper threshold representing the maximum number of

wrapping events has occurred during this individual’s mapping process.

• In the event that a threshold on the number of wrapping events has oc-

curred and the individual is still incompletely mapped, the mapping process

is halted, and the individual assigned the lowest possible fitness value.

Returning to the example individual, the left-most <expr> in <expr><op><expr>

is mapped by reading the next codon integer value 124 and used in 124 Mod 2 =

0 to become another <expr><op><expr>. The developing program now looks

like <expr><op><expr><op><expr>. Continuing to read subsequent codons

and always mapping the left-most non-terminal the individual finally generates

the expression y*x-x-x+x, leaving a number of unused codons at the end of the

individual, which are deemed to be introns (unused codons) and simply ignored.

Figure 3.2: An Example GE Individual’s Genome Represented as Integers for
Ease of Reading.

In the context of this study, GE is used to evolve trade execution strategies.
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A population of strategies is maintained and iteratively improved via a simulated

evolutionary process. The structure of these rules is governed by a choice of

grammar and the utility of evolved strategies is assessed by testing them in an

artificial stock market environment. Both the choice of grammar and the design

of the stock market environment are discussed in later chapters.

3.4 Summary

This chapter presented the ABM methodology and briefly reviewed its applica-

tions to the area of finance. A description of the three essential components for

constructing agent-based artificial markets is also given. Moreover, a popular

learning algorithms, the Genetic Algorithm, was introduced. Although ABM has

been applied to economics and finance for a long time, no previous studies have

investigated price impact using ABM.

In Part II of this thesis, the three empirical studies are presented. Chapter 4

initially provides a description of the data used and of the necessary data prepro-

cessing steps.
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Part II

Experiments
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In Part II, several empirical investigations of price impact are presented. The

literature review in Part I has identified a number of research gaps concerning our

understanding of intraday behaviour of price impact, whether agent intelligence

affects the magnitude of price impacts, and the effects of order choice on the price

impact of trading large-orders.

The analysed data is drawn from the NYSE-Euronext TAQ database and the

LSE ROB database. In Chapter 4, the data is introduced and a description of the

data preprocessing steps is given.

Three studies are presented in Chapters 5-7 to address the three research ques-

tions presented in Chapter 1. Chapter 5 studies the intraday behaviour of price im-

pacts and market liquidity using TAQ data and the ROB data. Chapter 6 presents a

study investigating whether agent intelligence determines the magnitude of price

impact. In Chapter 7, the effect of order choice on the price impacts of trading

large-orders is examined.
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Chapter 4

Datasets and Data Processing

Parts of this chapter have appeared in:

• Cui, W. and Brabazon, A. (2012). An Analysis of Liquidity in London

Stock Exchange. Proceedings of the 25th Irish Accounting and Finance As-

sociation Conference, pp. 1-45, Galway, Ireland. (Cui & Brabazon, 2012b)

• Cui, W. and Brabazon, A. (2011). Ultra High-frequency Financial Data:

Analysing NYSE Euronext TAQ Data. Proceedings of the 24th Irish Ac-

counting and Finance Association Conference, pp. 1-38, Cork, Ireland.

(Cui & Brabazon, 2011)

More than ever before researchers today face the challenges of working with

high-frequency datasets from financial markets. Examples of this data include

NYSE’s TAQ data, and LSE’s ROB data. These datasets are very large and very

difficult to process. The data records all visible order activities, i.e. limit or-

der submissions, cancellations and executions, and can be used to reconstruct the

historical limit order book up to any required precision. However, this creates a

challenge as it is necessary to reconstruct the limit order book using the same rules
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that were used by the matching algorithm applied by the exchange. Although sim-

ple in principle, such algorithms need to take into account market-specific issues

and considering the large volume of data, work is extremely difficult.

The previous two chapters conducted a literature review in the field of market

microstructure relating to the work in this thesis. This chapter gives an introduc-

tion to the two datasets used in this thesis. One is the NYSE Euronext trade &

quote dataset (TAQ), and the other is the LSE rebuild order book dataset (ROB).

Both of these are intraday high-frequency data, recording information on both

trades and quotes throughout each trading day. The ultra high-frequency data pro-

vided by NYSE-Euronext is unfiltered and contains errors and noise. Analysing

the raw data can produce inaccurate results which lead to imprecise conclusions.

Filtering the raw NYSE-Euronext data is important before data analysis. Like-

wise, the ultra high-frequency data provided by LSE is also raw data, for example,

the original LSE data is out of time sequence. Preprossing the raw LSE data is

necessary before data analysis.

The remainder of this chapter is organised as follows. Section 4.1 introduces

the datasets. Section 4.2 discusses the issues in data processing and gives the steps

used to process the data. A summary of this chapter is provided in Section 4.3.

4.1 Datasets

This section presents descriptions of the two databases, namely the NYSE Eu-

ronext TAQ database and the LSE ROB database.
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4.1.1 NYSE Euronext TAQ Database

Source of the Data

The NYSE Euronext Trade and Quote (TAQ) database contains intra day infor-

mation on trades and quotes for equity securities listed on most of the major US

exchanges. The database commenced in 1993, and the information contained is

in turn drawn from the ‘Consolidated Tape’ which takes an information flow on

real-time trades and quotes from all the participating markets and ‘consolidates’

this to provide traders with a complete picture of trades and quotes across all mar-

kets. The current participants in the system include all major US equity trading

venues (further background information on these venues is provided in Sect. 4.1.1

below).

Technically, there are two discrete elements of the consolidated tape, the Con-

solidated Tape Plan, which governs trades and the Consolidated Quotation Plan,

which governs quotes. Since the late 1970s, all SEC-registered exchanges and

market centers that trade NYSE or AMEX-listed securities send their trades and

quotes to a central consolidator where the Consolidated Tape System (CTS) and

Consolidated Quote System (CQS) data streams are produced and distributed

worldwide.

For investors and traders, the CQS provides pre-trade transparency as it dis-

plays the best bid and offer price and volume (and all revisions of quotes), posted

by specialists (NYSE, AMEX) and by market makers (NASDAQ), for all stocks

for a particular security on each exchange on which it trades, allowing investors

and traders to decide how best to route their orders. In contrast, the CTS provides

post-trade transparency allowing investors and traders to compare the execution

price of their trades against that of other trades in the market place which took

place at the same time.
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The way that trade and quote information reaches the CTS and CQS have

changed over the years, moving from largely manual systems in traditional stock

exchanges (such as use of floor reporters by the NYSE until 2001) with the atten-

dant risk of delay and errors in recording,1 to largely automated recording of this

data in modern markets. As noted above, the TAQ database is extracted from the

consolidated tape and consequently includes all transactions data, time-stamped

to the nearest second, reported during the Consolidated Tape hours of operation

(currently 4am EST until 6.30pm EST). The data does not include information on

the identity of the trading parties or whether the trade is buyer or seller initiated.

TAQ data (along with other tick data products) is available for purchase from

NYSE Euronext in a number of delivery formats. The academic research version

of the TAQ data is supplied via monthly data DVDs. In the following sections, the

scale of trade and quote activity for a number of equities will be illustrated, but

in advance of that, it is worth noting the large number of equity securities that are

covered by the consolidated tape (as at 27 January 2011, there were 3,243 firms

listed on the NYSE, 2,875 listed on Nasdaq and 551 listed on AMEX).

Accessing the Data

The academic version of the data is available for purchase approximately four

weeks after the end of each month. The data is accessible via a supplied front-end

extraction program. Figure 4.1 illustrates the first screen wherein the user is able

to select the desired date ranges and trade/quote information. A number of other

screens (including Figure 4.2) allow the user to select the relevant ticker codes

and exchanges of interest, along with a choice of data output file format. Users

1For example, using data drawn from July 1994 to June 1995, Blume and Goldstein Blume &
Goldstein (1997) reported a median delay of 16 seconds between the execution and the consequent
reporting of NYSE trades, with Peterson and Sirri Peterson & Sirri (2003) reporting a median delay
of 2 seconds using 1997 NYSE data from the NYSE System Order database File.
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Figure 4.1: Data Selection Screen for TAQ3 Extraction Tool

70



Figure 4.2: Data Filter Screen for TAQ3 Extraction Tool
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can also access the raw data files directly via custom written scripts.

Sample Data

A sample of the trade data available is provided in Table 4.1. Starting from the

left-most field, there are the stock ticker code (here ‘F’ for Ford), the exchange

on which the trade occurred (here ‘N’ for NYSE), the date and time of the trade,

the trade price and trade size, and a series of data flags which indicate the trade

condition, the correction indicator and a flag which indicates whether the trade is

a ‘G’ trade or a rule 127 transaction.2

Table 4.1: A Sample of Trade Data for Ford Drawn from 2/2/09

Ticker Exchange Date Time Price Size Cond Corr G127

F N 2/2/09 11:20:48 1.8700 100 0 0
F N 2/2/09 11:20:51 1.8800 100 0 0
F D 2/2/09 11:20:54 1.8784 1000 0 0
F D 2/2/09 11:20:55 1.8800 3000 0 0
F Z 2/2/09 11:20:55 1.8800 100 0 0
F D 2/2/09 11:21:04 1.8700 145 0 0

The quote information indicates the best (quoted) bid / offer available on an

exchange at a point in time. This changes with each alteration of the best bid/offer

or any changes to the number of shares on offer at either of these prices. As would

be expected, a very large quantity of quote information is generated each day

for the more actively traded stocks. Taking the sample information illustrated in

Table 4.2, the leftmost column indicates the ticker code, followed by the exchange

generating the quote (‘C’ = Cincinnati,3 ‘T’=Nasdaq, ‘N’=NYSE etc.), date and

time of quote, best bid/offer, and the volume (in 100 share lots) at each of these

prices.

2“G” trade: A member firm trading for its own account must publicly identify that the order
is principal. Rule 127: An NYSE trade reported as having been executed as a block position.

3Known as the National Stock Exchange since 2003 and headquartered in New Jersey.
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Table 4.2: A Sample of Quote Data for Ford Drawn from 2/2/09

Ticker Exchange Date Time Bid Size Offer Size Mode MMID

F C 2/2/09 11:20:56 1.8700 175 1.8800 75 12
F T 2/2/09 11:20:56 1.8700 458 1.8800 597 12
F C 2/2/09 11:20:56 1.8700 170 1.8800 75 12
F N 2/2/09 11:20:56 1.8700 425 1.8800 162 12
F T 2/2/09 11:20:56 1.8700 458 1.8800 517 12
F N 2/2/09 11:20:56 1.8700 426 1.8800 162 12
F I 2/2/09 11:20:58 1.8700 1005 1.8800 555 12
F N 2/2/09 11:20:58 1.8700 426 1.8800 182 12

TAQ User Guide

The TAQ 3 User’s Guide NYSE (2006) provides a description of the operation of

the extraction software and the associated meanings for the possible values in each

field. However, it should be noted that the guide has not been updated since 30 Oc-

tober 2006 and hence a data user should examine the expanded list of field values

for both the quotes and trades files which can be found on http://www.nyxdata.com/Data-

Products/Daily-TAQ. For example, the range of trade venues participating in the

consolidated tape and the range of related exchange identifier codes in the TAQ

database has increased since 2006. The current listing is shown in Table 4.3.

As can be seen from the listing (shown in Table 4.3), the US equity market is

spread across a large number of trading venues. Recent years have seen a consol-

idation and a renaming of some of these trading venues as discussed below.

The main variants of the NYSE are the traditional NYSE floor (now a hybrid

of an auction and an automated market) and NYSE Arca (formerly known as the

Archipelago Exchange and the Pacific Exchange). NYSE Arca is a fully electronic

stock exchange. The American Stock exchange (historically known as the New

York Curb Exchange) was acquired by the NYSE in 2008 and is now known as

NYSE Amex Equities.

Nasdaq (formerly, the ‘National Association of Securities Dealers Automated
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Table 4.3: Exchange Codes as at 31 January 2011

Code Exchange

A American Stock Exchange
B Boston Stock Exchange (now Nasdaq OMX BX)
C National (Cincinnati) Stock Exchange
D National Association of Securities Dealers (ADF)
E Market Independent (SIP - Generated)
I ISE (International Securities exchange)

M Chicago Stock Exchange
N New York Stock Exchange
P ARCA

T/Q NASDAQ Stock Exchange
S Consolidated Tape System
W CBOE
Z BATS
J DirectEdge A
K DirectEdge X
X NASDAQ OMX PSX
Y BATS Y-Exchange Inc.

Quotations’) is an electronic screen-based market. Like the NYSE, the Nasdaq

consists of a cluster of trade venues. For example, the Boston stock exchange was

formerly a regional stock exchange but was acquired by Nasdaq in 2007. It now

trades as Nasdaq OMX BX. Likewise, the Philadelphia stock exchange was also

acquired by Nasdaq in 2007, and trades as Nasdaq OMX PHLX. One interesting

recent development is the creation of a new Nasdaq market, the Nasdaq OMX

‘PSX’ platform (launched in October 2010). In most electronic markets, priority

for limit orders in the book is decided by price and then time of placement. In

other words, priority in the limit order book is given to orders with the best price

and then on a time basis (in a price tie, the oldest orders are executed first). In

contrast, Nasdaq OMX ‘PSX’ provides priority to limit orders on a price and

volume (displayed) basis (i.e. large limit orders are executed first). The object of

this is to attract large block trades to the exchange, away from dark pool trading

74



venues. Since its launch, the average trade size on PSX platform is 30% higher

than on the main Nasdaq market, and the new venue already accounts for about

1% of US equity trading (FinancialTimes, 2011b)

The National Association of Securities Dealers (now the Financial Industry

Regulatory Authority - FINRA) (ADF) is not technically an exchange as it does

not offer trade execution facilities. Instead it is an ‘alternative display facility’

which collects and disseminates quotes and trade information, for example from

some electronic communication networks (ECNs).4

The national stock exchange is an electronic stock exchange based in Chicago.

Prior to 2003 it was known as the Cincinnati stock exchange.

Table 4.4: US Daily Market Share
Equities for 2 February 2011 (Finan-
cialTimes, 2011a).

Market % Daily Turnover

OTC 27.6
Nasdaq 18.1

NYSE Arca 15.4
NYSE 13.8
BATS 12.3

Direct Edge 9.5
Boston 1.3
Other 2.0

Note in this table, OTC includes trades
not undertaken on regulated exchanges and
therefore includes dark pool venues and
electronic communication networks.

BATS is an electronic stock market, founded in 2005, trading approximately

10% of US equities. In 2010, BATS launched a second US equities exchange

(BATS Y-Exchange). Direct Edge is also an electronic stock market and was
4ECNs are regulated by the SEC but are not recognised as stock exchanges.
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granted SEC approval to become a stock exchange in 2010. Formerly it had been

an ECN.The International Securities Exchange (ISE) took a shareholding in Direct

Edge in 2008. The ISE formerly traded equities and options. The ISE stock

exchange (although not the ISE options exchange) was decommissioned in 2010.

A guide to the relative sizes of each exchange is provided in Table 4.4.

4.1.2 LSE ROB Database

Compared to the NYSE-Euronext TAQ database, which contains the best quotes

and the corresponding depths, the LSE Rebuild Order Book data has richer in-

formation. The LSE is the fourth largest exchange in the world and the largest

in Europe in terms of market capitalisation. It operates an electronic order book

platform, Stock Exchange Electronic Trading System (SETS). This trading system

has three sessions on each trading day:

• opening auction session, from 07:50 to 08:00, where buy and sell orders are

matched at 08:00,

• continuous trading session, from 08:00 to 16:30, where buy and sell orders

are continuously matched at price/time priority, and

• closing auction session, from 16:30 to 16:35, where buy and sell orders are

matched at 16:35.

The ROB data records order activities, which pooled together comprise the

quote prices and depths. It can be used to reconstruct the limit order book up

to any quote level. The data consists of every order and trade that occurred at

the LSE. It contains information on order submissions, order cancelations, order

modifications and executions. Every trade is linked to the corresponding orders

through a trade code. Therefore, if a large order is executed against many small
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orders resulting in many small trades, one can trace back to each small order using

corresponding trade code. With this information one is able to reconstruct the

limit order book for each millisecond of the trading day. The LSE provides three

separate files to record trade and order information for each trading day. These

files are:

• ‘order details’ file, which contains details of every new persistent order5

entering the electronic order book,

• ‘order history’ file, which contains information on changes to each persis-

tent order, including order partial/full matching, order deletion, order expi-

ration and order modification, and

• ‘trade report’ file, which contains details of every trade execution.

4.1.3 Sample Data

A sample of the Order Detail file is shown in Table 4.5. As shown in the table,

each order has an order code which is unique to the order. The stock code in the

second column of the table corresponding to a stock listed in the LSE. In the third

column, “B” stands for a buy order and “S” represents a sell order. The next four

columns show the price, visible size, submission date and time for each submitted

order. The last column is the message sequence number which is unique for each

event (e.g. limit order submission, order cancellation, order matching, and order

modification) occurring in the market. The message sequence number is usefull to

distinguish the time priorities of two events which occur at the same time (accurate

to one millisecond). It also appears in the Order History file and the Trade Report

file.

5Persistent orders are the orders which are stored on the electronic order book after they are
submitted to the market.
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A sample of the Order History file is shown in Tables 4.6 & 4.7. As shown

in Table 4.6, there is an order action type attached to each entry. It records the

action made to the order submitted previously and still listed in the order book.

There are six order action types, which are explained in Table 4.9. After actions

“D” or “E”, the order will be removed from the order book. Partial match means

that part of the order is executed, and the unexecuted part is still left in the order

book. Full match means that the order is fully executed and thus its aggregate size

is zero as shown in the second column of Table 4.7. If it is either partial matched

or fully matched, the counterparty’s code is recorded as shown in the third column

of Table 4.6.6 Action “T” rarely appears in the database.

A sample of the Trade Report file is shown in Table 4.8. As shown in Table

4.6, each order matching entry has a unique trade code.7 This trade code corre-

sponds to an entry in the Trade Report file. As shown in Table 4.8, each entry

records details of each transaction, including the trading price, size, date and time

(accurate to one second).

As shown in Tables 4.5, 4.6, 4.7 and 4.8, the information contained in these

three files are connected by order codes and trade codes. The order code maps

the new persistent orders listed on ‘order details’ file and their order trajectories

(full execution, partial execution, deletion, expiration and modification) recorded

on ‘order history’ file. Similarly, the trade code is used to track the trading de-

tails contained on the ‘trade report’ file for each order matching record on ‘order

history’ file.

6The counterparty of a buy order is a sell order, and vice versa.
7A limit order executed against two or more market orders will have two different trade codes.
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Table 4.9: Order Action Type (ROB)

Order Action Type Description

D Deletion
E Expiry
P Partial Match
M Full Match
T Transaction Limit ( 150 trades)
Z Modification (Size decrease)

4.2 Data Processing

The course of data preprocessing is presented in this section.

4.2.1 Preprocessing of TAQ data

This section initially introduces the issues in data preprocessing and then presents

the steps used to preprocess the TAQ data.

Issues in Data Preprocessing

Although the data contained in the TAQ database is a valuable resource for re-

search purposes, it is supplied in a raw (unprocessed) format and therefore re-

quires pre-processing in order to prepare it for analysis. Figure 4.3 shows the un-

filtered time series for CHDX. It clearly illustrates that there are often extremely

abnormal prices in the non-NASDAQ quote time series (green line). Thus it is

very necessary to filter the raw time series before using it for analysis. The clean-

ing of high-frequency financial data have been given special attention in many pre-

vious studies, such as Lee & Ready (1991) Bessembinder (2003) Vergote (2005)

and Henker & Wang (2006). Issues which can arise in raw high-frequency data

include:

Quote data only
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Figure 4.3: Unfiltered Time Series for CHDX at 02/02/09 from 9:30-11:00 am.
The blue line depicts quotes occurring at NASDAQ; the green line depicts quotes
occurring at all exchanges; the red crosses represent the transaction prices.
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Q1. Quotes which are generated by non normal market activity

Trade data only

T1. Trades which are subsequently modified or cancelled

T2. Trades of which the report time is delayed

All data

A1. Ticks occurring outside normal trading period

A2. Ticks with non-positive prices, volumes or bid-ask spreads

A3. Ticks of which the prices appear inconsistent with their neighbouring prices

(i.e. ‘outliers’)

Typically it is relatively easy to identify and correct for items Q1, T1-2 and

A1-2 as ‘flags’ in the database and the relevant ‘timestamp’ can be used to help

filter these items. Items falling into category A3 are trickier to handle as a series

of modeller decisions are required in order to classify a data point as an ‘error’

which therefore should be removed in data preprocessing. In this process, the data

analyst is attempting to balance out the risks of under scrubbing vs over scrubbing

the data. Under scrubbing the data risks the embedding of noise in the data being

analysed whereas over scrubbing the data filters out potentially vital information.

The process must consider issues such as the change in price between one trade

record and the next simultaneously with the level of trading activity. A trade which

is, for example, $0.10 off the previous recorded trade price would be unusual for

a highly-liquid stock which trades many times a second, but may be less suspect

for a thinly-traded security which only trades every 10 minutes.

Depending on the research questions of interest, and the associated required

analyses (for example, trade classification, calculating effective spreads, and es-

timating the information context of trades (Henker & Wang, 2006)), it may also
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be necessary to align the trades and quotes data chronologically into a single time

series. This task is not as simple as it appears at first glance as there is no field

in the separate trade / quote files which make up the TAQ database which links

trades with their corresponding quote update. The problem is made more complex

due to the potentially differing levels of latency in data from differing sources in

reaching the consolidated tape.

The degree of latency in the recording of both quotes and trades has varied

over the years and hence, the most appropriate procedure to adopt in aligning

these time series has also varied with obvious implications for research study de-

sign, depending on the dates from which the data is drawn. Historically, there has

been greater latency in the recording of quote updates than trade updates on the

consolidated tape, and consequently, lining up the time series based on time stamp

may produce an unintended outcome where a trade is recorded before the associ-

ated change in the best quote for that exchange (obviously, any trade will impact

on the current best quote for an exchange as it will usually alter some element

of best bid/ask price or volume at those prices). For example, under the manual

system operated in the NYSE in the 1980s, if a specialist assistant was faster in

recording a quote revision than the floor reporter was in recording a trade, the

corresponding quote update could be recorded before the trade that triggered it.

As a result of this problem, Lee & Ready (1991) suggested, based on NYSE data

drawn from 1988, that the prevailing quote five seconds before a trade should be

considered to be the actual quote at the time of the trade. This rule was used in

many academic studies up to and including the early 2000s.

Of course, with the increasing use of technology there have been many struc-

tural changes in the way that trade and quote information has been captured over

the past 20 years. With the introduction of ‘auto-quoting’ for all stocks in 2003

on the NYSE, the best bid/offer was automatically updated whenever a limit order
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was posted to the Display Book at a better price than the previous best bid or of-

fer, and trades taking place at the best bid/offer automatically led to an updating of

the best bid/offer (Vergote, 2005). A study after the introduction of the autoquote

system, using data drawn from October-December 2003, indicated that a trade -

quote change lag still existed, although it had been reduced to about 2 seconds

(Vergote, 2005), with another study (Henker & Wang, 2006) (which used earlier

data) suggesting that the appropriate lag was one second.8

The increasing use of ‘unlit’ trading venues such as dark pools has resulted in

an growing portion of trades taking place ‘off exchange’. While these trades are

recorded on the CTS, there will not be a corresponding ‘quote change’ recorded on

the CQS. Another issue that should be noted is that the lag from a trade execution

to the recording of that trade on the CTS is permitted to range up to 90 seconds

and hence, it cannot be assumed that actual trade time and the reporting time of

a trade are identical (Hasbrouck et al in a 1993 study (Hasbrouck et al., 1993)

reported a median delay of 14 seconds for NYSE trades between the SuperDot

execution report time and the CTS print time).

Actual Data Preprocessing

Only the quotes and trades ticks which happen at their main listed exchange are in-

cluded. So the ticks happened outside NYSE for DAR, F, MDS and XOM, and the

ticks happened outside NASDAQ for CHDX and GOOG are excluded. For NYSE

traded stocks, it is easy to obtain their records by choosing ’N-NYSE’ when using

the TAQ3 extraction tool as shown in Figure 4.2. On obtaining NASDAQ traded

ticks, this is a little more complicated. As shown in Table 4.3, there are two ex-

8While increased use of electronic trading would be expected to enhance the quality and time-
liness of trading data capture, this is not always so. A recent case in point was the introduction of a
new matching engine on the London Stock Exchange (14 February 2011) where due to computer
glitches, price data vendors were displaying incorrect prices, blank prices and incorrect trading
volumes (King, 2011).
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change codes corresponding to NASDAQ, which are ’T’ and ’Q’. But as shown

in Figure 4.2, only ’T-NASDAQ’ can be chosen when using the TAQ3 extraction

tool, where ’Q-NASDAQ’ is not listed. In order to obtain all ticks which happen

at NASDAQ, analyst needs to select all exchanges when using the TAQ3 extrac-

tion tool. By doing this, all ticks from NASDAQ can be included in the extracted

file labeled with ’Q’ or ’T’ in the ’Exchange’ column.

In preprocessing the raw data this study follows the lead of Brownlees & Gallo

(2006). For both quote and trade data, initially all ticks recorded outside the nor-

mal trading day are removed. Following Brownlees & Gallo (2006), an expanded

trading period spanning between 9:30 AM and 4:05 PM is adopted, in order to in-

sure that closing prices possibly recorded with a delay are accounted for. For trade

data, all incorrect and delayed trades are initially discarded, which are indicated

by the CORR field differing from 0 and the COND field equaling ‘Z’ respectively

in the trade file. Typically, this removes only a small amount of data from the

initial dataset (usually less than < 0.5%). On quote data, all records generated by

non normal activities are deleted, as indicated by the MODE field values 1,2,3,6

or 18 in the quote file. Then all quote and trade ticks with non-positive prices or

volumes and all quotes with non-positive bid-ask spreads are deleted.

Removing Outliers

To remove outliers, observations are omitted when the absolute difference be-

tween the current price and the average neighbour price is outside three standard

deviations plus a parameter that controls for the minimum price variation. To il-

lustrate, let pi be a value of the price time series PN
i=1. The proposed method in

Brownlees & Gallo (2006) to remove outliers is:

|pi − pi(k, δ)| < 3si(k, δ) + λ (1)
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Here pi(k) and si(k) denote respectively the δ-trimmed sample mean and sample

standard deviation of a neighborhood of k observations around i and λ is a granu-

larity parameter9. The k neighbor observations are chosen based on the following

rules: the neighborhood of an observation in the middle of the day are the first

preceding k/2 observations and the following k/2 ones; the neighborhood of one

of the first k/2 observations for the trading day are the first k observations of the

same trading day; the neighborhood of one of the last k/2 observations for the

trading day are the last k observations of the same trading day. For any given ob-

servation price pi, if the condition above is true, this observation is kept, otherwise

discarded.

A very heuristic procedure is introduced in Brownlees & Gallo (2006) for

choosing these three parameters. The parameter k is chosen based on the level of

trading intensity, the more active the trading, the larger the k. The parameter δ

is chosen on the basis of the frequency of outliers, the higher the frequency, the

higher the δ. The choice of the granularity parameter λ is guided by the frequen-

cies of the price changes which is always multiples of the minimum price variance

for that stock.
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Figure 4.4: Frequencies of Price Changes for CHDX. (a) frequency of bid price
change (b) frequency of ask price change (c) frequency of transaction price
change.

9The parameter λ is used to avoid zero variances from the time series of k equal prices around
the observation price pi.
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Figure 4.5: Frequencies of Transaction Price Changes for Six Stocks

Figure 4.4 illustrates the frequencies of bid, ask and transaction price changes

for CHDX, which guides the choice of parameter λ. Figure 4.5 depicts the fre-

quencies of transaction price changes for the six stock. As shown in Figure 4.5(f),

there is a significant fraction of price changes equal or larger than six minimum

ticks.10 In contrast, there is almost no price change larger than two ticks for F as

shown in Figure 4.5(a). The distributions of price changes for the other four stocks

are between these two extremes. It is possible that more outliers are identified in

the price time series with higher dispersion level of price change. The parameter

δ is fixed at 10%, the same as Brownlees & Gallo (2006). Several sets of parame-

ters (k, λ) are tested. The quality of the cleaning is judged by a visual inspection

of the clean tick-by-tick price series graph. Figure 4.6 depicts the time series on

03 Feb 2009 from 9:30 to 11:00 for CHDX. The plot in Figure 4.6(a) shows the

time series of raw data. The time series in Figures 4.6(b), 4.6(c) & 4.6(d) demon-

strate the clean data with three different sets of parameters (k, λ). 4.6(d) provide

10One minimum tick equals 0.01.
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(b) clean data with kq = 40 λq = 0.06 for
quote data, and kt = 10 λt = 0.08 for trade
data
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(c) clean data with kq = 80 λq = 0.02 for
quote data, and kt = 10 λt = 0.04 for trade
data
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(d) clean data with kq = 40 λq = 0.02 for
quote data, and kt = 10 λt = 0.04 for trade
data

Figure 4.6: Tick-by-tick Price Series on 03 Feb 2009 (9:30-11:00) for CHDX.
The blue line (below) represents the bid price time series; the green line (above)
represents the ask price time series; the red circles represent the transaction prices.
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the most satisfactory result. The sets of most satisfactory parameters (k, λ) are

reported in Table 4.10.

Table 4.10: Parameters for Removing Outliers

Quotes Data Trades Data

δ k λ δ k λ

MDS 0.1 30 0.02 0.1 10 0.06
CHDX 0.1 40 0.02 0.1 10 0.04
DAR 0.1 50 0.02 0.1 20 0.03

F 0.1 60 0.01 0.1 40 0.02
GOOG 0.1 120 0.01 0.1 60 0.02
XOM 0.1 120 0.01 0.1 60 0.02

There are three steps to clean the raw quote data: the first step is to remove

all quotes which are generated by non normal market activities; the second step

is to remove all quotes with non-positive prices, volumes or bid-ask spreads; the

third step is to remove the outliers. Similarly, there are three steps to clean the raw

trade data: the first step is to remove all trade ticks which are modified, cancelled

or delayed; the second step is to remove all trades with non-positive prices or

volumes; the third step is to remove the outliers.

Tables 4.11 & 4.12 summarize the results of cleaning raw quote and trade data

respectively. The values in bold represent of the percentage of the final filtered

data in the raw data. Most of these percentages are larger than 99%, indicating

that the filtering process generally does not alter the raw data. From the tables,

one can also find that non-positive values did not appear in either raw quote data

or trade data, in contrast that some zero values were found in Barndorff-Nielsen

et al. (2009). This indicates that the consolidated tape system has been improved

and zero values are avoided.11 Among the three steps, the last step removes a

11In Barndorff-Nielsen et al. (2009), the period of analysed data is from January 3 to June 29,
2007. The time of the data analysed here is February 2009.
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larger fraction of the observations than the other two steps. Among the six stocks,

F removes a smaller fraction of the observations while GOOG removes a larger

fraction of the observations. It can be found that there is a positive relationship

between the number of removed observations and the dispersion level of price

changes. The more dispersive the price change, the more the observations identi-

fied as outliers. Figures 4.7 & 4.8 illustrate the raw data and the filtered data for

CHDX on 10 Feb. 2009 respectively.
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Figure 4.7: Raw Data for CHDX on Feb 10, 2009
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Figure 4.8: Clean Data for CHDX on Feb 10, 2009
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Matching Trade and Quote

To match trade ticks with quote ticks, this study follows the one-second rule in

Henker & Wang (2006). Any quote less than one second prior to the trade is

ignored and the first one at least one second prior to the trade is retained as the

prevailing quote. If the transaction occurs above the prevailing mid-quote, it is

regarded as a buyer-initiated trade; otherwise if the transaction occurs below the

prevailing mid-quote, it is a seller-initiated trade. If the transaction occurs exactly

at the mid-quote, it is signed using the previous transaction price, which is called

’tick test’ in Lee & Ready (1991). If the transaction price is higher (lower) than

the price of the previous trade, it is classified as a buyer(seller)-initiated trade.

If the transaction price is the same as the price of the previous trade, it is signed

using the previous transaction price change. If the previous price change is upward

(downward), the trade is a buy (sell). Sometimes, the trade does not fall into any

cases mentioned above, for example the trade is the first trade of the trading day.

An alternative test called ’reverse tick test’ in Lee & Ready (1991) can be applied

which compares the current trade price with the trade prices immediately after the

current trade. If the following trade price is higher (lower) than the current trade

price, the trade is classified as a sell (buy).

4.2.2 Preprocessing of ROB data

The data contained in the ROB database is supplied in a raw (unprocessed) format

and therefore requires preprocessing in order to prepare it for analysis. Unlike the

raw data in the TAQ database, the ROB data rarely contains non-positive values,

but the ROB data is out of time sequence and more complicated than the TAQ

data. The information needed to analyse the order book is not direct to obtain and

the some preprocessing steps are needed. For example, market order information

98



can not be directly found in the data files provided and needs to be inferred using

the available data information.

Figure 4.9: ROB Data Preprocessing Chart

Figure 4.9 illustrates how to preprocess the ROB data in order to extract the

order book information for the 1st of Aril in 2010 which is denoted by “401”.

There are three steps explained as follows.

1. The first step is to extract the data for each trading day from the three original

files (Order-Detail, Order-History and Trade-Report), because each original

file contains information for numerous (about 11) continuous days. As shown

in Figure 4.9, the information for 1 Oct. 2010 is then written to 401 Order-

Detail, 401 Order-History and 401 Trade-Report.

2. The second step is to infer the information on undisclosed orders, and ex-

tracting the information on limit orders with various levels of aggressiveness
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(which will be used in the study in Chapter 6). Detail of this step is explained

in the next section.

3. The third step is to reconstruct the order book using the information extracted

in the last step, and record the information of the order book up to any quote

level. As shown in Figure 4.9, the order book information is recorded in

401 OrderBook. Detail of this step is described below.

Inferring Undisclosed Orders

In order to get the full information needed for the experiments in Chapters 5 &

6, non-persistent market orders and three missing events from the given data files

have to be inferred. Market orders can be inferred from the ‘order history’ file as

it records information on the matching side of each transaction. In this study, the

reconstructing process is implemented in JAVA.

The first missing event in ROB data is the execution of iceberg limit order.

LSE allows traders to place iceberg limit orders, part of which are hidden in the

order book and not recorded in the ROB data. When the visible part of the iceberg

limit order is matched by a market order with larger size, the hidden part will be

executed against the rest of the market order. The traded hidden part of the iceberg

limit order can be inferred from the records of the limit order whose transaction

size is larger than its original size.

The second set of missing events are crossing limit orders which cause imme-

diate trade after submission. The ‘order details’ file only records the unexecuted

part of the crossing limit orders. The traded part can be found from the ‘order

history’ file in that each crossing limit order is matched by one or more persistent

limit orders previously submitted to the market.

The third missing event is the limit order which was submitted to the market

a few days ago but is executed today. The information on details of these orders
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needs to be recovered from older data files.

After this step, seven data files are obtained as shown in Figure 4.9. Four

types of limit orders with various aggressiveness are distinguished for the use in

Chapter 6, which are crossing limit order, in-spread limit order, spread limit order,

and off-spread limit order. Details of these order types are explained in Chapter 6.

Reconstructing The Limit Order Book

In order to get information on the limit order book up to any quote level, the order

book on each trading day needs to be reconstructed using all the available data,

which is already acquired in the second step.

At first, the opening time of the normal trading session needs to be inferred.

This time is a random point between 8:00:00 a.m. and 8:00:30 a.m. At this

point, all the orders submitted during the opening sessions are executed at the

price which can maxmise the trading volume. Therefore, the opening time is the

time point at which the number of trades is largest in the period from 8:00:00

a.m. to 8:00:30 a.m. Then all the orders occurring during the same trading day

are sorted in time sequence. For those events occurring at the same time, they are

distinguished using their sequence numbers. All the rules as in the real market are

applied for reconstructing the limit order book, like the price & time priorities. In

this study, the reconstructing process is implemented in Matlab.

4.3 Summary

The objective of this chapter was to provide an introduction to two popular high-

frequency databases, and using this data, explore some of the issues faced by

researchers seeking to use ultra-high frequency financial databases. With the pre-

processed data, three studies on price impact are conducted in the following chap-
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ters.
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Chapter 5

An Analysis of Intraday Behaviours

of Price Impact and Market

Liquidity

Much of the content of this chapter has been in:

• Cui, W. and Brabazon, A. (2012). An Analysis of Liquidity in London

Stock Exchange. Proceedings of the 25th Irish Accounting and Finance As-

sociation Conference, pp. 1-45, Galway, Ireland. (Cui & Brabazon, 2012b)

• Cui, W. and Brabazon, A. (2011). Ultra High-frequency Financial Data:

Analysing NYSE Euronext TAQ Data. Proceedings of the 24th Irish Ac-

counting and Finance Association Conference, pp. 1-38, Cork, Ireland.

(Cui & Brabazon, 2011)

Intraday phenomena in financial markets have been extensively studied in the

literature on market microstructure as shown in Section 2.4 of Chapter 2. How-

ever, many of these studies are dated. For example, the most recent studies of
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intraday phenomena in the US markets and the UK markets are analysed with the

1999 data (Henker & Wang, 2006) and 2001 data (Cai et al., 2004) respectively.

Up-to-date evidence is useful for constructing market microstructure theories and

is crucial for developing intraday trading strategies. It can also help regulators to

design an appropriate measure of liquidity for an efficient and transparent trading

system.

There are two objectives of this chapter. The first objective is to examine

the intraday behaviour of market liquidity. In this chapter, intraday behaviours

of price volatility, bid-ask spread, trading volume, trading frequency, trade size,

market depth (cover the best level of the order book) and near market depth (covers

the ten best levels of the order book) are investigated.

The second objective of this chapter is to investigate the intraday behaviour

of price impact. Several studies have examined the intraday behaviour of price

impact. Dufour & Engle (2000); Engle & Patton (2004); Hasbrouck (1999) find

that price impact measured as changes of mid-quote, bid and ask prices caused by

trades does not have an intraday pattern on the NYSE. In contrast, Chan (2000)

shows that price impact displays a U-shaped pattern over the trading day on the

HKSE. However, no previous paper examines the intraday behaviour of price im-

pact on the LSE or the NASDAQ. Therefore, it is interesting to know whether the

price impact exhibits an intraday pattern in these markets.

In this chapter, the analysed data is drawn from two databases, the NYSE-

Euronext TAQ (trade and quote) database and the LSE ROB (rebuild order book)

database, and covers three markets, the NYSE, the NASDAQ and the SETS of

LSE. This chapter contributes to the literature in the following ways. It documents

up-to-date evidences on the intraday behaviours of a number of interesting vari-

ables including the price volatility, trading size, trading volume, bid-ask spread,

market depths and price impact, in the UK market as well as the US markets,
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which complements the literature on intraday phenomena.

The chapter proceeds as follows. Section 5.1 introduces various measures of

market liquidity which are examined in this chapter. Section 5.2 presents empiri-

cal results and discussions. A summary of this chapter is given in Section 5.3.

5.1 Measures of Market Liquidity

There is no single all-encompassing measure of market liquidity as liquidity is

a multi-dimensional variable. In this chapter, a number of interesting metrics

are used to investigate the intraday pattern of market liquidity, including bid-ask

spread, market depth, and price impact ratio. Each trading day is partitioned into

successive 15-minutes intervals, and the measure these metrics for each stock dur-

ing each of the 15-minute intervals on each trading day, which are then averaged

over the whole sample period (19 trading days for US stocks and 127 trading days

for UK stocks).1 The methods used to estimate these metrics are described as

follows.

5.1.1 Price-based Measures

Following Abhyankar et al. (1997) and Cai et al. (2004), absolute mid-quote re-

turns2 are used as the return volatility measure. The mid-quote return is calculated

as

Rt = [log(Pt)− log(Pt−1)]

1This thesis chooses a reasonable time length of the data (19 trading days for US stocks and
127 trading days for UK stocks), which is enough to generate intraday phenomena. During these
time periods, there were no disturbances in the markets.

2The use of mid-quote prices rather than transaction prices should reduce spurious volatility
due to the bid-ask bounce.
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where P is the mid-quote price at the end of each minute. At first the price returns

for each 1-minute interval is calculated and then the average absolute return is

used as the return volatility at each 15-minute interval.

The bid-ask spread is the difference between the prevailing best ask price

(ASK) and the prevailing best bid (BID). In this chapter the proportional bid-

ask spread (ProSpr)3 is used to measure the spread. It is defined as the ratio of

the prevailing bid-ask spread and the prevailing mid-quote price (0.5 ∗ (ASK +

BID)):

ProSpr =
ASK −BID

0.5 ∗ (ASK +BID)
.

The 15-minute proportional quoted spread is calculated as the average quoted

spread during the period.

5.1.2 Volume-based Measures

Previous work typically only measures the depth at the best available prices (best

bid & ask price). However, the quotes and volume beyond the spread also have

effects on the market liquidity. Cao et al. (2008) found that the liquidity beyond

the spread is informative about future short-term returns. Hopman (2007) has

shown that order imbalance inside the order book is an important determinant of

simultaneous price changes. Farmer et al. (2004) found that large price impacts

caused by market order executions are not always associated with large trading

sizes, but are due to gaps at different levels of the order book. In this chapter the

near market depth is also investigated which accounts for the 10 highest levels of

the order book. The market depth (Dep) is measured as the average value of all

shares at the best bid price and all shares at the best ask price:

3For the purpose of convenient comparison of different stocks.

106



DepShare =
SharesBestBid + SharesBestAsk

2
.

The near market depth (NDep) is measured as the average value of all shares at

the best 10 bid prices and all shares at the best 10 ask prices:

NDepShare =

∑10
i=1 Sharesbid,i +

∑10
i=1 Sharesask,i

2

where i is the level of the order book. The depth in value is also measured. The

depth in value is measured as

DepV alue =
BID ∗ SharesBestBid + ASK ∗ SharesBestAsk

2

The near depth in value is measured as

NDepV alue =

∑10
i=1BIDi ∗ Sharesbid,i +

∑10
i=1ASKi ∗ Sharesask,i

2
.

The depth is calculated for each time recorded in the data. It is averaged over each

15-minute interval and over the whole sample period.

The 15-minute trading size is the average trading size at this period and it is

then averaged over the whole sample period. The trading size in value which is

trading size timed by its corresponding trading price is also measured.

5.1.3 Price and Volume Mixed Measures

More recently, with the increased availability of ultra high-frequency data from

stock exchanges and other alternative trading platforms, several papers have looked

at measures of liquidity other than bid-ask spread, including Sandas (2001); Ranaldo

(2004); Hall & Hautsch (2007); Large (2007).
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In this study, price impact ratio is proposed to measure liquidity cost. Price

impact is the mid-quote price change caused by a trading execution. The price im-

pact ratio (PiRatio) is measured as the ratio of price impact and its corresponding

trading size:

PiRatio =
Priceafter − Pricebefore

TradeSize

where Price is the mid-quote price, Priceafter is the market price immediately

after this trading execution and Pricebefore is the market price just before the

trading execution. Price impact ratio measures the liquidity cost of each traded

share.

5.2 Empirical Results and Discussions

The aim of this experiment is to investigate whether price impact exhibits an intra-

day pattern and whether this intraday pattern is consistent across different stocks

in US and UK markets. Six firms from the TAQ database are selected for analysis

(Table 5.1). The firms selected are of varying market capitalisation and industry

sector. Table 5.2 reports a number of data descriptives concerning these com-

panies drawn from 2nd February 2009. All of the companies are listed on US

markets.

For the ROB database, the six most actively traded stocks, whose market cap-

italisations exceed 20 billion pounds are selected for analysis. The companies are

Barclays, British American Tobacco, BP, Glaxo Smith Kline, HSBC Holdings and

Vodafone Group. They are from five different industries: consumer goods, basic

materials, healthcare, financial and technology sector (shown in Table 5.3). Also

all of them are British multinational companies headquartered in London, United

Kingdom and primarily listed in the London Stock Exchange.
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Table 5.1: Companies Listed in the US markets. Market capitalisation and share
prices as at 01/04/2011

Name Ticker Primary Mkt. Mkt. Cap. Share Price

Exxon XOM NYSE $419.55 Bn $84.79
Google GOOG Nasdaq $191.22 Bn $589.01

Ford F NYSE $57.02 Bn $15.03
Darling Int’l DAR NYSE $1.85 Bn $15.48
Chindex Int’l CHDX Nasdaq $0.25 Bn $16.05

Midas Inc. MDS NYSE $0.11 Bn $7.76

Table 5.2: Trading Activity of US Stocks (02/02/2009).

Name Ticker Consol. Vol Consol. $ Vol Consol. Trades Av. Trade Size

Exon XOM 36,128,159 $2,761.699m 183,030 197.39
Google GOOG 5,271,804 $1,789.620m 38,653 136.38

Ford F 32,404,587 $60.672m 26,246 1,234.65
Darling Int’l DAR 1,091,619 $4.817m 5,514 197.97
Chindex Int’l CHDX 39,739 $244,389 264 150.53

Midas Inc. MDS 39,200 $376,421 284 138.02

Note: Consol. Vol is short for Consolidated Volume.
Consol. $ Vol is short for Consolidated Dollar Volume.
Consol. Trades is short for Consolidated Trades.
Av. Trade Size is short for Average Trade Size.

Table 5.3: Information of Companies Listed in the LSE (28/09/2012)

Ticker Full Name Sector Market
Capitalisation

BARC Barclays PLC Financial 26.42b
BATS British American Tobacco PLC Consumer Goods 62.29b

BP BP PLC Basic Materials 83.47b
GSK Glaxo Smith Kline PLC Healthcare 70.19b

HSBC HSBC Holdings PLC Financial 93.16b
VOD Vodafone Group PLC Technology 87.23b
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The next section provides summaries of descriptive statistics for both datasets.

Then the empirical results on the intraday patterns are presented graphically in

Figures 5.2-5.25, and are discussed in Sections 5.3.2-5.3.5.

5.2.1 Summary Statistics

Summary statistics for the companies are provided. Analysed variables include:

• Mid-quote price, which is the average price over the sample time period;

• Number of trades per day, which is the average number of trades over the

sample time period;

• Trade size, which is the average number of shares per trade for all the trades

in the sample data;

• Buyer-initiated trade size, which is the average number of shares per trade

for all the buyer-initiated trades in the sample data;

• Seller-initiated trade size, which is the average number of shares per trade

for all the seller-initiated trades in the sample data;

• Bid depth, which is the average number of shares available at the best bid

price for the time period in the sample data;

• Ask depth, which is the average number of shares available at the best ask

price for the time period in the sample data;

• Buy/sell ratio, which is the average daily ratio of daily number of buyer-

initiated trades (DailyNumberbuys) to daily number of seller-initiated trades

(DailyNumbersells)
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daily buy/sell ratio =
DailyNumberbuys
DailyNumbersells

;

• Probability of reversal, which is the average daily probability of sign rever-

sal in consecutive trades, for instance a buy trade is followed by a sell trade,

and is calculated as

daily probability of reversal =
DailyNumBS +DailyNumSB

DailyNumtrades − 1

where DailyNumtrades is the daily number of trades, DailyNumBS is the

daily number of reversal from a buy to a sell, and DailyNumSB is the daily

number of reversal from a sell to a buy.

Summary Statistics for US Stocks

A summary of descriptive statistics of the six US stocks is reported in Table 5.4.

As shown in this table, GOOG has the highest midquote price among the six

stocks, because Google has never split its stock. The midquote price of stock F is

the smallest which is 1.84.

On the proportional bid-ask spread, the bigger companies (GOOG, XOM)

have narrower spreads than smaller companies (MDS, CHDX, DAR, F), because

bigger stocks are more liquid to trade than smaller stocks.

The average number of quotes per day of the six stocks is 38,960, which im-

plies that there is more than one quote per second.4 Especially, there are more

than four transactions occurring per second for GOOG and XOM, and more than

one for F.

4One trading day, from 9:30 to 16:05 equals to 23700 seconds or 395 minutes.
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The average number of trades per day for the six stocks is 8,981, which implies

that more than 22 transactions are occurring per minute. About one transaction

happens per second for bigger stocks (GOOG and XOM). In contrast, about one

transaction happens every five minutes for thinly traded stock MDS. The stocks

with higher market capitalisation are traded more frequently than those with lower

market capitalisation.

The average trade size of the six stocks is 517, about half of the trade size ten

years ago.5 There are five stocks with an average trade size less than 400. The

average buyer-initiated trade size of the six stocks is 483, smaller than the average

seller-initiated trade size (559).

The ask(bid) depth is larger than buyer(seller)-initiated trade size for each

stock. The buy/sell ratio is the ratio of the number of buyer-initiated trades to

the number of seller-initiated trades.

The average buy/sell ratio of the six stocks is 1.0417. Three of the stocks,

MDS, DAR and F, have buy/sell ratios larger than one which reflect that there are

more buyer-initiated trades than seller-initiated trades, and the other three (CHDX,

GOOD and XOM) are smaller than one which suggest that there are more seller-

initiated trades than buyer-initiated trades. It is interesting to see how the stock

price moves in the sample period. Figure 5.1 plots the price movement during

the sample period (Feb. 2009) for stock XOM. Since the buy/sell ratio of XOM

is 0.7943, it is not surprising to see that the price falls over the sample period in

Figure 5.1: the price rises from 76.69 and reaches a peak (80.34) at the end of the

first week in the sample period, and then drops for the rest of the sample period

(ending at 67.90).

There are two stocks with a trade reversal probability larger than 0.5, and four

5Henker Henker & Wang (2006) investigated the average trade size for 401 stocks and more
than 200 trading days in 1999. They found that the average buyer-initiated trade size is 1166 and
the average seller-initiated trade size is 1096.
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stocks with a trade reversal probability less than 0.5. While F has a very high

reversal probability 0.9430, GOOG has a very low reversal probability 0.1816.

The average probability of trade reversal is very close to 0.5, suggesting that in

general the probability that a trade is followed by another trade with the same sign

is similar to the probability that it is followed by a trade with reverse sign for these

six stocks.

Figure 5.1: Price of XOM during Feb. 2009 (from Yahoo Finance)

Summary Statistics for UK Stocks

A summary of descriptive statistics of the six UK stocks is reported in Table 5.5.

As shown in the table, the proportional bid-ask spreads of these six stocks are

almost the same, two are 0.0007, three are 0.0006 and one is 0.0005.

The rest of the variables reported in Table 5.5 reflect trading activity during

the period from April 2010 to September 2010 for the six UK stocks. The third

row is the values of number of trades per day. Higher values indicate that the stock

is more actively traded. As seen from the table, BARC, BP and HSBC are more

actively traded during the period than BATS, GSK and VOD.

The fourth row is the values of trade size in shares. While the average trade

size of BATS is less than 1,000, the average trade size of VOD is more than 10,000.
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The fifth and the sixth rows are the values for buyer-initiated trade size and sell-

initiated trade size respectively. These values indicate that buyer-initiated trade

size almost equals seller-initiated trade size. This suggests that it is not necessary

to assume that buyer-initiated trade size differs from seller-initiated trade size in

theoretical models.

The seventh and eighth rows are the values of bid depth and ask depth sepa-

rately. Observing these values, the differences between bid depth and ask depth

are very small for the six stocks. This suggests that the limit order book is sym-

metric at least at the best levels in these six stocks.

The ninth row is the values of buy/sell ratio. The buy/sell ratio nearly equals

to one in all the six stocks.

The last row in the table reports the values of probability of reversal. All of the

six stocks have a trade reversal probability very close to 0.5. This suggests that

in general the probability that a trade is followed by another trade with the same

sign is similar to the probability that it is followed by a trade with reverse sign for

these six stocks. This result is consistent with the finding above for the US stocks.

5.2.2 Intraday Price Volatility

Price volatility is a direct measure of risk and an indirect measure of the level of

information (French & Roll, 1986).

Intraday Price Volatility for the US stocks

Figure 5.2 shows all the six stocks have U-shaped intraday pattern on price volatil-

ity, which is consistent with the findings in prior literature (shown in Table 2.2 in

Chapter 2). The results support the predictions of the Brock & Kleidon (1992)

model which predicts higher volatility at market open and close.
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Intraday Price Volatility for the UK stocks

As shown in Figure 5.3, the volatility is relatively higher at market open and close,

and relatively lower in the middle of the day for all the six UK stocks. This finding

is in line with the U-shaped intraday pattern on price volatility found in previous

literature (shown in Table 2.2 in Chapter 2).
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Figure 5.2: Intraday Price Volatility (US stocks)
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Figure 5.3: Intraday Price Volatility (UK stocks)
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5.2.3 Intraday Bid-ask Spread

Intraday Bid-ask Spread for the US stocks

As shown in Figure 5.4, the proportional bid-ask spreads in five stocks (MDS,

DAR, F, GOOG and XOM) do not exhibit the U-shaped intraday pattern as ob-

served by many empirical studies (Chung et al., 1999; Lee et al., 1993; Madhavan

et al., 1997) which examine the intraday pattern for the NYSE market. How-

ever, the finding is consistent with Henker & Wang (2006), Chan et al. (1995) and

Werner & Kleidon (1996), who examine intraday patterns on the NYSE, NAS-

DAQ and the LSE markets respectively, and all demonstrate a reverse S-shaped

intraday pattern on bid-ask spread: it is relatively high at market open, is stable in

the middle of the trading day, and drops at market close. As shown in Figure 5.4,

only CHDX has a U-shaped intraday pattern on bid-ask spread consistent with the

findings in Abhyankar et al. (1997), Ahn & Cheung (1999) Chung et al. (1999),

Lee et al. (1993), Lehmann & Modest (1994), Madhavan et al. (1997) and Vo

(2007).

Intraday Bid-ask Spread for the UK stocks

The intraday proportional bid-ask spreads and intraday time-weighted propor-

tional spreads for the UK stocks are shown in Figure 5.5 and in Figure 5.6 re-

spectively. They both demonstrate that the bid-ask spreads of these six UK stocks

have reverse S-shaped intraday pattern: bid-ask spread is highest at market open,

stable at the middle of the trading day, and lowest at market close. The result con-

firms the finding in Werner & Kleidon (1996) who examine British stocks, and is

also consistent with the reversed S-shaped pattern on the NYSE market and the

NASDAQ market demonstrated by Henker & Wang (2006) and Chan et al. (1995)

separately.
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Figure 5.4: Intraday Proportional Bid-Ask Spread (US stocks)
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Figure 5.5: Intraday Proportional Spread (UK stocks)
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Figure 5.6: Intraday Time-weighted Proportional Spread (UK stocks)
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5.2.4 Intraday Market Depth

Intraday Market Depth for the US stocks

Figures 5.7 & 5.8 demonstrate the intraday behaviours of market depths for the

US stocks. As shown in these figures, bid depth and ask depth exhibit an almost

identical shape of intraday pattern. There are four stocks (MDS, CHDX, GOOG

and XOM) exhibiting a U-shaped intraday pattern on both bid and ask depths.

DAR has a J-shaped intraday pattern on market depth, while F has an S-shaped

intraday pattern on market depth. The results are inconsistent with the inverted

U-shaped pattern on market depth observed by Ahn & Cheung (1999); Lee et al.

(1993); Li et al. (2005); Vo (2007). These studies also report a negative association

between intraday spread and market depth, which is not observed either in this

thesis.

Intraday Market Depth for the UK stocks

Intraday patterns on market depths for the UK stocks are demonstrated in Figures

5.9-5.11. There are three stocks (BATS, GSK and VOD) exhibiting an S-shaped

intraday pattern on market depths. HSBC has a U-shaped intraday pattern on

market depths. For BARC and BP, it is clear to see that market depth is very

high at market close. As shown in the Figures 5.10-5.11, bid depth has an almost

identical intraday pattern with ask depth.

Intraday patterns on near market depths for the UK stocks are demonstrated

in Figures 5.12-5.14. All of the six stocks exhibit an S-shaped intraday pattern

on near market depth: it is relatively lower at market open, and relatively higher

at market close. As seen from the Figures 5.13-5.14, near bid depth has a nearly

identical intraday pattern with near ask depth.

The results on both measures of market depths are inconsistent with the in-
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verted U-shaped intraday pattern observed by Ahn & Cheung (1999); Lee et al.

(1993); Li et al. (2005); Vo (2007). However, the near depth (Figure 5.12) shows

a negative association with the bid-ask spread (Figures 5.5-5.6), confirming the

findings on the relationship between spread and depth in Ahn & Cheung (1999);

Lee et al. (1993); Li et al. (2005); Vo (2007). While the near depth is relatively

higher during the trading day, that is at market close for the six UK stocks, the

spread is relatively lower; while the near depth is relatively lower during the trad-

ing day, that is at market open, the spread is relatively higher.
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Figure 5.7: Intraday Bid Depth in Share (US stocks)
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Figure 5.8: Intraday Ask Depth in Share (US stocks)
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Figure 5.9: Intraday Depth in Share (UK stocks)
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Figure 5.10: Intraday Bid Depth in Share (UK stocks)
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Figure 5.11: Intraday Ask Depth in Share (UK stocks)
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Figure 5.12: Intraday Near Depth in Share (UK stocks)
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Figure 5.13: Intraday Near Bid Depth in Share (UK stocks)
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Figure 5.14: Intraday Near Ask Depth in Share (UK stocks)
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5.2.5 Intraday Trade Size and Volume

Volume of trading is a direct measure of trading activity.

Intraday Trading Frequency, Size and Volume for the US stocks

The intraday patterns on trading volume for the six US stocks are shown in Figures

5.15 & 5.16. All of the six stocks have a U-shaped intraday pattern on trading

volume. The result confirms the finding in Foster & Viswanathan (1993); Jain &

Gun-Ho (1988); Lee et al. (1993); Lockwood & Linn (1990); McInish & Wood

(1990b, 1992); Wood et al. (1985) who examine the intraday patterns on the NYSE

and the finding in Chan et al. (1995) who examine the intraday patterns in the

NASDAQ.

It is interesting to find that trading frequency and trade size also both exhibit

a U-shaped intraday pattern as shown in Figures 5.19 & 5.21.

Intraday Trading Frequency, Size and Volume for the UK stocks

Intraday patterns on trading volume for the six UK stocks are shown in Figures

5.17 & 5.18. The six stocks all have a U-shaped intraday pattern on trading vol-

ume. Trading frequency shown in Figure 5.20 also exhibits a U-shaped intraday

pattern. The results are consistent with the finding of Werner & Kleidon (1996)

who examine the intraday pattern on the LSE and the findings for the NYSE mar-

ket in Foster & Viswanathan (1993); Jain & Gun-Ho (1988); Lee et al. (1993);

Lockwood & Linn (1990); McInish & Wood (1990b, 1992); Wood et al. (1985).

It is interesting to observe that there is a sharp increase of trading volume and

trading frequency between 2:30 p.m. and 3:00 p.m. for all the six stocks in Figures

5.17-5.20. This sharp increase in trading volume in the afternoon has been also

documented by Cai et al. (2004) who investigate the intraday patterns on the LSE.

It is due to the open of the US markets, as these six stocks are listed at both the
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LSE and the NYSE. US markets opening at 2:30 p.m. GMT positively impact

on the trading activities of these stocks in terms of trading volume and trading

frequency.

Intraday patterns on trade size for the six UK stocks are shown in Figures

5.22 & 5.23. There are four stocks (BARC, BATS, BP and HSBC) exhibiting

a U-shaped intraday pattern on trade size. GSK and VOD have different shapes

of intraday pattern with the other stocks: while trade size is very large at market

close, it is smallest before market close.
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Figure 5.15: Intraday Trading Volume in Share (US stocks)
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Figure 5.16: Intraday Trading Volume in Value (US stocks)
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Figure 5.17: Intraday Trading Volume in Share (UK stocks)
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Figure 5.18: Intraday Trading Volume in Value (UK stocks)
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Figure 5.19: Intraday Trade Frequency (US stocks)
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Figure 5.20: Intraday Trade Frequency (UK stocks)
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Figure 5.21: Intraday Trade Size (US stocks)
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Figure 5.22: Intraday Trade Size in Share (UK stocks)
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Figure 5.23: Intraday Trade Size in Value (UK stocks)
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5.2.6 Intraday Price Impact

Intraday Price Impact for the US stocks

Intraday patterns on price impact for the six US stocks are demonstrated in Figure

5.24. There are four stocks (DAR, F, GOOG and XOM) exhibiting a reverse S-

shaped intraday pattern on price impact: it is highest at market open and lowest at

market close. For MDS and CHDX, the price impact in the morning is generally

higher than the price impact in the afternoon.

Intraday Price Impact for the UK stocks

Intraday patterns on price impact for the UK stocks are shown in Figure 5.25. All

of the six stocks have a reverse S-shaped intraday pattern on price impact: it is

highest at market open, gradually decreases over the trading day, and is lowest at

market close. This finding is inconsistent with the U-shaped intraday pattern on

price impact observed in the HKSE by Chan (2000). The result indicates that the

market liquidity of these six stocks is increasing over the trading day, being lowest

at market open and highest at market close. It suggests that time-of-the-day is an

important consideration when constructing price impact functions and designing

trade execution strategies, which however is ignored in the literature on optimal

trading strategy (see the review in Chapter Two).

In contrast to the observation on the HKSE in Chan (2000), price impact does

not rebound before the market close as shown in Figures 5.24 & 5.25. This obser-

vation cannot be explained by private information as in Chan (2000) who asserts

that larger trades reveal more private information leading to larger price impact.

As shown in Figures 5.21, 5.22 and 5.23, the average trade size is very large at the

market close, negatively associated with low price impact in Figures 5.24 & 5.25.

It is interesting to find that price impact (Figure 5.25) has a negative associ-
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ation with near depth (Figures 5.12 & B.7). While near depth is relatively lower

during the trading day, price impact is relatively higher; while near depth is rela-

tively higher during the trading day, price impact is relatively lower. The finding

confirms the conclusions in Hopman (2007) that price impact is mainly deter-

mined by the the order book.
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Figure 5.24: Intraday Price Impact Ratio (US stocks)

147



8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−7

Time

P
ric

e 
Im

pa
ct

 R
at

io

Price Impact / Trade Size (share)

(a) BARC

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−6

Time

P
ric

e 
Im

pa
ct

 R
at

io

Price Impact / Trade Size (share)

(b) BATS

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

Time

P
ric

e 
Im

pa
ct

 R
at

io

Price Impact / Trade Size (share)

(c) BP

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
2

3

4

5

6

7

8
x 10

−7

Time

P
ric

e 
Im

pa
ct

 R
at

io
Price Impact / Trade Size (share)

(d) GSK

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

1

2

3

4

5

6

7
x 10

−7

Time

P
ric

e 
Im

pa
ct

 R
at

io

Price Impact / Trade Size (share)

(e) HSBC

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

Time

P
ric

e 
Im

pa
ct

 R
at

io

Price Impact / Trade Size (share)

(f) VOD

Figure 5.25: Intraday Price Impact Ratio (UK stocks)
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5.3 Summary

This chapter presented an empirical investigation of intraday behaviours of a num-

ber of interesting variables using the data drawn from the NYSE-Euronext TAQ

database and the LSE ROB database. Six stocks from the US markets and six

stocks from the UK markets were selected to perform this task.

This study contributes to the literature by documenting the up-to-date intraday

behaviours of a number of liquidity metrics. The findings in this study are of inter-

est to academics and trading desks. A better understanding of intraday behaviours

of market liquidity could help theorist in developing comprehensive models. It

also emphasises the importance of microstructure tick by tick data, which could

be applied to aggregation techniques, with implications beyond the microstructure

concerns. The results of this study are summarised as follows.

• Consistent with prior literature, this study documents U-shaped patterns on

price volatility for both the US and the UK stocks, consistent with the find-

ings in prior literature (shown in Table 2.2).

• Eleven out of twelve stocks exhibit a reverse S-shaped intraday pattern on

bid-ask spread, consistent with results in Chan et al. (1995), Henker & Wang

(2006) and Werner & Kleidon (1996).

• The observed intraday patterns on market depths in this study are incon-

sistent with the inverted U-shaped pattern demonstrated by Ahn & Cheung

(1999), Lee et al. (1993), Li et al. (2005) and Vo (2007).

• It is interesting to find that the near market depths of the UK stocks have

shown an S-shaped intraday pattern. Moreover, it is found that there is a

negative association between the near depth and bid-ask spread, confirming
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the relationship identified by Ahn & Cheung (1999), Lee et al. (1993), Li

et al. (2005) and Vo (2007).

• Trading volume of the 12 stocks examined in this study demonstrates a

U-shaped intraday pattern, confirming the findings of most of the studies

shown in Table 2.4. Trading frequency also has a U-shaped intraday pattern

for all of the 12 stocks. Ten out of twelve stocks exhibit a U-shaped intraday

pattern on trade size.

• Ten out of twelve stocks demonstrate a reverse S-shaped intraday pattern

on price impact. It is interesting to find that price impact has a negative

association with near depth. This indicates that market is relatively more

liquid when near depth is relatively higher and price impact is relatively

lower, and vice versa. The results provide support for the conclusion in

Hopman (2007) that price impact is mainly determined by the limit order

book.

A natural question to ask which is worth further research is, what subpop-

ulation of the market participants is constituting the limit order book and what

proportion of the market participants is contributing to the trading volume and

market depth. To answer this question, further information on the identities of

market participants is needed.
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Chapter 6

An Investigation of Price Impact

and Agent Intelligence

Parts of this chapter have appeared in:

Cui, W. and Brabazon, A. (2012). An Agent-based Modelling Approach to

Study Price Impact. Proceedings of the 2012 IEEE Conference on Computational

Intelligence for Financial Engineering & Economics, pp. 1-8, New York City,

USA. (Cui & Brabazon, 2012a)

It is well known that a buying transaction moves the stock price up and a

selling transaction drives it down. Price impact is the price change caused by

the transaction. In most limit order markets, the order book is transparent to all

market participants. A few studies have argued that the degree of price impact

is affected by the agent intelligence due to the transparency of limit order books.

As suggested by Farmer et al. (2004), the concavity of price impact is due to the

agent’s selective liquidity taking, namely agents condition the size of their trades

on liquidity, executing large orders when liquidity is high and small orders when

liquidity is low. Similar arguments are presented in Hopman (2007) and Weber &
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Rosenow (2006).

This chapter examines whether the price impact of market orders is affected

by the intelligence of the agents who place market orders. The objective of this

chapter is to investigate whether the available market information is exploited by

“intelligent” agents when placing their market orders, thus affecting the magni-

tude of the influences of their trades on the asset’s price. Novelly, an agent-based

modelling is adopted to accomplish this task.

This chapter is organised as follows: a review of related work on agent-based

modelling of limit order markets is conducted in Section 6.1; a zero-intelligence

based model of limit order market is presented in Section 6.2; a description of

experimental setup is given in Section 6.3; results and discussions are provided in

Section 6.4, followed by a summary of chapter in Section 6.5.

6.1 Related Work

The development of zero-intelligence models of the continuous double auction

markets has a long history. One of the earliest models is built by Bollerslev &

Domowitz (1993), who extend the work of Gode & Sunder (1993) by taking into

account an order book in order to investigate the effects of order book on market

performance. Challet & Stinchcombe (2001) simulate a market which models the

Island ECN’s order books, while Bouchaud et al. (2002) model the Paris Bourse

(now known as Euronext Paris) market. In a series of studies, Zovko & Farmer

(2002), Iori et al. (2003), Smith et al. (2003), Farmer et al. (2005b) and Mike

& Farmer (2008) simulate a zero-intelligence model of double auction markets

based on random order placements to study order flows and market dynamics,

and their results demonstrate that the trading mechanism is more important than

agent behaviours in determining the statistical properties of the market. In their
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model, the arrivals of the order flows composed of market orders, limit orders and

order cancelations are modeled as Poisson processes. Order sizes are produced

from a half-normal distribution.

Another study which simulates a limit order market in the spirit of the ZI idea

is conducted by Daniel (2006). In this model, there are 100 ZI traders endowed

with the same cash and shares. The arrival of each trade is modeled as a Poisson

process. At each arrival time, the trader chooses to buy or sell with probability

1/2, and decides to submit a market order, or a limit order, or cancels a previous

submitted order with probabilities πm, πl and 1−πm−πl respectively. This model

distinguishes two types of limit orders according to order aggressiveness. Traders

place a limit order uniformly distributed inside the bid-ask spread with probability

πin, or power-law distributed away from the spread with probability 1− πin. The

volumes of incoming limit orders are produced from a log-normal distribution,

and the sizes of market orders are the same as those of the best counterpart orders.

Their model reproduces the principal stylized facts exhibited by real markets.

The most recent relevant work is the study by Huang et al. (2012). They build

an agent-based stock market model consisting of ZI agents to mimic the Taiwan

Stock Market (TWSE). Unlike the continuous matching in most limit order mar-

kets, order matching on the TWSE is organized every 25 seconds. In their model

at each simulated time corresponding 0.01 second of real time, there are five possi-

ble events happening in the artificial market: limit order submission, market order

submission, order cancelation, order matching and no activity. The probabilities

of these events are estimated using real data from TWSE, which are then used for

simulating the artificial market. Like Smith et al. (2003), they use a stochastic

order size which is generated randomly from a half-normal distribution. In the

study, they compare the liquidity costs in the real market to the simulated market,

which is measured as the difference of the virtual payment at the disclosed price
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when the order is entering the market and the actual transaction payment. The re-

sult shows that the liquidity cost generated by the simulation data are higher than

those for the TWSE data which is possibly caused by their overestimated market

order size.

Many zero-intelligence models have been devoted to investigating market be-

haviours and market structure. A couple of studies have investigated the stylised

facts with zero-intelligence markets. These studies, including Ladley & Schenk

(2009), Bartolozzi (2010) and Palit et al. (2012), show that some stylised facts can

be obtained from the simulated markets with interacting zero-intelligence agents,

indicating that many stylised facts of limit order markets do not rely on individual

strategic behaviours, but are derived from the interaction of the market mechanism

and non-strategic agents. In addition, Duffy (2006) analyses bubbles and crashes

with a zero-intelligence market and show that very little trading strategy is is re-

quired to reproduce them. LiCalzi & Pellizzari (2007) investigate the performance

of four different types of market protocols. Aloud & Tsang (2011) show that the

intraday and interweek seasonality of FX market trading activity emerge with a

simple agent-based models of zero-intelligence traders.

6.2 A Zero-intelligence based Model of Limit Order

Market

The model simulates a limit order market. The trading mechanism follows the

price/time priority described in Section 1.2.1 of Chapter 1. Traders are allowed

to submit orders at any time, and cancel their limit orders which are not executed.

The model extends the model of Smith et al. (2003) by distinguishing different

limit orders according to order aggressiveness, considering log-normal distributed

order size and taking into account power-law distributed limit order placements in
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order to come as close as possible to a realistic order flow.

6.2.1 Specification of Model

In the model, there are two groups of agents: buy agents and sell agents. All the

buy (sell) limit/market orders are placed by the buy (sell) agent. It is assumed that

each hypothetical time in the artificial market corresponds to one millisecond in

real market. At each time in the artificial market, a buy agent or a sell agent is

chosen with probability 1/2. The chosen agent at each time can perform one of

the four actions as below to fulfill his investment object:

• do nothing,

• submit a market order,

• submit a limit order, or

• cancel an outstanding limit order.1

With probability λo, the agent will do nothing at all; with probability λm, the agent

will submit a market order to the market; with probability λl, the agent will submit

a limit order to the market; with probability λc, the agent will cancel a limit order

which he previously placed and is not executed. The sum of these probabilities

has to be one (λo + λm + λl + λc = 1). Without loss of generality, it is assumed

that the agent always cancels the oldest limit order which he previously placed.

If the agent wants to submit a limit order, he can choose from four types of

limit order according to the order’s aggressiveness. These four types of limit

orders are:

• a crossing limit order, which causes an immediate execution,

1An outstanding limit order means that the limit order is still listed on the order book
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• an inside-spread limit order, which is placed inside the bid-ask spread,

• a spread limit order, which is placed at the best bid (ask) price if it is a buy

(sell), and

• an off-spread limit order, which is placed inside the order book with a less

attractive price than the best quote.

With probability λcrs, the agent chooses a crossing limit order; with probability

λinspr, the agent uses an inside-spread limit order; with probability λspr, the agent

adopts a spread limit order; with probability λoffspr, the agent places an off-spread

limit order. The sum of these probabilities is one (λcrs+λinspr +λspr +λoffspr =

1). It is assumed that crossing buy (sell) limit orders are always placed at the best

ask (bid) price.2 If the size of the crossing buy (sell) limit order exceeds the depth

at the best ask (bid) quote, the unexecuted part of the buy (sell) limit order will

be placed at the best ask (bid) quote. The inside-spread limit orders are uniformly

placed between the best bid quote and the best ask quote. The placement of off-

spread limit order follows a power-law distribution with exponent βoff−p,3 and

various order sizes are allowed in the model, which are generated from log-normal

distributions.4

6.2.2 Algorithm of Model

An algorithm describing the artificial market simulation process is shown in Al-

gorithm 2.

2This assumption is made based on the observation of LSE market that crossing limit orders
are rarely placed far away from the best quote on the opposite side of the market.

3Empirical work (Zovko & Farmer, 2002; Potters & Bouchaud, 2003) finds that the relative
price of the off-spread limit order follows a power-law distribution. The relative price is the dif-
ference between the limit price of the order and the best quote.

4Empirical work (Maslov & Millis, 2001) finds that order size is roughly distributed like a
log-normal distribution with a power law tail.
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Algorithm 2 Artificial Limit Order Market

Generate a random number from a uniform distribution (0, 1) and determine the agent type according to the
probability 0.5.
switch Agent do

case Buyer
Generate a random number from a uniform distribution (0, 1) and determine the action type
according to the probabilities λo, λm, λl and λc.
switch Action do

case Do nothing
Do nothing at all.

endsw
case Submit a market order

Execute a market order with the order size generated from a log-normal distribution with
parameters µmo and σmo

endsw
case Submit a limit order

Generate a random number from a uniform distribution (0, 1) and determine the limit
order type according to probabilities λcrs, λinspr, λspr and λoffspr .
switch LimitOrder do

case Crossing Limit Order
Submit a limit order at the best ask price with the order size generated from a
log-normal distribution with parameters µcrs and σcrs.
Execute the crossing limit order. If it is not fully executed, place the rest of the
limit order at the best ask price on the order book.

endsw
case Inside-spread Limit Order

Generate a random value denoted as Pinspr from a uniform distribution
(BestBid,BestAsk).
Place a limit order at the price Pinspr on the order book with the order size
generated from a log-normal distribution with parameters µinspr and σinspr .

endsw
case Spread Limit Order

Place a limit order at the best bid price on the order book with the order size
generated from a log-normal distribution with parameters µspr and σspr .

endsw
case Off-spread Limit Order

Generate a random value denoted as RPoffspr from a power-law distribution
with exponent βoff−p.
Place a limit order at the price (BestBid−RPoffspr) on the order book
with the order size generated from a log-normal distribution with parameters
µoffspr and σoffspr .

endsw
endsw

endsw
case Cancel an outstanding limit order

Cancels the oldest outstanding limit order that the buyer previously submitted.
endsw

endsw
endsw
case Seller

(similar to the case of buyer)
endsw

endsw
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6.3 Experimental Setup

The setup of the experiment is explained in this section.

6.3.1 Parameters of Model

In order to make the model more realistic, the 14 parameters (shown in Table 6.2)

of the model are estimated using real data from London Stock Exchange (LSE).

One important reason why the LSE market is studied is that it provides data that

contain details of every order and every trade which enables us to calculate the

parameters of the model. This section provides a brief introduction to the LSE

data and describes how to estimate the parameters of the model using the data.

6.3.2 Parameter Estimation

For this study, the stock Barclays Capital is chosen, which is one of the most fre-

quently traded stocks in LSE. The sample data covers details of all orders and

trades from 1th April to 30th September 2010. Only the continuous trading ses-

sion is considered. The records before 8:00:00 and after 16:30:00 are ignored.

Table 6.1 shows the descriptive statistics of the trades and orders data for Bar-

clays Capital.

The data covers 126 trading days. During the continuous trading session, there

are 30,600,000 milliseconds in each trading day. The numbers of market orders,

limit orders and order cancelations5 and the probabilities of these events on each

day are calculated. As it is assumed that only one event occurs at each millisecond

in the model, the events occurring at the rest of the trading period are ‘do noth-

ing’ events. The probability parameters for the four events (do nothing λo, limit

5We take order deletion and order expiration in ROB data as the same, both are counted as
order cancelation events.
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Table 6.1: Descriptive Statistics of ROB Data at Sep. 6, 2010 for Barclays Capital

Descriptive Statistics

Average midquote price: 323.04
Average bid-ask spread: 0.11
Average trade size (pounds): 2,110,606
Average trade size (shares): 6,537
Number of trades: 4,329
Number of order cancelations: 68,783
Number of market orders: 3,972
Number of limit orders: 142,368

order λl, cancelation λc and market order λm,) of the model are estimated as the

average daily probabilities from the real data. Similar calculations are performed

for the probabilities of the limit order types on each trading day using LSE data.

The probability parameters for limit order types (λcrs, λinspr, λspr and λoffspr) in

the model are estimated as the average daily probabilities over the whole period

weighted by the total number of limit orders on each trading day.

6.3.3 Simulation Setup

In the model, each order size is drawn from a log-normal distribution of the func-

tional form:

exp(µ+ σ ∗ rnorm)

where µ and σ are parameters, rnorm is a random number drawn from N(0,1), and

exp is an exponential function of the natural number. Each relative limit price is

drawn from the power-law function as:

xmin× (1− r)−
1

1−β

159



where r is a random number uniformly generated from (0,1), xmin and β are the

parameters which need to be estimated. The data from the whole period is used

to estimate these parameters for all kinds of orders using the method of maximum

likelihood.6 In order to better fit the power-law distribution, extreme values xt

whose probabilities satisfy P (x > xt) < 0.01 or P (x < xt) < 0.01 are excluded.

All the estimated parameters are shown in Table 6.2.

The model is simulated using Matlab. In the model, there are always at least

three levels on each side of the order book in order to prevent the order book from

being empty. The artificial market runs for 34,200,000 hypothetical milliseconds

(corresponding to 9 and a half hours) in each simulation. In some cases, the ar-

tificial market may be unstable initially due to the stochastic order flows. Thus,

the first 3,600,000 milliseconds (corresponding to 1 hour) are used to warm up the

market. Only the later 30,600,000 milliseconds which correspond to the contin-

uous trading session in one trading day are used. The artificial market is run for

30 artificial trading days. Like the LSE, the system has a data recording function

which records the details of every trade and every order.

6The matlab code for estimating the power-law distributions is developed by
the researchers at Santa Fe Institute, which can be downloaded from the website
http://tuvalu.santafe.edu/aaronc/powerlaws/.
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Table 6.2: Parameters of Artificial Limit Order Market Simulation

Market Settings Values
Initial mid-quote price 300
Initial bid-ask spread 0.5
Tick size 0.01

Agent Type Probabilities
Buy or sell 0.5

Event Type Probabilities
Do nothing λo = 0.9847
Submit a market order λm = 0.0003
Submit a limit order λl = 0.0077
Cancel a limit order λc = 0.0073

Limit Order Type Probabilities
Crossing limit order λcrs = 0.0032
Inside-spread limit order λinspr = 0.0978
Spread limit order λspr = 0.1726
Off-spread limit order λoffspr = 0.7264

Order Size Type Parameters of Log-normal Distribution
Market order size µmo = 7.5663 σmo = 1.3355
Crossing limit order size µcrs = 8.4701 σcrs = 1.1982
Inside-spread limit order size µinspr = 7.8709 σinspr = 0.9799
Spread limit order size µspr = 7.8929 σspr = 0.8571
Off-spread limit order size µoffspr = 8.2166 σoffspr = 0.9545

Limit Price Type Parameters of Power-law Distribution
Off-spread relative limit price xminoff−p = 0.05 βoff−p = 1.7248

6.4 Results and Discussions

The results of this chapter are presented and discussed in this section.
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6.4.1 Results of Probabilities of Events and Limit Order Types

After 30 simulation runs of the artificial market, the numbers of events, orders and

probabilities were recorded. Table 6.3 shows the means and standard deviations

of these over the 30 simulated trading days. An observation from the table is that

the events and orders probabilities in the simulated market are very close to those

in the LSE market (shown in Table 6.2).

Table 6.3: Events and Limit Order Types in Artificial Market

Probabilities Daily Occurrences

Order Sign
buy 0.5000± 0.0001 15, 300, 854± 2, 517
sell 0.5000± 0.0001 15, 299, 145± 2, 517
Event Type
do nothing 0.9847± 0.0000 30, 132, 401± 722
submit a market order 0.0003± 0.0000 9, 399± 104
submit a limit order 0.0076± 0.0001 233, 785± 483
cancel a limit order 0.0073± 0.0000 224, 413± 472
Limit Order Type
crossing limit order 0.0032± 0.0001 736± 29
inside-spread limit order 0.0977± 0.0006 22, 829± 152
spread limit order 0.1728± 0.0010 40, 408± 232
off-spread limit order 0.7262± 0.0011 169, 810± 444

6.4.2 Summary Statistics of Order Sizes and Relative Limit

Prices

The order sizes of different order types in the LSE market and those from the

simulated market were compared. Table 6.4 shows some summary statistics of

order sizes and relative limit prices for the six-month period (126 trading days) in

the LSE data and for the 30-artificial-day period in the simulated data respectively.

One can observe that the average order sizes for all order types and the average

162



relative limit prices in the simulated market are very close to those in the LSE.
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6.4.3 Results of Price Impact vs. Trade Size

This study adopts the method used in Lillo et al. (2002) and Lillo et al. (2003)

to measure the price impact of a market order. Letting the logarithm of midquote

price be p, the price impact caused by a market order is calculated as

∆p = pafter − pbefore

where pbefore is the price just before the market order arrived at the market and

pafter is the price immediately after the order is executed. The methods used to

measure the trade size vary in previous literature. Lillo et al. (2003) measure it as

traded value in dollars divided by the stock value while Hopman (2007) measure it

as the number of shares in the order divided by the number of shares outstanding.

In this study, the trade size is measured as the shares of the market order divided

by the total trading volume in each trading day.

The average behavior of price impact is investigated by dividing the data based

on trade size into 10 bins and compute the average price impact for the data in each

bin. Figures 6.1 and 6.2 depict the relationship between the price impact and trade

sizes in the LSE and the simulated market respectively.

From Figures 6.1, one finds that the relationship between the price impact and

trade size is nonlinear and concave. Larger trades do not always have higher price

impact than smaller trades. This finding is consistent with the conclusion in pre-

vious literature. There are three explanations for this concavity in the literature.

The first explanation is that large-order trades have private information about the

market price. The second explanation is that large-order traders are patient traders

who wait for periods of high liquidity (Farmer et al., 2004). The third explana-

tion is that the order book has deeper liquidities away from the best bid or ask

(Bouchaud et al., 2002).
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Figure 6.1: Price Impact vs. Trade Size in the LSE market
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Figure 6.2: Price Impact vs. Trade Size in the simulated market
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By comparing the price impacts in the two markets, one can find that generally

the price impact in simulated market is larger than that in the LSE market. The

price impacts for the smallest trade sizes are very close in the two markets, but

the price impacts for larger trade sizes (ranging from 2 ∗ 10−3 to 10 ∗ 10−3) in

simulated market are bigger than those in the LSE market.

There are two possible reasons to explain the difference on price impact be-

tween the simulated market and the real market. One possible reason is due to the

difference between the price gaps of limit order book in these two markets. If the

limit price gaps in the simulated market are larger than those in the real market, it

is possible that the price impact in the simulated market is larger than that in real

market. However, this reason can be excluded by the fact that the average relative

limit price in simulated market is smaller than that in the LSE market (shown in

Table 6.4).

The other possible reason is that traders in the LSE market execute their orders

intelligently, for example, by observing the market conditions. The intelligent

agents in real market condition their order sizes on market liquidity. Farmer et al.

(2004) and Hopman (2007) both find that large orders are traded when the market

liquidity is deep and small orders are traded when the market liquidity is shallow.

However, the trader agents in the simulated market are ‘zero intelligent’ who do

not care about the market liquidity when trading their orders. Therefore, the price

impacts caused by trading large orders in the simulated market are higher than the

price impacts in the LSE market, which is shown by the results in Figures 6.1 &

6.2. This indicates that agent intelligence plays an important role in determining

the magnitude of price impact, and suggests that agent intelligence is needed when

simulating an artificial market which tries to replicate the relationship between

price impact and market order size.
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6.5 Summary

Many studies have shown that the price impact of a trade is a concave function of

its trade size, which is often called the “concavity” of price impact. Recently, a

number of studies (Farmer et al., 2004; Hopman, 2007; Weber & Rosenow, 2006)

argue that the concavity is due to selective liquidity taking: traders submit large

orders when the market is more liquidity, and small orders when the market is

less liquid. In an earlier study, Admati & Pfleiderer (1988) also argue that both

liquidity and informed traders prefer to trade when the market is thick, that is when

their trading has little effect on prices. This chapter investigates whether agent

intelligence plays an important role in determining the magnitude of price impact.

An agent-based modeling approach is adopted to perform this task. The advantage

of this approach is that it is easy to analyse one specific factor by isolating it in the

simulation. An zero-intelligence based artificial market was simulated in order to

examine the price impact caused by the zero-intelligence agents.

This chapter provides evidence supporting that agent intelligence is a critical

factor in determining the magnitude of price impact. It contributes to the liter-

ature on price impact. The finding is of interest to academics and practitioners.

It suggests that agent intelligence is an important factor when modelling price

impact. This chapter also contributes to the literature on agent-based modelling

of financial markets. It indicates that agent intelligence is a necessary condition

when simulating an artificial market where replicating realistic price impact is a

concern.
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Chapter 7

Dynamic Trade Execution with

Limit and Market Orders

Much of the content of this chapter has been in various publications:

• Cui, W., Brabazon, A. and O’Neill, M. (2011). Adaptive Trade Execution:

A Grammatical Evolution Approach. International Journal of Financial

Markets and Derivatives. Vol. 2, No. 1/2, pp. 4-31. (Cui et al., 2011)

• Cui, W., Brabazon, A. and O’Neill, M. (2010). Evolutionary Computation

and Trade Execution. Natural Computing in Computational Finance (vol-

ume III), pp. 51-69, Springer-Verlag, Berlin. (Cui et al., 2010b)

• Cui, W., Brabazon, A. and O’Neill, M. (2010). Evolving Efficient Limit Or-

der Strategy Using Grammatical Evolution. Proceedings of the 2010 IEEE

Congress on Evolutionary Computation, pp. 1-6, Barcelona, Spain. (Cui

et al., 2010d)

• Cui, W., Brabazon, A. and O’Neill, M. (2010). Evolving Dynamic Trade

Execution Strategies Using Grammatical Evolution. Proceedings of the
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2010 International Conference on Applications of Evolutionary Computa-

tion, Lecture Notes in Computer Science 6025, pp. 192-201. (nominated as

best paper) (Cui et al., 2010c)

• Cui, W., Brabazon, A. and O’Neill, M. (2009). Efficient Trade Execution

Using a Genetic Algorithm in an Order Book Based Artificial Stock Market.

Proceedings of the 11th Annual Conference Companion on Genetic and

Evolutionary Computation Conference, pp. 2023-2028. (Cui et al., 2009a)

Trading cost is a significant concern for financial investors as it directly im-

pacts on investment returns. As shown by Perold (1988), a hypothetical portfolio

without loss caused by execution costs outperforms the actual portfolio by almost

20% per year during the period from 1965 to 1986. In another study, Wermers

(2002) find that mutual funds outperform the market by 1.3 percent per year be-

fore accounting for transaction costs, but underperform the market by 0.3 percent

after accounting for expenses and transaction costs while investigating mutual

fund performance. Trading cost is composed of broker commission, fee, bid-ask

spread, price impact and opportunity cost. Empirical studies (Chan & Lakon-

ishok, 1995, 1997; Collins, 1991; Kraus & Stoll, 1972) have identified that the

dominant component is price impact. Price impact is variable and depends on

market liquidity. Many studies have shown that a small-quantity market order can

cause significant impact on an asset’s price when volume at price levels on the

order book is sparse at the time the order is submitted to the market.

Controlling price impact is an important issue in financial markets. It is espe-

cially important when trading large-quantity orders as their impact on the market

can be significant. In electronic limit order markets, this trading process is imple-

mented by computers automatically according to predefined trading algorithms. In

recent years, there is a growing literature on trading algorithms that are designed
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to minimise the price impact of trading a large order. As reviewed in Section

2.5.1 of Chapter 2, one of the key assumptions in these models is that only market

orders are adopted.

This chapter aims to shed light on the effect of order choice on the price impact

of trading a large order. To the best of my knowledge, this is the first study which

specifically looks at this issue in the context of designing optimal trade execution

strategies. This chapter finds that order choice is an important determinant of the

design of optimal trading strategies. Using limit orders can help to minimise the

price impact of trading large quantities of orders. As the important task of provid-

ing liquidity in limit order markets is assigned to the complex trading interactions

enabled by the emergence and disclosure of the limit order book, the state of the

limit order book is extremely important for practitioners who use it to optimise

their trading strategies. In this chapter, this consideration is also accounted in the

design of execution strategies.

This chapter is organised as follows. A review of related work on trade exe-

cution and the genetic algorithm is given in Section 7.1; experimental design is

described in Section 7.2; experimental setup is explained in Section 7.3; empiri-

cal results are documented in Section 7.4; a summary of this chapter is given in

Section 7.5.

7.1 Related Work

Despite the importance of optimising trade execution, there has been relatively

little attention paid in the literature to the application of evolutionary methods for

this task. One notable exception is Lim & Coggins (2005b) who applied a Evo-

lutionary Algorithm to evolve a trade execution strategy using order book data

from a fully electronic limit order market, the Australian Stock Exchange (ASX).
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In their study, a large order is to be completed within one trading day. The or-

der is divided into ten child orders which are submitted to the market at regular

intervals of half an hour. The relative sizes of these child orders are determined

according to share volume trading patterns, which typically follow a U-shaped

pattern with increased volumes trading at the open and close. The child orders

are placed into the market as limit orders at the best available price and the Evo-

lutionary Algorithm is used to find the optimal lifetime that a limit order would

remain on the order book (if it had not already been executed) before it was au-

tomatically ticked over the spread to close out the trade. The fitness function was

the Volume Weighted Average Price (VWAP) performance of that strategy rela-

tive to the benchmark daily VWAP. Each strategy was trained on three months’

worth of transaction-level data using a market simulator. The results were tested

out of sample on three highly liquid stocks and tested separately for sell side and

buy side. The in sample and out of sample performances of the evolved strategies

were better than those of pure market order strategies and pure limit order strate-

gies. In Lim & Coggins (2005b), the strategies were tested using historical data.

An agent-based artificial market is used instead in the present study.

7.2 Designs of Experiments

In order to investigate whether order choice is an important factor in determining

price impact when trading a large order, three experiments are conducted in this

chapter where three different combined strategies adopting different types of or-

ders and benchmark strategies using one type of orders are designed. The three

combined strategies are named Combined-I Strategy, Combined-II Strategy, and

Combined-III Strategy.

In the first experiment, the aim is to examine whether order choice between
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various types of limit orders with different levels of aggressiveness plays an im-

portant role in determining the price impact when trading a large order. Empir-

ical evidence suggests that the state of the order book affects order placement

strategies. This effect is taken into account in the second and the third exper-

iments, where the trader is allowed to use market information to determine his

order choice. In the second experiment, the trader can place a limit order at three

levels of aggressiveness, aggressive limit order, moderate limit order, and passive

limit order, which are explained below. The aim of the second experiment is to

examine whether the choice between these three types of limit orders influences

the price impact of trading a large order. In the third experiment where the trader

can use a combination of market order and moderate limit order, the objective is

to investigate whether the choice between market order and limit order affects the

price impact of trading a large order.

• Aggressive limit order is a limit order whose limit price is one tick better

than the best price in the order book.

• Moderate limit order is a limit order which is placed at the best price in the

order book.

• Passive limit order is a limit order whose limit price is one tick worse than

the best price in the order book.

In these three experiments, the performances of the evolved strategies are com-

pared with those of simple execution strategies which only use one type of order.

In the first experiment, the evolved strategy is compared with a simple market

order strategy which only adopts market orders. In the second experiment, the

evolved strategy is compared with a simple aggressive limit order strategy, a sim-

ple moderate limit order strategy and a simple passive limit order strategy which

only use aggressive limit orders, moderate limit orders and passive limit orders
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respectively. In the third experiment, the combined strategy is compared with

simple market order strategy and simple limit order strategy which only employs

market orders and moderate limit orders respectively.

Performance Evaluation

The standard industry metric for measuring trade execution performance is

the VWAP measure, short for Volume Weighted Average Price. The VWAP price

as a quality of execution measurement was first developed by Berkowitz et al.

(1988), who argued that ‘a market impact measurement system requires a bench-

mark price that is an un-biased estimate of prices that could be achieved in any

relevant trading period by any randomly selected trader’ and then defined VWAP

as an appropriate benchmark that satisfied this criteria.

The VWAP is calculated as the ratio of the value traded and the volume traded

within a specified time horizon (Berkowitz et al., 1988)

VWAP =

∑
(V olume ∗ Price)∑

(V olume)

where V olume represents the number of shares in each trade and Price represents

its corresponding traded price. An example is shown in Table 7.1.

In order to evaluate the performance of a trade execution strategy, its VWAP

is compared against the VWAP of the overall market. The rationale here is that

performance of a trade execution strategy is considered good if the VWAP of

the strategy is more favorable than the VWAP of the market within the trading

period and poor if the VWAP of the strategy is less favorable than the VWAP of

the market within the trading period. For example, if the VWAP of a buy strategy

(VWAP strategy) is lower than the market VWAP (VWAPmarket), it is considered

a good trade execution strategy. Conversely, if the VWAP strategy is higher than

the VWAPmarket, it is considered a poor trade execution strategy. Although this

175



Table 7.1: VWAP Calculation of A Sample Buy Strategy
Submission

Shares
Traded

Value
Time Price

Child Order 1: t0 400 ∗ 50.15 = 20,060
600 ∗ 50.16 = 30,096

Child Order 2: t1(t0 +∆t) 1,000 ∗ 50.40 = 50,400
Child Order 3: t2(t0 + 2∆t) 200 ∗ 50.34 = 10,068

800 ∗ 50.36 = 40,288
Child Order 4: t3(t0 + 3∆t) 1,000 ∗ 50.39 = 50,390
Child Order 5: t4(t0 + 4∆t) 1,000 ∗ 50.68 = 50,680
Child Order 6: t5(t0 + 5∆t) 1,000 ∗ 51.10 = 51,100
Child Order 7: t6(t0 + 6∆t) 1,000 ∗ 50.87 = 50,870
Child Order 8: t7(t0 + 7∆t) 700 ∗ 50.98 = 35,686

300 ∗ 51.00 = 15,300
Child Order 9: t8(t0 + 8∆t) 1,000 ∗ 50.39 = 50,390

Child Order 10: t9(t0 + 9∆t) 1,000 ∗ 50.26 = 50,260
Total: 10,000 505,588

VWAP = 505, 588/10, 000 = 50.5588

is a simple metric, it largely filters out the effects of volatility, which composes

market impact and price momentum during the trading period (Almgren, 2008).

The performance evaluation functions are as follows (which were used by Lim

& Coggins (2005b)):

VWAP Ratio =


104∗(VWAP strategy−VWAPmarket)

VWAPmarket
(BuyStrategy)

104∗(VWAPmarket−VWAP strategy)

VWAPmarket
(SellStrategy)

where VWAPmarket is the average execution price which takes into account all

the trades over the day excluding the strategy’s trades. This corrects for bias,

especially if the order is a large fraction of the daily volume (Lim & Coggins,
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2005b). For both buy and sell strategies, the smaller the VWAP Ratio, the better

the strategy is. If the combined strategies outperform the simple execution strate-

gies in terms of minimising price impact, it can be concluded that order choice is

an important determinant of trade execution strategies.

The design of an execution strategy can be considered of consisting of two

stages. The first stage is to divide a big block of shares into multiple small orders,

and the second stage is to determine the parameters of each small order, including

order type (limit/market order), submission time, limit price of limit order and

lifetime (the time length when a limit order appears in the order book before it

is cancelled or changed). How to divide a large trade depends on the order size

and trading time. The following three sections describe the designs of execution

strategies in these three experiments respectively.

7.2.1 Design of Experiment One

In this experiment, the large-quantity order is equally divided into 30 small orders,

and submit each small order into the market at regular intervals over one trading

day. In the design of the combined execution strategy, limit orders with varied

levels of aggressiveness are allowed. A genetic algorithm is adopted as the learn-

ing method of the trader who learns where to place his limit order in the order

book and when to cross his limit order over the bid-ask spread if it has not been

fully executed. The representation of the trading strategy in the genetic algorithm

method is shown in Figure 7.1.

The order aggressiveness is distinguished by the variable ci which represents

the relative price of order i. The following examples are used to illustrate how

to use the variable ci to determine the level of aggressiveness of each order. For

example, at the time of order submission, the best bid and best ask in the market

are 49.00 and 51.00 respectively and then the bid-ask spread is 2.00, assuming
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Figure 7.1: Representation of Order’s Relative Price and Lifetime

that it is a buy strategy:

• ci < 2.00 means that order i will be placed at 49.00 + ci, and its lifetime bi

means that at the end of its lifetime any unfilled part (if there is) of order i

will get crossed over the bid-ask spread for trading completion;

• ci > 2.00 or ci = 2.00 means that order i is a marketable limit order which

will be executed immediately at price 51.00.

7.2.2 Design of Experiment Two

In this experiment, a large-quantity order is equally divided into ten small orders

and submitted to the market at regular intervals over the trading day. Three types

of limit orders with varied levels of aggressiveness are considered: aggressive

limit order, moderate limit order and passive limit order. Two execution strategies

with two different settings of limit order’s lifetime are devised. One takes a short

lifetime, while the other takes a long lifetime. These two lifetime settings are

explained as follows. If the limit order is not fully executed at the end of its

lifetime, it will get crossed over the bid-ask spread for trading completion.

• In the short-lifetime strategy, each limit order can survive until the end of

its interval period.

• In the long-lifetime strategy, each limit order can survive until the end of

the trading day.
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As prior literature indicates that the state of the limit order book affects or-

der placement strategies, both this experiment and the next experiment take into

account this effect. A range of possible explanatory variables, also known as in-

formation indicators, have been suggested in the literature. Six variables, which

are commonly employed in recent literature of market microstructure, are adopted

in the experiments. The explanations of these six variables are shown in Table 7.2.

Table 7.2: Definitions of Market Variables

Variables Definitions

BidDepth Number of shares at the best bid
AskDepth Number of shares at the best ask

RelativeDepth
Total number of shares at the best five ask prices divided by
total number of shares at the best five bid and ask prices

Spread Difference between the best bid price and best ask price
Volatility Standard deviation of the most recent 20 mid-quotes

PriceChange
Number of positive price changes within the past ten
minutes divided by the total number of quotes submitted
within the past ten minutes

In these experiments, a trader’s order choice is determined by a number of

rules which are composed of these six information indicators. A grammatical

evolution algorithm is used as the learning method of the trader in the experiments

in order to learn the rules which are used to determine his order choice. The

grammar used in the grammatical evolution algorithm is defined in Figure 7.2.

In this grammar (Figure 7.2), two additional variables PercOfTradedV olume

and PercOfPastT ime (used in experiment two) are included, which represent

the percentage of the traded volume accounting for the total volume V shares and

the percentage of the past time accounting for the whole trading period at the ob-

served time respectively. The six indicators, BidDepth, AskDepth, RelativeDepth,

Spread, V olatility, and PriceChange are observed at the time of order sub-

mission. In Figure 7.2, AvgBidDepth, AvgV olatility, andAvgPriceChange,
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represents the average bid depth of the market, AvgAskDepth represents the av-

erage ask depth of the market, AvgRelativeDepth represents the average rela-

tive depth of the market, AvgSpread represents the average spread of the market,

AvgV olatility represents the average volatility of the market and AvgPriceChange

represents the average price change of the market.

<lc> ::= if (<stamt>)
class = "AggressiveLimitOrder"

else {
if (<stamt>)

class = "ModerateLimitOrder"
else

class = "PassiveLimitOrder"
}

<stamt> ::= (<stamt><op><stamt>)|<cond1>|<cond2>|
<cond3>|<cond4>|<cond5>|<cond6>|
<cond7>|<cond8>

<op> ::= and
<cond1> ::= (BidDepth<comp>AvgBidDepth)
<cond2> ::= (AskDepth<comp>AvgAskDepth)
<cond3> ::= (RelativeDepth<comp>AvgRelativeDepth)
<cond4> ::= (Spread<comp>AvgSpread)
<cond5> ::= (Volatility<comp>AvgVolatility)
<cond6> ::= (PriceChange<comp>AvgPriceChange)
<cond7> ::= (PercOfTradedVolume<comp><threshold>)
<cond8> ::= (PercOfPastTime<comp><threshold>)
<comp> ::= <less>|<more>|<lessE>|<moreE>
<less> ::= "<"
<more> ::= ">"
<lessE> ::= "<="
<moreE> ::= ">="
<threshold> ::= 0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9

Figure 7.2: Grammars in Experiment Two

An example of an trade execution strategy evolved using the grammar in Fig-

ure 7.2 is illustrated in Figure 7.3. Using this example strategy, if PercOfTradedV olume <

0.5andPercOfPastT ime >= 0.8 is satisfied, an aggressive limit order is sub-
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mitted. Otherwise, a moderate limit order is submitted if V olatility <= AvgV olatility,

or a passive limit order is submitted if V olatility > AvgV olatility.

if (PercOfTradedVolume<0.5 and PercOfPastTime>=0.8)
AggressiveLimitOrder

else{
if (Volatility<=AvgVolatility)

ModerateLimitOrder
else

PassiveLimitOrder
}

Figure 7.3: An Example of Trade Execution Strategy in Experiment Two

7.2.3 Design of Experiment Three

In this experiment, a large-quantity order is equally divided into ten small orders

and submitted to the market at regular intervals over the trading day. Both market

orders and moderate limit orders are allowed in the design of execution strategy.

Any unfilled orders at the end of trading day will get crossed over the bid-ask

spread for trading completion. As in experiment two, a grammatical evolution

algorithm is used as the learning method for the trader in order to learn the rules

on how to choose between market orders and moderate limit orders based on the

six information indicators of the limit order book. The grammar adopted in the

grammatical evolution algorithm is shown in Figure 7.4.

An example of an trade execution strategy evolved using the grammar in Fig-

ure 7.4 is illustrated in Figure 7.5. Using this example strategy, if (RelativeDepth >

AvgRelativeDepth) is true, a market order is submitted, otherwise, a moderate

limit order is submitted.
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<lc> ::= if (<stamt>)
class = "MarketOrder"

else
class = "ModerateLimitOrder"

<stamt> ::= <cond1><op><cond2><op><cond3><op>
<cond4><op><cond5><op><cond6>

<op> ::= and | or
<cond1> ::= (BidDepth>AvgBidDepth) is <boolean>
<cond2> ::= (AskDepth>AvgAskDepth) is <boolean>
<cond3> ::= (RelativeDepth>AvgRelativeDepth) is

<boolean>
<cond4> ::= (Spread>AvgSpread) is <boolean>
<cond5> ::= (Volatility>AvgVolatility) is <boolean>
<cond6> ::= (PriceChange>AvgPriceChange) is <boolean>
<boolean> ::= True | False

Figure 7.4: Grammars in Experiment Three

if (RelativeDepth>AvgRelativeDepth) is True
MarketOrder

else
ModerateLimitOrder

Figure 7.5: An Example of Trade Execution Strategy in Experiment Three
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7.3 Artificial Market Simulators

The execution strategies are tested in an artificial market simulator. Critically, in

the experiments the actions of the evolved execution strategies employed by the

simulated trader impacts on the state of the order book facing all the other agents

in the stock market and therefore impacts on their actions. In turn, the actions of

those agents impact on the order book facing the trader and therefore on the utility

of her execution strategy. In other words, the training and testing environment is

dynamic and allows examination of the issues of market impact and opportunity

cost. on trade execution. The use of an artificial stock market environment to

test the utility of execution strategies is a novel contribution of this chapter, and

opens up the door to a wide range of future work in this domain. Different mar-

ket simulators are used to test those three experiments. The purpose of this is to

examine whether the execution strategies keep robust in different market environ-

ments. Specifically, simulator I is adopted to test the strategies in experiment one,

while simulator II is employed to test the strategies in experiments two and three.

7.3.1 Simulator I

In the artificial market simulator I, the agents are equally likely to generate a

buy order or a sell order. The order can be a market order, a limit order, or a

cancellation of a previous limit order. When an agent is active, she can try to

issue a cancelation order with probability λc (oldest orders are canceled first), a

market order with probability λm, a limit order with probability λl = 1−λc−λm.

In the model, the limit order price is uniformly distributed inside the spread with

probability λin, and power-law distributed outside the spread with probability 1−

λin. Limit order price ranges are illustrated in Figure 7.6.

In this model, order generation is modeled as a Poisson process, which means
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Current Best Bid Price

Current Best Ask Price

Price range of incoming limit buy orders

Price range of incoming limit sell orders

Price increases

Figure 7.6: Place Limit Price

that the time between orders follows an exponential distribution. As each incom-

ing buy (sell) market order arrives, the market agent will match it with the best ask

(bid) limit order stored in the order book. If this market order is fully filled by the

first limit order, the unfilled part will be matched to the next best ask (bid) limit

order until it is fully filled. As each incoming limit order arrives, the market agent

will store it in the order book according to price and time priority. As each incom-

ing cancelation order arrives, the market agent will delete the relevant limit order

in the order book. In the simulation, a Swarm platform in JAVA (Swarm, 2009) is

adopted, which is one of the most popular agent-based modeling platforms. The

algorithm used in the simulation I is described in Algorithm 3.

In order to ensure that the order flows generated by the artificial market are

economically plausible, all the parameters in the model are derived from previous

literature (Chakraborti et al., 2011; Farmer et al., 2005b,c,a, 2006; Mike & Farmer,

2008; Toth et al., 2009). The parameters used in the simulation are presented in

Table 7.3.
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Algorithm 3 Artificial Market Simulator I

Generate t from an exponential distribution with parameter τ ;
currenttime = currenttime+ t.
Generate Psign from Bernoulli distribution, and determine the agent type with probability 0.5.
switch Agent Type do

case Buyer
Generate Ptype from a uniform distribution, and determine the order type according to the
probabilities λm, λl and λc.
switch Order Type do

case Market order
Submit a market order.

endsw
case Limit order

Generate Plo from a uniform distribution, and determine the limit order type with
probabilities PinSpread and PoffSpread.
switch Limit Order Type do

case Spread limit order
Submit a limit order whose limit price is drawn from a uniform distribution of
values between the best bid and best ask on the order book.

endsw
case Off-spread limit order

Generate a random value denoted as RPoffspr from a power-law distribution
with exponent α.
Place a limit order at the price (BestBid−RPoffspr) on the order book.

endsw
endsw

endsw
case Cancelation order

Cancel the oldest outstanding limit order.
endsw

endsw
endsw
case Seller

(similar to the case of buyer)
endsw

endsw

Table 7.3: Initial Parameters for Order Book based ASM I

Explanation Value

Initial Price price0 = 100
Tick Price δ = 0.01

Probability of Cancellation Order λc = 0.07
Probability of Market Order λm = 0.33
Probability of Limit Order λl = 0.60

Probability of Limit Order in Spread λin = 0.35
Probability of Limit Order Out of Spread λout = 0.65

Limit Price Tail Index 1 + α = 1.3
Order Size (µ, σ) ∼ (4.5, 0.8) ∗ 100 shares

Waiting Time τ = 6, 90
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7.3.2 Simulator II

As in simulator I, an agent in simulator II is equally likely to generate a buy

order or a sell order at each time step, and this order can be a market order, or

a limit order, or a cancellation of a previous limit order, with probabilities λm,

λl, and λc respectively. The sum of these probabilities is one (λm + λl + λc =

1). In simulator II, for a limit buy (sell) order, it has a probability of λinSpread

falling inside the bid-ask spread, a probability of λatBest falling at the best bid

(ask) price, and a probability of λinBook falling off the best bid (ask) price in the

book, (λinSpread+λatBest+λinBook = 1). The limit price inside the spread follows

a uniform distribution. The limit price off the best bid (ask) price follows a power

law distribution with the exponent of (1 + µ1). The log order size of a market

order follows a power law distribution with the exponent of (1 + µ2), while the

log order size of a limit order follows a power law distribution with the exponent

of (1 + µ3). The algorithm used in the simulation II is described in Algorithm 4.

In order to ensure that the order flows generated by the artificial market are

plausible, all the parameters in the model are derived from previous literature

(Chakraborti et al., 2011; Farmer et al., 2005a,b; Mike & Farmer, 2008; Toth

et al., 2009). The parameters used in the simulator II are presented in Table 7.4.
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Algorithm 4 Artificial Market Simulator II

Generate a random number from a uniform distribution (0, 1) and determine the agent type according to the
probability 0.5.
switch Agent do

case Buyer
Generate a random number from a uniform distribution (0, 1) and determine the order type according
to the probabilities λm, λl and λc.
switch Order Type do

case Market order
Execute a market order with the order size generated from a power-law distribution with
exponent µ2

endsw
case Limit order

Generate a random number from a uniform distribution (0, 1) and determine the limit
order type according to probabilities λinSpread, λatBest, andλinBook .
switch Limit Order Type do

case Inside-spread Limit Order
Generate a random value denoted as Pinspr from a uniform distribution
(BestBid,BestAsk).
Place a limit order at the price Pinspr on the order book with the order size
generated from a power-law distribution with exponent µ3.

endsw
case Spread Limit Order

Place a limit order at the best bid price on the order book with the order size
generated from a power-law distribution with exponent µ3.

endsw
case Off-spread Limit Order

Generate a random value denoted as RPoffspr from a power-law distribution
with exponent µ1.
Place a limit order at the price (BestBid−RPoffspr) on the order book
with the order size generated from a power-law distribution with exponent µ3.

endsw
endsw

endsw
case Cancelation order

Cancels the oldest outstanding limit order that the buyer previously submitted.
endsw

endsw
endsw
case Seller

(similar to the case of buyer)
endsw

endsw
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Table 7.4: Initial Parameters for Artificial Limit Order Market II

Explanation Value

Initial Price price0 = 50
Tick Price δ = 0.01

Probability of Order Cancellation λc = 0.34
Probability of Market Order λm = 0.16
Probability of Limit Order λl = 0.50

Probability of Limit Order in Spread λinSpread = 0.32
Probability of Limit Order at Best Quote λatBest = 0.33

Probability of Limit Order off the Best Quote λinBook = 0.35
Limit Price Power Law Exponent 1 + µ1 = 2.5

Market Order Size Power Law Exponent 1 + µ2 = 2.7
Limit Order Size Power Law Exponent 1 + µ3 = 2.1
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7.4 Results and Discussions

Results of the three experiments are presented and discussed as below.

7.4.1 Results of Experiment One

The Combined-I strategy was evolved using the parameters presented in Table 7.5,

and then was evaluated in the artificial market for 30 simulation runs. Its VWAP

ratio is shown in Table 7.6. The VWAP Ratio reveals the difference between the

volume weighted execution price of Combined-I orders and the average traded

price of all orders during the whole simulation time. The better strategies have

smaller VWAP ratios.

Table 7.5: Parameters for Genetic Algorithm in Experiment One

Parameter Value

Population size 30
Maximum number of generation 100

Generation gap 0.8
Crossover rate 0.75
Mutation rate 0.05

Selection method Stochastic Universal Sampling
Crossover method Single-Point

The VWAP ratio of simple market order strategy (SM), which was evaluated

in the artificial market for 30 simulation runs, is also presented in Table 7.6. In

order to analyze the Combined-I strategy, the execution types of the 30 orders

are also recorded in the experiment. The three execution types are explained as

follows.

1. MLO. It represents marketable limit order. If the order is placed at or be-

yond the best price on the opposite side of the order book, and gets executed

immediately at its limit price, it is denoted as MLO.
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2. LO. It represents limit order. If the order is executed against market orders

with opposite order sign some time after its submission, it is denoted as LO.

3. Crossed. If the order is not executed in the required time period but gets

executed at the end of the period for trading completeness, it is denoted as

Crossed.

Table 7.6: Results of Experiment One.

SM Strategy Combined-I Strategy

VWAP Ratio VWAP Ratio TradedOrderType

(10−3) (10−3) MLO LO Crossed

Buy Order 5.9748 0.5146 11 8 11
Sell Order 3.2378 -1.8244 13 7 10

Note: SM Strategy means Simple Market Order Strategy.
MLO is short for Marketable Limit Order.
LO is short for Limit Order.
Crossed represents Crossed Limit Order.

From Table 7.6, the Combined-I strategy outperforms the SM strategy signif-

icantly, both in-sample and out-of-sample, which is consistent with the results in

Lim & Coggins (2005b). Table 7.6 shows that the Combined-I strategy, which

has more orders executed via LOs, has a smaller VWAP ratio, meaning better per-

formance. All the Combined-I strategies with negative VWAP ratios have more

orders executed in the way of LO than those executed in the two other ways, ex-

cept the best out-of-sample strategy in Table 7.6. Also, Combined-I strategies

have achieved better VWAP than that of the whole simulation time for buy and

sell in in-sample test, which is showed by the negative values of VWAP ratios.

This is more significant for the sell order.
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7.4.2 Results of Experiment Two

The Combined-II strategy was evolved using the parameters presented in Table

7.7, and then was evaluated in the artificial market for 240 simulation runs. Its

VWAP ratio is shown in Tables 7.8 & 7.9. The VWAP Ratio reveals the differ-

ence between the volume weighted execution price of Combined-II orders and the

average traded price of all orders during the whole simulation time. The better

strategies have smaller VWAP ratios.

Table 7.7: Parameters for Grammatical Evolution in Experiment Two

Parameter Value

Population size 100
Maximum number of generation 40

Generation gap 0.8
Crossover rate 0.9
Mutation rate 0.01

Selection method Roulette
Crossover method Single-Point

The results (all out of sample) of buy strategies and sell strategies are provided

in Tables 7.8 & 7.9. The “S-T” represents short-term lifetime and the “L-T” repre-

sents long-term lifetime. The “Mean” is the average VWAP ratio of each strategy

over the 240 days, and “S.D.” represents the standard deviation of the average

(daily) VWAP ratio. P-values for the null hypothesis H1 : meanSA ≤ meanGE ,

H2 : meanSM ≤ meanGE , H3 : meanSP ≤ meanGE are also shown in the table,

to indicate the degree of statistical significance of the performance improvement

of Combined-II strategies over the two simple strategies. The figures show that

the null hypotheses are rejected at the ≤ 0.01 level.

Based on the results, Combined-II strategies notably outperform the three

benchmark strategies, a simple aggressive limit order strategy (SA), a simple mod-

est limit order strategy (SM) and a simple passive limit order strategy (SP). The
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performances of these four strategies can be described as follows.

PerformanceCombined−II > PerformanceSP

> PerformanceSA > PerformanceSM

Combined-II strategies perform the best, while SM strategies perform the

worst. The negative VWAP ratios show that the Combined-II strategies achieve

better execution prices than the average execution price of the market. The values

of standard deviation show that the performance of Combined-II strategies is more

stable than most of the other three kinds of strategies over the tested trading days,

and the performance of SM strategies is more volatile than the other three kinds

of strategies. Comparing the performance of the strategies for buy and sell orders,

it can be observed that the performances of sell strategies are better than those of

buy strategies in most cases, which means that trading costs of buys are higher

than those of sells. This asymmetry is consistent with previous empirical find-

ings, for example, see Kraus & Stoll (1972), Keim & Madhavan (1997), Bikker

et al. (2007). And it is observed that L-T strategies all perform better than S-T

strategies, which indicate that strategies with longer lifetime can achieve better

execution prices than those with short lifetime.
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7.4.3 Results of Experiment Three

The Combined-III strategy was evolved using the parameters presented in Table

7.10, and then was evaluated in the artificial market for 240 simulation runs. Its

VWAP ratio is shown in Table 7.11. The VWAP Ratio reveals the difference

between the volume weighted execution price of Combined-III orders and the

average traded price of all orders during the whole simulation time. The better

strategies have smaller VWAP ratios.

Table 7.10: Parameters for Grammatical Evolution in Experiment Three

Parameter Value

Population size 100
Maximum number of generations 40

Generation gap 0.8
Crossover rate 0.9
Mutation rate 0.01

Selection method Roulette
Crossover method Single-Point

The results (all out of sample) of buy strategies and sell strategies are pro-

vided in Table 7.11. The “Mean” is the average VWAP ratio of each strategy over

the 240 days, and “S.D.” represents the standard deviation of the average (daily)

VWAP ratio. P-values for the null hypothesis H1 : meanSM ≤ meanCombined−III

and H2 : meanSL ≤ meanCombined−III are also shown in the table, to indicate the

degree of statistical significance of the performance improvement of Combined-III

strategies over the two simple strategies. The figures show that the null hypotheses

are rejected at the ≤ 0.01 level.

Based on the results, Combined-III strategies notably outperform the two bench-

mark strategies, a simple market order strategy (SM) and a simple limit order strat-

egy (SL). The negative VWAP ratios of -1.42 and -23.21 show that the GE evolved

strategies achieve better execution prices than the average execution price of the
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Table 7.11: Results of Experiment Three

SM Strategy SL Strategy Combined-III Strategy

Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2

Buy Order 69.64 (0.42%) 42.54 (1.45%) -1.42 (0.49%) 0.00 0.01
Sell Order 68.73 (0.36%) 13.81 (1.59%) -23.21 (0.48%) 0.00 0.01

Note: SM Strategy represents Simple Market order Strategy.
SL Strategy represents Simple Limit order Strategy.
S.D. is short for Standard Deviation.

market. The small standard deviations of 0.49 and 0.48 indicate that Combined-III

strategy is robust over the tested trading days. The performance of SL strategies

seems more volatile than those of SM strategies and Combined-III strategies, and

the performance of SM strategies is more stable than those of the other two kinds

of strategies. Comparing the performance of the strategies for buy and sell orders,

it can be observed that the performances of sell strategies are better than those of

buy strategies, which means that trading costs of buys are higher than those of

sells. This asymmetry is consistent with previous empirical findings.

7.4.4 Discussions

The results in the three experiments all show that the combined strategies out-

perform the simple strategies. This indicates that order choice affects the perfor-

mance of trade execution strategies, that is the price impact of trading large-orders,

and suggests that order choice is an important decision in large-order trade execu-

tion.

In the above experiments, both buy and sell strategies are tested. The results

of these experiments all show that sell strategies generally perform better than

buy strategies, confirming the asymmetric price impacts of institutional trades

found in previous literature (Bikker et al., 2007; Chan & Lakonishok, 1993, 1995;
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Gemmill, 1996; Holthausen et al., 1987, 1990; Keim & Madhavan, 1995b, 1996,

1997; Kraus & Stoll, 1972).

Several explanations appear in the literature to account for this asymmetry

phenomenon. Chan & Lakonishok (1993) and Keim & Madhavan (1996) argue

that sells are more often liquidity-motivated rather than information-based than

buys. Buys create new long-term positions and thus imply a preference to hold

a particular stock. Saar (2001) provides a different explanation for the price im-

pact asymmetry. He builds a theoretical model which demonstrates how the price

impact asymmetry can arise. The main implication of the model is that the his-

tory of price performance of a stock affects the degree of asymmetry: the longer

the run of price appreciations, the less positive the difference in permanent price

impact between buys and sells. When the price run-up is long enough, sells may

even have higher price impact than buys. Another explanation for the price impact

asymmetry is given by Chiyachantana et al. (2004). They find that the asymmetry

depends on particular market conditions: price effects of buyer-initiated trades are

greater in bull markets (as in 1997-1998) whereas those of seller-initiated trades

are larger in bear markets (as in 2001). Boscuk & Lasfer (2005) take a different

view and show that the type of investor and the combination of the size of the

trade and the trader’s resulting level of ownership are the major determinants of

price impact asymmetry at the London Stock Exchange.

7.5 Summary

Order choice problem and large-order trading problem have been studied sepa-

rately in the market microstructure literature. However, large order trading with

various order types has not been investigated. This chapter sheds light on large-

order traders’ use of limit orders. It examined whether order choice affects the
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price impact of trading a large order. Different combinations of order types were

investigated. Agent-based artificial markets were simulated in order to evaluate

the trading strategies. One advantage of this performance evaluation approach is

that the simulated market can capture the dynamic effect of trading while histori-

cal data can not.

The results show that the combined-order-type strategies perform better than

the simple-order-type strategies in terms of price impact. This confirms the finding

in Keim & Madhavan (1997) that the investment style affects trading costs. This

study also demonstrates that buys are more expensive than sells, which is consis-

tent with the findings in Bikker et al. (2007); Chan & Lakonishok (1993, 1995);

Gemmill (1996); Holthausen et al. (1987, 1990); Keim & Madhavan (1995b,

1996, 1997); Kraus & Stoll (1972).

This chapter compliments the prior literature on trade execution strategies,

providing evidence that order choice plays an important role in determining the

price impact when trading a large order. The findings in this chapter are of interest

to academics. When modelling the behaviours of large-order traders, order choice

as an import factor should be taken into account. Moreover, the results provide

useful insights for institutional traders who are obligated to liquidate or acquire

a big position, suggesting that large-order execution strategies adopting multiple

order types can perform better than those using single order type.

In addition, this chapter contributes to the literature on agent-based modellings

of financial markets. It makes the first attempt to use agent-based modelling to

evaluate the performance of trade execution strategies. The artificial market model

developed in this study can be extended to examine the effect of high-frequency

trading on market quality.

198



Part III

Conclusions
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Chapter 8

Conclusions and Future Work

This chapter begins with a brief summary of the thesis and the contributions it has

made. The limitations of this thesis are highlighted in Section 8.2. Suggestions

for future work complete the chapter in Section 8.3.

8.1 Thesis Summary

This thesis empirically investigated the effect of trading on price, that is price

impact. Understanding price impact is a crucial task in financial markets. In order

to get a better understanding of this effect, the following questions were asked:

1. Does price impact on the LSE and the NYSE exhibit an intraday pattern?

2. Does agent intelligence affect the magnitude of price impact?

3. Does order choice affect the price impact of trading large orders?

Empirical analysis on intraday behaviours of market liquidity and price impact

were carried out in Chapter 5. The analysed data was drawn from the NYSE-

Euronext TAQ database and the LSE ROB database. Before using the data for
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analysis, several steps were implemented to preprocess the data in Chapter 4. The

entries in the TAQ data recorded during non-normal trading periods were deleted,

as well as the entries with non-positive values. Identified outliers in the TAQ

data were also removed. An algorithm was developed for inferring the hidden

information contained in the ROB data. Then the limit order book for each trading

day was rebuilt using the ROB data. With the clean data, six stocks selected from

the US markets and six stocks selected from the UK markets were analysed. The

results on intraday patterns generally confirm those found in the previous studies

as reviewed in Chapter 2. In particular, intraday price impact is found to be reverse

S-shaped for US and UK stocks.

The study in Chapter 6 addressed the second research question. As motivated

by the argument in Farmer et al. (2004) that traders condition their order sizes

based on market liquidity, this study investigated whether agent intelligence af-

fects the magnitude of price impact. An agent-based modelling approach was

adopted, as this method facilitates the isolation of a relevant factor in the market

simulation. An artificial limit order market composed of zero-intelligence agents

was simulated. It captured the salient features of electronic limit order markets

including continuous trading, a visible book of orders, price-time priority rules,

instantaneous trade reporting rules, order cancellation capabilities, and both limit

order and market order functionality. In addition, the artificial market was cali-

brated using the LSE ROB data. The results showed that the price impact observed

in the artificial market was generally larger than that observed in the real market,

indicating that agent intelligence is an important determinant of the magnitude of

price impact.

Price impact is an significant component of trading cost, and thus controlling

price impact is important for improving execution performance. The study in

Chapter 7 examined whether order choice affects the performance of large-order
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execution. Several combined strategies, which used various types of orders, were

developed and their performances was then evaluated using price impact. The

results were benchmarked against simple strategies which adopted a single or-

der type. The results show that the combined strategies outperformed the simple

strategies, indicating that order choice is important in controlling price impact for

large-order execution.

Arising from this thesis, these series of experiments help our understanding

of price impact. It identifies the important intraday behaviours of price impact,

the crucial role of agent intelligence in determining the magnitude of price im-

pact, and the significance of order choice in determining the price impact of trad-

ing large orders. These findings have further implications for research on market

microstructure, for example, understanding how securities markets function and

developing comprehensive models of market microstructure. Moreover, they are

also of interest to institutional traders and trading desks.

8.1.1 Contributions

Through the gathering together of the literature on market microstructure and the

literature on agent-based financial markets and the subsequent implementation of

a series of experiments in the domain, a number of key insights are generated.

This section reviews the contributions of this thesis as follows.

• Up-to-date review of relevant literature

Chapters 2 & 3 provided an up-to-date survey of relevant literature on mar-

ket microstructure, price impact, and agent-based financial markets. Chap-

ter 2 initially gave an overview of the literature of market microstructure,

and then specifically reviewed several streams of market microstructure re-

search relevant to this thesis, including studies on the relationship between
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price impact and trade size, studies on large price impact, studies of intraday

phenomena on price volatility, bid-ask spread, trading volume and market

depth, studies on optimal trading strategies for a single asset, and studies on

order submission strategies. This chapter uncovered several research gaps,

which led to the experimental studies of this thesis. Chapter 3 reviewed

various applications of agent-based modelling to financial markets, and re-

vealed that there had been little attempt to use agent-based modelling for

investigating price impact.

• Analysis of intraday behaviours of price impact in UK and US markets

As some studies (Ahn & Cheung, 1999; Lee et al., 1993; Li et al., 2005; Vo,

2007) have documented an intraday pattern on market depth, price impact

may exhibit an intraday pattern because price impact is affected by market

liquidity. This thesis analysed intraday behaviours of price impact, using

the recent data drawn from the NYSE-Euronext TAQ database and the LSE

ROB database. It for the first time documented a reverse S-shaped intraday

pattern on price impact in UK and US markets. Moreover, it found that

price impact had a negative association with near market depth. The result

suggests that the information conveyed by price impact is consistent with

near market depth as indicators of intraday market liquidity.

• Up-to-date evidence on intraday behaviours of market liquidity in UK

and US markets

The previous studies on intraday phenomena are dated. This thesis anal-

ysed intraday behaviours of market liquidity, using recent data drawn from

the NYSE-Euronext TAQ database and the LSE ROB database, and pro-

vided up-to-date evidence on intraday behaviours of price volatility, bid-ask

spread, market depth, trading volume, trading frequency and trade size in
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UK and US markets. Unlike previous studies on intraday phenomena which

only examined the market depth at the best level of the limit order book, this

thesis for the first time analyses the intraday behaviour of market depth for

up to ten levels of the limit order book in the UK market.

• Investigation of the role of agent intelligence in determining the magni-

tude of price impact

Prior studies on price impact typically found that price impact is a concave

function of trade size. Some of them (e.g. Farmer et al. (2004); Hopman

(2007); Weber & Rosenow (2006)) argued that this concavity was due to

selective liquidity taking, namely agents conditioning order size on market

liquidity. However, little study was conducted to investigate this. This thesis

for the first time investigated whether agent intelligence plays an important

role in determining the magnitude of price impact. The results support the

hypothesis that agent intelligence plays an important role in determining the

magnitude of price impact.

• Examination of the effect of order choice on the price impact when

trading a large order

Controlling price impact is an important issue in financial markets. Many

studies have been devoted to examining this problem. However, these stud-

ies only adopted market orders, and no studies were conducted to investigate

the effect of order choice on the price impact of trading a large order. This

thesis for the first time analysed this. The results demonstrate that order

choice plays an important role in determining the price impact of trading a

large order.

• Use of ABM for investigating price impact
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Agent-based modelling have been applied to economics and finance for a

long time, but there has been little attempt to use ABM for investigating

price impact. This thesis makes the first attempt to investigate price impact

using ABM in its two experimental studies. It laid the framework for this

use, and the model developed here can be extended for other applications,

like investigation of the market effect of high-frequency trading.

8.2 Limitations of this Thesis

The primary focus of this thesis is on the investigation of price impact, and it

makes useful contributions to our understanding of price impact. However, one

thesis can not cover all aspects of this topic. There are a number of areas worthy

of further research that fall outside the scope of this work.

Price impact can be caused by market orders, limit orders and upstairs or-

ders. When examining the intraday behaviours of price impact, the focus of the

present work is on the price impact caused by market orders. A few studies have

investigated the price impact of other trading activities. For example, Eisler et al.

(2012); Hautsch & Huang (2012) examine the price impact caused by limit orders,

and Gabaix et al. (2006); Keim & Madhavan (1996) investigate the price impact

of upstairs orders.

A number of studies have shown that price impact decays over time. In the

current work, concentration is placed on the immediate effect of trading on prices.

Some studies have been devoted to modelling the resilience of price impact. For

example, Gatheral et al. (2011) model that price impact decays exponentially over

time.

Large-order execution can occur at several trading venues. In this thesis, at-

tention is limited to trading at one trading venue. Many traders are willing to
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route their orders to the cheapest trading place in order to reduce trading costs. A

number of studies are focusing on this issue. For example, Foucault & Menkveld

(2008) empirically examines smart order routing systems, and Rawal (2010) dis-

cusses the importance of intelligent decision-making in order routings.

8.3 Future Work

Building upon this research, there are numerous avenues for future work. A few

of them are outlined as follows.

The study in Chapter 5 shows that market volume has a U-shaped intraday

pattern and near market depth has an S-shaped intraday pattern. It would be in-

teresting to determine who contributes to trading volume and market depths, that

is the constituents of the market participants at different times of the trading day.

Understanding whether institutional investors or individual investors dominate the

market when trading volume is high or when depth is high would help us better

understand the underlying drivers of the intraday patterns.

The price impact studied in Chapter 5 is limited to the price effect of market

orders. The price impact of limit orders is not explored here. A recent study by

Hautsch & Huang (2012) quantifies the price effect of submitting a limit order in a

limit order market and find that limit orders have significant impact. However, the

intraday behaviour of this impact is unknown. It would be interesting to analyse

the intraday patterns of price impact of limit orders using the method in Hautsch

& Huang (2012).

The study in Chapter 7 can be extended to an investigation of large-order trad-

ing in multiple markets. A number of artificial markets can be simultaneously

simulated with an agent-based modelling approach. The choice of trading venue

will be decided on for each order at the same time with other decisions like choice
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of order type and order size. This investigation would shed light on how liquidity

is supplied and demanded across multiple linked markets.
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Appendix A

Explanation of the Chosen Time

Period in Chapter 5

One of the aims of this thesis is to investigate whether price impact exhibits an

intraday pattern and whether this intraday pattern is consistent across different

stocks in US and UK markets. Therefore, the stocks are chosen from different

industries and with different market capitalisations. The chosen time period is

a normal period. During these time periods, there were no disturbances in the

markets. The chosen length of the time period is enough to generate intraday

patterns. Figures A.1 & A.2 illustrate the intraday curves of price volatility using

one-day data and one-month day separately.
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Figure A.1: Intraday Price Volatility (One-day data)
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Figure A.2: Intraday Price Volatility (One-month data)
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Appendix B

More Results of Chapter 5

This appendix includes some results from experiment two in Chapter 5. This the-

sis measures market depth in share and in value as well as time-weighted market

depth for UK stocks. Chapter 5 includes the figures showing intraday pattern on

market depth in share. This appendix presents the intraday patterns on market

depth in value and time-weighted market depth. From Figures B.1-B.10, it can be

observed that the intraday patterns on market depth in value and on time-weighted

market depths are almost identical to the intraday patterns on market depth in share

as shown in Chapter 5.
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Figure B.1: Intraday Time-weighted Depth in Share (UK stocks)
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Figure B.2: Intraday Depth in Value (UK stocks)
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Figure B.3: Intraday Time-weighted Depth in Value (UK stocks)
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Figure B.4: Intraday Bid Depth in Value (UK stocks)
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Figure B.5: Intraday Ask Depth in Value (UK stocks)
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Figure B.6: Intraday Time-weighted Near Depth in Share (UK stocks)
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Figure B.7: Intraday Near Depth in Value (UK stocks)
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Figure B.8: Intraday Time-weighted Near Depth in Value (UK stocks)
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Figure B.9: Intraday Near Bid Depth in Value (UK stocks)
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