
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematics, Statistics and Computer Science

Computer Science

A New Crossover Operator in GP for

Object Classification

Mengjie Zhang, Xiaoying Gao, Weijun Lou

Technical Report CS-TR-06/2
January 2006

School of Mathematics, Statistics and Computer Science
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research



VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematics, Statistics and Computer Science

Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341, Fax: +64 4 463 5045
Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

A New Crossover Operator in GP for

Object Classification

Mengjie Zhang, Xiaoying Gao, Weijun Lou

Technical Report CS-TR-06/2
January 2006

Abstract

This paper describes a new crossover operator in genetic programming for
object recognition particularly object classification problems. In this approach,
instead of randomly choosing the crossover points as in the standard crossover
operator, we use a measure called looseness to guide the selection of crossover
points. Rather than using the genetic beam search only, this approach uses a hy-
brid beam-hill climbing search scheme in the evolutionary process. This approach
is examined and compared with the standard crossover operator and the headless
chicken crossover method on a sequence of object classification problems. The re-
sults suggest that this approach outperforms both the headless chicken crossover
and the standard crossover on all of these problems.

Keywords Crossover points, looseness controlled crossover, genetic program-
ming, hybrid search
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1 Introduction

Classification tasks arise in a very wide range of applications, such as detecting faces from
video images, recognising words in streams of speech, diagnosing medical conditions from
the output of medical tests, and detecting fraudulent credit card fraud transactions [4, 9,
6, 23, 18]. In many cases, people (possibly highly trained experts) are able to perform the
classification task well, but there is either a shortage of such experts, or the cost of people is
too high. Given the amount of data that needs to be classified, automatic computer based
classification programs/systems are of immense social and economic value.

A classification program must correctly map an input vector describing an instance (such
as an object image) to one of a small set of class labels. Writing classification programs that
have sufficient accuracy and reliability is usually very difficult and often infeasible: human
programmers often cannot identify all the subtle conditions needed to distinguish between
all instances of different classes.

Derived from genetic algorithms and evolutionary programming [7, 15], Genetic pro-
gramming (GP) is a relatively recent and fast developing approach to automatic program-
ming [3, 11, 12]. In GP, solutions to a problem can be represented in different forms but
are usually interpreted as computer programs. Darwinian principles of natural selection and
recombination are used to evolve a population of programs towards an effective solution to
specific problems. The flexibility and expressiveness of computer program representation,
combined with the powerful capabilities of evolutionary search, make GP an exciting new
method to solve a great variety of problems. A strength of this approach is that evolved
programs can be much more flexible than the highly constrained, parameterised models used
in other techniques such as neural networks and support vector machines.

Since the early 1990s, there has been a number of reports on applying genetic program-
ming techniques to a range of object recognition problems such as shape classification, face
identification, and medical diagnosis [1, 8, 14, 19, 21, 24, 27, 26, 28]. While showing promise,
current GP techniques are limited and frequently do not give satisfactory results on difficult
classification tasks. There are many aspects of the design of a GP approach to a specific
problem that could be addressed and lead to improvement — in this paper we choose to
explore the crossover operator.

The crossover genetic operator has been considered a centre storm of genetic programming
[2]. In the current crossover operator, two sub-programs (crossover points) are randomly
chosen from two parent programs, and two new programs are generated by simply swapping
them. However, the totally random choice is clearly unable to guarantee the best choice. More
importantly, this random choice often destroys the good “building blocks” (sub-programs
which are good for that task) in evolved programs, particularly in the later stage of evolution
[2]. A better way of performing crossover needs to be investigated.

1.1 Related Work

Crossover is the predominant search operator in most GP systems [29, 25, 2]. In Genetic
Algorithms, the building block hypothesis [5] shows that there are good building blocks
which can improve the fitness of individuals. In GP, however, past research has shown this
is not always true.

The famous Gedanken experiment [3] empirically investigated the relationship between
the GP crossover operator and the building blocks in a genetic program. The results suggest
that there might be two different phases in a GP run. In the first phase, the building blocks
are relatively small and the probability of the building blocks being disrupted by crossover
is also small, where the evolution completely depends on fitness. In the second phase, the
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building blocks become large and the probability of building blocks being disrupted also
becomes large, where the evolution depends on both fitness and the structure of individual
programs. Accordingly, the crossover operator mainly preserves small building blocks and
combines them into larger blocks at the early stage of evolution, then starts tearing the larger
building blocks apart at the later stage of evolution.

Nordin and Banzhaf [16, 17] investigated the effect of crossover on the relative fitness
of parent programs to their offspring on tree bases GP systems. The results show that the
average fitness of the child programs is less than half the fitness of the parents for about 75%
of all crossover events. It seems that the standard crossover operator has an overwhelmingly
negative effect.

Lang [13] launched his argument that traditional GP crossover did not perform nearly
as well as a macromutation operator in 1995. His whimsically dubbed crossover operator —
headless chicken crossover is a macromutation operator and in the form of hill climbing search.
Lang claimed that headless chick crossover was much better than traditional GP operator
on the problems he studied. While the results were only based on the Boolean 3-multiplexer
problem where no local minima exist and the above conclusion was not necessarily true for
other problems, the experiments clearly showed that the standard crossover operator was not
sufficiently effective.

To improve the standard crossover operator, Tackett [20] introduced the “brood recom-
bination” method. In this method, a “brood” N was created for each crossover operation
and the operation was repeated N times to produce 2N child programs, but only the best
two children were kept and all others were killed. The rationale behind the method is an
analogy of the observed fact that many animal species produce offspring far more than those
expected to live. This approach focused on making better crossover by trying more times,
but it did not consider heuristics or intelligent selection of the crossover points.

Iba and Garis [10] added some heuristics to the standard crossover operator to make the
operator “smart”. This crossover evaluates performance for subtrees. This approach assumes
that a good building block can be built up, but after that, the good block might be moved
into a new individual that does not treat it as a good building block.

Banzhaf, et al. [3] proposed a homologous crossover operator. This crossover operator
measures the structural similarity and functional similarity of each subtrees by some distances
between two programs. The two measurements are interpreted as probabilities and are then
used to select crossover points. The computational cost of this approach was quite high.

1.2 Goals

The goal of this paper is to investigate a different approach to improving the crossover
operator in tree based GP for object classification problems. This approach will be based
on the selection of good crossover points to preserve potential building blocks and use a
hybrid beam-hill climbing search to improve the system performance. This approach will
be examined and compared with the standard crossover operator and the headless chicken
crossover operator on three object classification problems of increasing difficulty. Specifically,
we are interested in investigating the following issues.

• how to use a kind of “looseness” on the links between every two nodes in a program
tree to help select good crossover points,

• whether this approach can do a good enough job on these object classification problems,

• whether this approach outperforms the standard crossover operator on the same se-
quence of problems, and
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• whether this approach outperforms the headless chicken crossover operator on these
problems.

1.3 Organisation

The remainder of the paper is organised as follows. Section 2 briefly overviews the standard
crossover operator and the headless chicken crossover operator. Section 3 describes the new
looseness control crossover operator and the hybrid beam-hill climbing search in the operator.
Section 4 presents the experiment design and configurations. Section 5 presents and analyses
the experiment results. Section 6 draws conclusions and gives future work directions.

2 Overview of Standard GP Crossover and the Headless Chicken

Crossover

2.1 The Standard GP Crossover Operator

To perform the standard crossover operator in tree based genetic programming, two genetic
programs are selected from the population and are put into the mating pool. A crossover
point is then randomly chosen in each of the two parent programs, then the subtrees below
the crossover points are swapped and two new (child) programs are created. The two child
programs are then put into the population in the next generation.

This operator aims to have a chance of combining aspects of two programs into one. From
biological point of view, it is expected to mimic the biological sexual mating behaviour to
take the advantages of different programs and integrate the useful attributes in order to form
better programs for a particular task. However, the totally random selection of crossover
points causes a number of problems. A major problem is that this random selection can
result in good “genes” or “building blocks” to be destroyed, which could deteriorate the
performance and even lead to “illegal” solutions for some particular tasks.

2.2 The Headless Chicken Crossover Operator

Headless chicken crossover [13] is a kind of macromutation. As shown in figure 1, only one
parent A is selected and an entirely new individual B1 is randomly generated. The selected
parent A is then crossed over with the new and randomly created individual B1. The offspring
C1 is kept if it is better than the parent A measured in fitness. Otherwise, it is discarded
and another entirely new individual B2 is randomly generated, and a new crossover occurs
between A and B2. The iteration goes on until the offspring Cn is better than the parent A
in fitness. Cn is then kept and put in the next generation. Thus, headless chicken crossover
uses a form of hill climbing search.

3 Looseness Control Crossover

To improve the effectiveness of the GP crossover operator, in this approach, we introduce
a weight called looseness to control the choice of the crossover points and combine the hill
climbing search scheme into the genetic beam search in GP. The main idea and the method
are presented in the rest of this section.

3.1 Main Idea

To avoid randomly selecting the crossover points, we give each link between two adjacent
nodes in a program tree a value, looseness, to reflect how “sticky” the two nodes should be

3



Iteration

B1

B2

B3

B4

Bn

 

C1

C2

C3

C4

Cn

A

Randomly
created 
parents

Crossover

Figure 1: The main idea of headless chicken crossover.

with each other. Ideally, the looseness values of links within a good building block should be
smaller than other parts of the tree, i.e. the nodes within this block should be more sticky
to each other. The smaller the looseness value, the better the block. Accordingly, when we
select the point for crossover, only the link with the biggest looseness value in the tree will
be selected. If two or more links have the same biggest looseness value, we randomly choose
one from them.

In this approach, we assign a looseness value to each link in the program tree at the initial
generation before evolution. This looseness value will be updated during the evolutionary
process based on the results of the crossover operator — a good building block is more sticky
than other parts of the program tree which have higher looseness values. By selecting the
crossover points only on those loosest links, we expect that the disruptive effect of crossover
can be eliminated or at least the disruption possibility can be reduced.

3.2 The Methodology

As shown in Figure 2, at generation 0, since no good building blocks have been recognised
(even though there might exist some), we treat all links equally: all links in the program
trees are assigned 0 as the looseness value. Thus, the selection of the crossover point are
random at the first round evolution. Once crossover happens between two nodes, supposing
that the new link is better than the old one based on the child fitness evaluation, we will keep
the link associated with the crossover point a smaller looseness value, so that the two nodes
connected by this link are more “sticky” than other parts of the tree. This is done by keeping
the looseness value of this link unchanged and increasing values of all other links of the tree
by 1, i.e. the looseness value of the other links will have the same number as the index of
generation, as shown in figure 3. In the next round of evolution, this link will not be selected
as the crossover point, and the two nodes with the link are considered a small good building
block. As the evolutionary process goes on, more and more nodes are getting sticky and
the good building blocks grow and connect with each other. In case all links have an equal
looseness value of gen−1 where gen is the index of current generation, a new loop of further
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Figure 2: The main idea of looseness-controlled crossover.

reducing the looseness down starts. We expect that the final solution program is itself a
good building block as a whole and have a fairly small looseness value and that this approach
can mimic the biological gene crossover point selection and improve the effectiveness of the
crossover operator.
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Figure 3: Sample “sticky” areas in the looseness-controlled crossover.
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3.3 Further Improvement — Hybrid Search

The above method is based on the assumption that the new programs after crossover have
better building blocks around crossover points than their parents. In the actual situation,
however, this is often not true. For example, a good building block in one solution can
become the source of bad performance of another solution. Figure 4 shows one case of this
possibility. Before the crossover happens, the program has two good building blocks. It is
expected one of them to grow by crossover to make a larger good building block. After the
crossover, although it replaces the unsatisfied part of the larger block with a good building
block from another program, it is not guaranteed to form a larger good building block. So we
need to check whether the larger area is a good grown building block or not. To guarantee
the newly generated programs by crossover are better than the old programs, we introduce
a hill climbing search into the genetic beam search. The main idea is presented as follows.

(which might be bad)

good block

to be good by crossover
A larger block expected 

good block

good block from
another program

Crossover

A larger block obtained by crossover 

Figure 4: Illustration of building block growing and a sample large building block which
might not be good.

To make sure that a child program contain a better building block around the crossover
point than its parents, we evaluate these programs and compare their fitness values. If
the child program has better fitness than its parents, we treat this crossover operation as a
successful one, and a larger good building block is treated as formed. Otherwise, we treat this
crossover operation as failed. The failed crossover operation is undone and a new crossover
operation is attempted. This process continues until the offspring has better fitness than
its parent. In this way, we expect that the building block around the crossover point has
been growing or has been getting better. For presentation convenience, we call this approach
Looseness Controlled Crossover, LCC for short.

3.4 An Example

As shown in Figure 5, originally, two parent programs A and B1 are selected and their
crossover points a and b1 are chosen according to the looseness value on each link. Then
crossover operation occurs by replacing the subtree at a with the subtree at b1, and we get a
child C1. We then evaluate C1 by compare its fitness with its parent A’s. If the program C1 is
better than A, then we update the looseness value of program C1; otherwise, we “undo” the
crossover operation by deleting the new program C1. Then we find another parent program
B2 from the population, and try a new crossover operation with the first parent program A
and check whether the newly generated program C2 is better than program A or not. This
process will continue in the form of loop until we find a child program with better fitness, such
as Cn, and we update the looseness values of program Cn. Notice that the crossover operator
will produce two child programs and we check both of them and update the looseness values
accordingly.

In theory, the number of the iteration n can be very large even infinite, particularly for
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Figure 5: Illustration of looseness-controlled crossover.

the case that a successful crossover can never be found due to the reason that the candidate
program (such as A in figure 5) as a whole is already a very good building block and no other
suitable program in the current population can make it better by crossover. To avoid such
infinite loops and for efficiency reasons, we limit this number to 1000, i.e. when the iteration
has been executed 1000 times and still no better child program can be found, we terminate
the iteration and elite the parent program and put a copy into the next generation.

4 Experiment Configurations

4.1 Image Data Sets

Experiments were conducted on three different image data sets providing object classification
problems of increasing difficulty. Sample images for each data set are show in figure 6.

The first data set (figure 6a) was generated to give well defined objects against a reason-
ably noisy background. The pixels of the objects were produced using a Gaussian generator
with different means and variances for each class. Four classes of 600 small objects (150 for
each class) were cut out from the images and used to form the classification data set. The four
classes are: dark circles, grey squares, light circles and noisy background. For presentation
convenience, this data set is referred to as shape.

The second set of images (coin, figure 6b) contains scanned 10 cent New Zealand coins.
The coins were located in different places with different orientations and appeared in different
sides (head and tail). The background was also cluttered. Three classes of 500 objects were
cut out from the large images to form the data set. The three classes are: head, tail and
background. Among the 500 cutouts, there are 160 cutouts for head, 160 cutouts for tail and
180 cutouts for background respectively. Compared with the shape data set, the classification
problem in this data set is harder. Although these are still regular, man-made objects, the
problem is quite hard due to the noisy background and the low resolution.
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(a) (b) (c)

Figure 6: Sample images in datasets: (a) Shape; (b) Coins; (c) Texture.

The third set of images (figure 6c) contains four different kinds of texture images, which
are taken by a camera under the natural light. The images are taken from a web-based
image database held by SIPI of USC [22]. The four texture classes are named woollen cloth,
wood grain, raffia and herringbone weave respectively. Because they are quite similar in many
aspects, this classification task is expected to be more difficult than that in the coin data set.
There are 900 sample cutouts from four large images, and each class has 225 samples. This
dataset is referred to as texture.

For all the three data sets, the objects were equally split into three separate data sets: one
third for the training set used directly for learning the genetic program classifiers, one third
for the validation set for controlling overfitting, and one third for the test set for measuring
the performance of the learned program classifiers.

4.2 Terminal Set

For image recognition tasks, terminals correspond to image features. In this approach, we
use four simple pixel statistics extracted from each data set as terminals. Given an object
cutout image, the four pixel statistics, mean, standard deviation, skewness, and kurtosis,
are calculated by the following formulas respectively. Since the ranges of these four feature
terminal values are quite different, we linearly scaled them into the range [-1, 1] based on all
object image examples to be classified.

X̄ =

∑

N

i=1 Xi

N

σX =

√

∑

N

i=1 (Xi − X̄)
2

N

Skewness(X) =

∑

N

i=1 (Xi − X̄)
3

Nσ3

Kurtosis(X) =

∑

N

i=1 (Xi − X̄)
4

Nσ4

where Xi is the brightness of the ith pixel in the given object (cutout) image, X̄ is the
mean value, and σX is the standard deviation of all pixels of the object image. While these
features are not the best for these particular problems, our goal is to investigate the crossover
operators, rather than finding good features for a particular task, which is beyond the scope
of this paper.
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In addition to the feature terminals, we also used a constant terminal for all the three
tasks.

4.3 Function Set

In the function set, the four standard arithmetic and a conditional operation were used to
form the function set:

FuncSet = {+,−, ∗, /, if} (1)

The +, −, and ∗ operators have their usual meanings — addition, subtraction and multi-
plication, while / represents “protected” division which is the usual division operator except
that a divide by zero gives a result of zero. Each of these functions takes two arguments.
The if function takes three arguments. The first argument, which can be any expression,
constitutes the condition. If the first argument is negative, the if function returns its second
argument; otherwise, it returns its third argument. The if function allows a program to con-
tain a different expression in different regions of the feature space, and allows discontinuous
programs, rather than insisting on smooth functions.

4.4 Fitness Function

We used classification accuracy on the training set of object images as the fitness function.
The classification accuracy of a genetic program classifier refers to the number of object
images that are correctly classified by the genetic program classifier as a proportion of the
total number of object images in the training set. According to this design, the best fitness
is 100%, meaning that all object images have been correctly recognised.

The output of a genetic program in the standard GP system is a floating point number. In
this approach, we used a variant version of the program classification map [28] to translate the
single output value of a genetic program into a set of class labels. This variation situates class
regions sequentially on the floating point number line. The object image will be classified
to the class of the region that the program output with the object image input falls into.
Class region boundaries start at some negative number, and end at the same positive number.
Boundaries between the starting point and the end point of each class (except for the first and
last class) are allocated with an identical interval of 1.0. For example, a four class problem
would have the following classification map:

class =



















Class 1, r < −1.0
Class 2, −1.0 ≤ r < 0
Class 3, 0 ≤ r < 1.0
Class 4, 1.0 ≤ r

(2)

where r is the program output.

4.5 Parameters and Termination Criteria

The parameter values used in this approach are shown in table 1. These values are determined
based on empirical search.

In this approach, the learning/evolutionary process is terminated when one of the follow-
ing conditions is met:

• The classification problem has been solved on the training set, that is, all objects of
interest in the training set have been correctly classified without any missing objects
or false alarms for any class.
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Table 1: Main parameter values for the three data sets.
Parameter Shape Coin Texture
Population Size 300 500 500
Initial Max. Depth 5 5 5
Initial Min. Depth 3 3 3
Max. Depth 5 6 8
Min. Depth 3 3 3
Max generations 50 50 50
Crossover rate: 50% 50% 50%
Mutation rate: 30% 30% 30%
Reproduction rate 20% 20% 20%

• The accuracy on the validation set starts falling down.

• The number of generations reaches the pre-defined number, max generations.

4.6 Experiment Configuration

In the approach, we used the tree-structure to represent genetic programs [11]. The ramped
half-and-half method was used for generating programs in the initial population and for the
mutation operator [3]. The proportional selection mechanism and the reproduction, crossover
and mutation operators [12] were used in the learning and evolutionary process.

To compare the new approach and the approaches with the standard crossover and head-
less chicken crossover, we use the classification accuracy, training time and the number of
generations to measure the performances of these methods. For each experiment, we run 80
times and the average results are presented in the next section.

5 Results and Discussion

Table 2 shows the average results of the genetic programming systems with the three different
crossover operators in terms of the classification accuracy, evolutionary training time, and
the number of generations used for the evolution.

Table 2: Results of the three crossover operators. (HCC: Headless Chiken Crossover; LCC:
Looseness Controlled Crossover)

Data Sets Method Accuracy (%) Time(s) Generations

Standand 96.16±1.35 0.09 8.59
Shape HCC 98.03±1.53 0.49 2.29

LCC 97.88±0.76 0.31 4.21

Standard 90.37±2.51 1.78 28.64
Coin HCC 92.37±2.83 42.16 20.14

LCC 92.74±1.34 9.23 19.96

Standard 72.45±3.23 1.83 29.99
Texture HCC 74.78±4.65 71.40 19.23

LCC 77.18±2.84 12.84 22.50

As can be seen from table 2, for the shape data set, both the looseness controlled crossover
operator developed in this approach and the headless chicken crossover achieved an improve-
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ment in classification accuracy, but spent a longer time than the standard crossover operator.
In particular, the headless chicken crossover operator used about five to six times longer time
than the standard crossover operator. The number of generations spent on the evolutionary
process, however, is the smallest one for the headless chicken crossover, which suggests that
the evaluation cost per generation for the headless chicken crossover is very high.

For the relatively difficult object classification tasks in the coin and the texture data sets,
the new looseness controlled crossover operator resulted in the best classification accuracy
among all the three approaches. The improvement of the LCC approach over the other two
methods is significant for the most difficult texture data set. While the headless chicken
crossover approach also achieved a better accuracy than the standard crossover, its perfor-
mance was worse than the looseness controlled crossover. In particular, the headless chicken
crossover spent a huge amount of time in the evolutionary process, suggesting that it is quite
inefficient.

Overall, headless chicken crossover performed slightly better than the standard crossover
in terms of the classification accuracy but it is very inefficient. Headless chicken crossover
mainly uses a kind of hill climbing search and is kind of macromutation. This is consistent
with previous research suggesting that the standard GP crossover operator is only a kind
macromutation and could be further improved.

The looseness controlled crossover operator developed in this approach added some sort
of “intelligence” and the crossover points selection is more “clever” than in the standard
crossover operator. The looseness controlled crossover also used a hybrid beam-hill climbing
search scheme, and it seemed that it used the advantages from both the standard crossover
and the headless chicken crossover. Accordingly, this method achieved a markedly improved
accuracy particularly for the more difficult tasks than the standard crossover operator, and
is much more efficient than the headless chicken crossover operator.

6 Conclusions

The goal of this paper was to develop a more intelligent crossover operator than the standard
crossover operator in genetic programming for object recognition problems. The goal was
successfully achieved by introducing a value called “looseness” on the link between every
adjacent nodes in the program tree, using this looseness to guide the selection of crossover
points and using a hybrid beam-hill climbing search scheme to guarantee good building blocks
to be achieved by crossover. This approach was examined and compared with the standard
GP crossover operator on three object classification problems of increasing difficulty. The
results suggest that this new approach outperformed the standard GP crossover operator in
terms of the classification accuracy. While it spent a bit longer time, this is a small price to
pay for many object recognition problems.

This approach was also examined and compared with the headless chicken crossover op-
erator on the same data sets. The results suggest that the new looseness controlled crossover
operator can achieve better classification accuracy on most data sets particularly the rela-
tively difficult problems than the headless chicken crossover operator, and it is also much
more efficient.

Although developed for object classification problems, we expect this approach can be
applied to other general classification problems.

While this approach was much more efficient than the headless chicken crossover operator,
it spent a longer time than the standard GP crossover operator on these tasks. This is mainly
due to the use of the hill climbing search by evaluating more individual programs within a
particular generation. We will investigate more efficient ways such as evaluation on some sub-
programs. It is also interesting to investigate more clever ways for updating the looseness of
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links between every two adjacent nodes in the individual program trees in the future.
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