VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

Using Genetic Programming for
Multiclass Classification by
Simultaneously Solving Component
Binary Classification Problems

Will Smart, Mengjie Zhang

Technical Report CS-TR-05/1
Jan 2005

School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: 464 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@Qmcs.vuw.ac.nz

New Zealand http://www.mcs.vuw.ac.nz/research



VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mes.vuw.ac.nz/research

Using Genetic Programming for
Multiclass Classification by
Simultancously Solving Component
Binary Classification Problems

Will Smart, Mengjie Zhang

Technical Report CS-TR-05/1
Jan 2005

Abstract

In this paper a new method is presented to solve a series of multiclass object
classification problems using Genetic Programming (GP). All component two-
class subproblems of the multiclass problem are solved in a single run, using a
multi-objective fitness function. Probabilistic methods are used, with each evolved
program required to solve only one subproblem. Programs gain a fitness related
to their rank at the subproblem that they solve best. The new method is com-
pared with two other GP based methods on four multiclass object classification
problems of varying difficulty. The new method outperforms the other methods
significantly in terms of both test classification accuracy and training time at the
best validation performance in almost all experiments.

Keywords Genetic Programming, Multiclass Classification, Binary Decompo-
sition, Probab ilistic.



Author Information

Will Smart is a postgraduate student in computer science. Mengjie Zhang is an academic
staff member in computer science. Both authors are in the School of Mathematics, Statistics,
and Computer Science, Victoria University of Wellington, New Zealand.



Using Genetic Programming for Multiclass
Classification by Simultaneously Solving
Component Binary Classification Problems

Will Smart and Mengjie Zhang

School of Mathematics, Statistics and Computer Sciences
Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand
{smartwill ,mengjie}@mcs.vuw.ac.nz

Abstract. In this paper a new method is presented to solve a series
of multiclass object classification problems using Genetic Programming
(GP). All component two-class subproblems of the multiclass problem
are solved in a single run, using a multi-objective fitness function. Prob-
abilistic methods are used, with each evolved program required to solve
only one subproblem. Programs gain a fitness related to their rank at the
subproblem that they solve best. The new method is compared with two
other GP based methods on four multiclass object classification problems
of varying difficulty. The new method outperforms the other methods sig-
nificantly in terms of both test classification accuracy and training time
at the best validation performance in almost all experiments.

1 Introduction

Object classification problems abound in daily life, and a computer system that
can solve object classification problems is very desirable. The advantages of
using a computer to solve such problems, over a human expert, include lower
cost, higher speed and higher reliability in the face of large throughput. However,
building automatic computer systems for object and image classification tasks
that are reliable and can achieve desirable performance is very difficult.

GP research has considered a variety of kinds of evolved program representa-
tions for classification tasks, including decision tree classifiers and classification
rule sets [1-3]. Recently, a new form of classifier representation — numeric ex-
pression classifiers — has been developed using GP [4-7]. This form has been
successfully applied to real world classification problems such as detecting and
recognising particular classes of objects in images [5,6, 8], demonstrating the
potential of GP as a general method for classification problems.

The output of a numeric expression classifier is a single numeric value (the
program output), and problems arise when attempting to convert this value into
a class label. For binary problems, one reasonable solution is to assign one class
if the program output is negative, and the other otherwise [4-6,9]. However, the
problem is much more complicated when three or more classes exist (multiclass
problems), as multiple boundaries need to be found to divide the numeric space
into three or more class regions.



Statically-assigned class boundary methods have been used widely, but are
seen to unnecessarily constrain programs, leading to long search time and low
final accuracy [4, 7]. In previous research a probabilistic method has been used to
avoid the setting of class boundaries [10], however this method still constrains
each program to solve the entire problem, even when the problem has many
classes.

To avoid the above problems, the multiclass classification task may be de-
composed into many binary tasks [4]. However, in the past each binary task
requires a separate GP evolution, leading to a long total time for evolution even
though each evolution is quite short [4].

The goal of this paper is to construct a method to decompose a multiclass
classification problem into a number of two-class (binary) subproblems, solve all
these subproblems in a single GP run, then combine the binary subproblems
to solve the whole multiclass problem. A secondary goal is to evaluate the new
method on a variety of problems of varying difficulty, comparing it with two
other GP based methods.

This paper is organized as follows. In section 2 two existing fitness functions
for comparison with the new method are presented. In section 3 the new method
is described. In section 4 the data sets and settings used for experiments are
given. In section 5 the results of experiments are presented and discussed. In
section 6 conclusions are drawn, and some directions are given for future research.

2 Two Existing Fitness Functions

The new approach described in this paper will be compared with two existing
fitness functions: Program Classification Map (PCM) [7,11] and Probabilistic
Multiclass (PM) [10].

2.1 Program Classification Map

In PCM, the floating-point output of a program is converted directly into a class
label, depending on the numeric region it falls into. Thresholds are set at even
spacing (one unit) on the number line from some negative number to the same
positive number. For an N class problem, there will be N — 1 thresholds. The
classes are assigned to the regions before, between and after the thresholds, in
order of magnitude. For example, figure 1 shows the numeric regions of a five
class problem. The fitness of a program is found by subtracting the training set
accuracy from 100%.

Class 1 Class 2 Class 3 Class 4 Class 5

-0 -15-10 -05 0 05 10 15 +0O

Fig. 1. Program Classification Map (PCM) for a five-class problem.



2.2 Probabilistic Model of Program Output

Based on the feature values of the training examples for a particular class, the
mean and standard deviation of the program output values for that class can
be calculated. In this way, we can attain the mean and standard deviation for
each class. These program statistics are compared in order to get a fitness value
indicating how well the program separates the classes.

Probabilistic Binary. Figure 2 shows three examples of normal curves that
may be gained by modeling three program’s results on the training examples in
the binary classification problems. In the figure, the leftmost program’s normal
curves are substantially “overlapped”, so there is a high probability of misclassi-
fication. The rightmost program’s normal curves are well “separated”, so there is
a low probability of misclassification and this program represent a good classifier.

Class1 Class2 Class1 Class 2 Class1 Class 2
m
m

@ (b) ©

Fig. 2. Example normal distributions for a binary problem. (a) a bad discerner between
the two classes, (b) an acceptable discerner, (c¢) a good discerner.

In the binary problem case, equation 1 is used to determine the distribution
distance (d) between the classes in standard deviations.

d:2x|/'[/1_:u’2| (1)
o1+ 09

where p; and o; are the mean and standard deviation of the program outputs for
class ¢ in the training set. For programs that distinguish between the two classes
well, the distance d will be large. In such a case, the probability of misclassi-
fication would be small as the distribution overlap occurs at a high standard
deviation.

To be consistent with the PCM method, we convert the distribution distance
measure d to a standardised fitness measure ds, as shown in equation 2, which
indicates the misclassification of a genetic program in the binary classification
problem.

ds = —— (2)

Probabilistic Multiclass (PM). In the PM method, the fitness of a program
for the multiclass (N-class) classification problem is defined as the sum of the
standardised distribution distance of all binary classification problems, as shown
below:



X
Fitness(PM) = Z ds; (3)
i=1

For instance, for a four class problem there are C? = 6 binary classification
subproblems. For each subproblem, we can calculate its ds value. The fitness of
the whole four class problem is the sum of all the six ds values.

3 Communal Binary Decomposition

For presentation convenience, the new approach developed in this paper is called
Communal Binary Decomposition (CBD).

CBD also uses a probabilistic method to model the outputs of programs, as
PM does. However, while a solution program in PM must separate the distribu-
tions of all classes in the multiclass problem, in CBD each program only needs
to separate two classes. In CBD the program’s fitness depends on its perfor-
mance at separating just one pair of classes for a particular binary classification
subproblem.

The separation of the problem into many two-class (binary) problems is sim-
ilar to Binary Decomposition [4]. However in CBD all the problems are solved in
one evolution using a multi-objective fitness function, which is why it is called
“communal”.

3.1 Getting Fitness

In each generation, the following steps are taken to calculate the fitness of a
program:

1 For each pair of classes in a binary classification problem, calculate and store
the separation distance d (equation 1).

2 For each pair of classes in a binary classification problem, sort the programs
in the population based on the separation distance values in a descending
order.

3 Calculate the fitness of each program based on its position in the list of
programs where the program achieves the best performance (position) in all
the binary classification problems.

Figure 3 shows an example of using this method to evaluate the fitness of
four programs in a three class problem.

The main table in the figure lists the separation distances of all programs on
all binary problems. Below the main table, the entries for each binary problem
are sorted from best program to worst. For example, for the binary problem of
separating class one from class two, program D was best at a distance of 2.01, so
it is first in the list. Then each program is assigned a fitness to the position in the
sorted list where it achieves the best performance (occurs earliest, as indicated
by arrows).



Program Seperations for Class Pairs

1vs. 2 1vs. 3 2vs. 3 Best results Fitnesses
_Prog.A | 122 183 | 102  |Awasfirstin(lvs3) | 1
_ Prog.B | 081 023 | 167 |Bwassecondin(2vs3) 2
. Prog.C | 093 069 | 056 |Cwasthirdin(lvs2) | 3
Prog. D 2.01 1.65 2.63 D wasfirstin (1vs2 1
Sorted Lists| DACB Apcs DBAC 7

Arrows indicate best positions

Fig. 3. Evaluating the fitness of four example programs in a three class system.

With this fitness function, each program is encouraged to excel in separating
one pair of classes, although the program is free to do so to any pair it chooses.
Any program is free to separate more than one pair of classes, but only the pair
where the program performs the best is used to calculate the fitness.

3.2 Solving the Multiclass Problem

In order that the multiclass problem is solved, a group of expert programs is
assembled during evolution. An expert program is stored for each of the binary
problems.

In each generation, for each binary problem, the program in the population
that has the best separation is compared to the expert for the binary problem.
If it is found to be better than the expert, it replaces the expert.

If the standardised distribution distance value ds (equation 2) for the (possi-
bly new) expert program falls below (is better than) a parameter solveAt, then
the binary problem is marked as solved. A solved binary problem differs from an
unsolved problem in that programs are no longer encouraged to solve it. Solved
binary problems are not included in the calculation of the best position for each
program (discussed in section 3.1). When all binary problems have been solved,
the problem is considered solved.

Note that the best program at separating classes of a solved binary problem
is still found, for comparison with the current expert at the problem. As such,
experts of solved binary problems can still be replaced and improved upon.

3.3 Combining CBD Expert Programs to Predict Class

To find the accuracy of the system on the test set or validation set, the experts
gained for all the binary problems are combined to predict the class of each
object image in the test set or validation set.

Equation 4 is used to find the probability density at points in the normal

curve. 5
—(rese,o—te,c)
(Rt

e
Popgmmn 4
o= e (4)



where P, ., is the probability density calculated for the expert program e using
the normal distribution for class ¢ and features for object o. res. , is the output
result of evaluating expert program e on object o. ji . and o, . are the mean and
standard deviation, respectively, of the output results of the expert program e
for all training object examples for class c.

Using the function in equation 4, equation 5 shows a probability value of ob-
ject o belonging to class a in the class pair (a,b) (binary classification problem),
and equation 6 shows the same value expressed in a different form.

Pe(a,b),a,o

= Pr(cls = alcls € {a,b 5
Pe(a,b),a,o + Pe(a,b),b,o ( | { }) ( )

Pr(cls =an(cls € {a,b}))
Pr(cls € {a,b})
Pr(cls = a) Pr(cls = a)

- Pr(cls € {a,b}) B Pr(cls = a) + Pr(cls = b) (6)

where the expert for discerning class a from class b is called e(a,b) and Pr(x) is
the probability that the condition x is true.

To obtain the probability of any object in the test set belonging to class
¢ with the expert programs in a multiclass (N-class) problem, we consider the
inverted sum of all binary classification subproblems associated with class ¢ that
the multiclass problem can be decomposed into:

5 1 . ZN: 1
“— Pr(cls = c|cls € {i,c}) Pt Pr(cls = c|cls € {c, j})

B Z Pr(cls =1i) + Pr(cls =¢) n i Pr(cls = ¢) + Pr(cls = j)

Pr(cls =¢) _ Pr(cls = ¢)
j=c+1
_ 1+(N— 2) - Pr(cls =¢) _N_24
Pr(cls = ¢) Pr(cls = ¢)

Note that the sum of the probability of a particular object belonging to each
N
of all the possible classes is equal to one, i.e. Y Pr(cls =1i) = 1.

=1
Accordingly, the probability of an object that the GP system classifies to
class ¢ is Pr(cls = ¢) or p:

1
Pe = c—1 Pr(cls=i)+Pr(cls=c) N Pr(cls=c)+Pr(cls=j)
Zi:l Pr(cls=c) + Zj*c+1 Pr(cls=c) = - (N - 2)
1
= c—1 N 1 (7)

Zz 1 Pr(cls= c\clse{z c}) + Zj:c+1 Pr(cls=c|cls€{c,j}) (N - 2)

Based on equations 7 and 5, we can calculate the probability of an object
being of any class. The class with the highest probability for the object is used
as the class the GP system classified into.



4 Data Sets and Evolutionary Settings

4.1 Image Data Sets

We used four data sets providing object classification problems of increasing
difficulty in the experiments. Example images are shown in figure 4.

Fig. 4. Dataset examples: (a) Shapes, (b) 3-class coins, (c) 5-class coins, and (d) Faces.

The first set of images (figure 4a) was generated to give well defined objects
against a relatively clean background. The pixels of the objects were produced
using a Gaussian generator with different means and variances for each class.
Three types of shape were drawn against the light grey background: black circles,
dark grey squares and light circles. The three-class shape data set was created
by cutting out 720 objects (also called cutouts), from these images.

The second and the third sets of images (figure 4b and 4c) contain scanned
New Zealand coins. The coins were located in different places with different
orientations and appeared in different sides (head and tail). In addition, the
background was quite cluttered. We need to distinguish different coins, with
different sides, from the background. Two data sets were created from these
images, one with three classes and one with five classes. The three-class coin
data set has 576 cutouts that are either 10c heads, 10c tails or background.
The five-class coin data set has 480 cutouts that are either 5c heads, 5c tails,



10c heads, 10c tails or background. The classification problem in the coin data
sets is much harder than that of the shape data set. The problem is very hard
due to the cluttered background and similarity of the classes as well as the low
resolution of images.

The fourth data set consists of 40 images of four human faces (figure 4d)
taken at different times, varying lighting slightly, with different expressions
(open/closed eyes, smiling/non-smiling) and facial details (glasses/no-glasses).
These images were collected from the first four directories of the ORL face
database [12]. All the images were taken against a dark homogeneous back-
ground with limited orientations. The task here is to distinguish those faces into
the four different people.

For the shape and the coin data sets, the objects were equally split into
three separate data sets: one third for the training set used directly for learning
the genetic program classifiers, one third for the validation set for controlling
overfitting, and one third for the test set for measuring the performance of the
learned program classifiers. For the faces data set, due to the small number of
images, the standard ten-fold cross validation technique was applied.

4.2 GP Environment and Settings

In all experiments, programs used the tree-structured representation with all

nodes returning single, floating-point numbers. Reproduction, mutation and

crossover were used as the genetic operators. Initial programs and the subtrees

created in the mutation operator were generated by the half-and-half method.

A tournament selection mechanism was used with a tournament size of three.
The GP parameters used in experiments are shown in table 1.

Table 1. Parameters used for GP training for the three data sets.

Parameter Names|Shapes| coins | faces ||Parameter Names|Shapes|coins|faces|

population-size 500 500 500 ||reproduction-rate| 10% |10% |10%
initial-max-depth | 5 5 5 cross-rate 60% |60% |60%
max-depth 7 7 7 ||mutation-rate 30% |30% [30%
max-generations 40 40 40 ||cross-term 30% |30% [30%
object-size 16x16 |70x70{92x 112||cross-func 70% |70% |70%

In this approach, the GP search was terminated when one of the following
events occurred:

— The number of generations exceeds maz-generations.
— The training problem was considered solved.

4.3 Terminals and Functions

Terminals. Two forms of terminals were used: numeric and feature terminals.
Each numeric terminal returned a single constant value, set initially by randomly
sampling a standard normal distribution.



Each feature terminal returned the value of a particular input feature. It is the
feature terminals that form the inputs of the GP system from the environment.
The features used are simple pixel-statistics derived from the object image. Two
statistics (mean and standard deviation) for each of two regions (whole square
cutout and centre square of half side-length) were used, making four features
altogether.

Functions. Five functions were used, including addition, subtraction, multipli-
cation, protected division and a continuous conditional (soft if) function. Each
of the first four functions took two arguments, and applied simple mathematical
operations. The soft if function returned the value r in equation 8. This allowed
either the second or third argument to control the output, depending on the
value of the first argument.

_ az as
"T 11 em i 14 e 2m

where r is the output of the soft if, and a; is the value of the i’th argument.

(8)

5 Results and Discussion

This section presents a series of results of the new method on the four object
classification data sets. These results are compared with those for the PCM and
PM methods.

Throughout evolution, the accuracy of the system on the validation set was
monitored. The accuracy shown in results (except those for the Face data set)
is the accuracy of the system on the test set, at the point of best validation
set accuracy. This method is employed to avoid overfitting. For the Face data
set, ten-fold cross-validation (TFCV) was used, and the accuracy reported is
the maximum test set accuracy, using TFCV, found during evolution. The “run
time” reported is the total time required for evolution.

For all parameter settings, the GP process was run 50 times with differ-
ent random seeds. The mean results were presented, with standard deviation
included for accuracy results.

5.1 Overall Results

Table 2 shows a comparison of the best classification results obtained by both
the new method (CBD) and the other approaches (PCM and PM) using the
same sets of features, functions and parameters. The solveAt parameter to the
new method was set to 0.01.

On the shape and the first coin data set, all the three GP methods achieved
good results, reflecting the fact that the classification problems are relatively
easy in these two data sets. However, the new method achieved perfect test set
accuracy for all 50 runs of evolution for the shape data set where the other
two existing GP methods did not. On both classification tasks, the new CBD



method achieved the best classification accuracy. On the very hard five-class coin
problem, the new method gained almost ideal performance (99.19% accuracy),
while the PM method achieved 95.92% and PCM only 73.26%. For the face data
set, new method achieved comparable results with the PM method, but greatly
outperformed the PCM method.

The number of generations required to gain maximum validation set accuracy
was very small with the new method. For the shape and three-class coin data
sets, this number was well below one for the new method, indicating that the
problems could be solved in the initial generation at most of the time due to the
good fitness measure in the new CBD method.

The new method normally took a longer time to solve the training problem
and terminate the run than the other methods. However, it often found a peak in
the validation set accuracy in a shorter time than the PM method. It is expected
that the new method would outperform the other methods if only a very limited
time or number of generations was allowed for the run.

Table 2. Comparison between PCM, PM and CBD.

Dataset|Classes|Method |Gens. at best|Time to Best|{Run Time Test Acc. at
Val. Acc. (s)| Val. Acc. (s) (s)|Best Val. Acc. (%)

PCM 3.02 0.41 0.45 99.82 + 0.43

Shapes 3 PM 0.92 0.52 0.53 99.97 + 0.14
CBD 0.04 0.53 22.70 100.00 £ 0.00

PCM 8.74 0.94 1.29 99.44 + 0.88

3 PM 1.18 0.50 0.53 99.91 £ 0.27

Coins CBD 0.06 0.44 25.00 99.97 £+ 0.12
PCM 31.32 3.60 4.72 73.26 £ 7.45

5 PM 28.82 9.85 14.23 95.92 + 2.40

CBD 5.06 2.82 21.69 99.19 £ 0.82

PCM 5.91 0.22 1.75 81.65 £ 13.49

Faces 4 PM 5.63 0.44 2.78 97.75 £ 7.15
CBD 2.12 0.36 5.93 96.45 + 8.73

5.2 Different Problem Solving Criteria in the New Approach

Table 3 shows a comparison of the results on the four data sets using different
values for the solveAt parameter in the new method. The solveAt parameter
indicates the separation measure value at which to consider a binary problem
solved. Five values were examined for solveAt over the four data sets.

Values smaller than 0.01 showed no considerable improvement in accuracy,
but increased run time. Values larger than 0.01 degraded performance slightly,
but did decrease the time per run. From these experiments, a value of 0.01 for
the solve At parameter seems a good starting point.

6 Conclusions

The goal of this paper was to construct a method to decompose a multiclass
classification problem into multiple two-class subproblems, solve all these sub-



Table 3. Comparison between values of the solve At threshold, in CBD.

Dataset|Classes|solve At|Gens. at best|Time to Best|Run Time|Test Acc. at Best
Val. Acc. (s)| Val. Acc. (s) (s) Val. Acc. (%)

0.003 0.04 0.53 28.24 100.00 £ 0.00

0.010 0.04 0.53 22.70 100.00 £ 0.00

Shapes 3| 0.030 0.02 0.52 4.46 100.00 £ 0.00
0.100 0.00 0.51 0.51 99.39 + 4.26

0.300 0.00 0.50 0.51 99.39 + 4.26

0.003 0.06 0.44 24.82 99.97 + 0.12

0.010 0.06 0.44 25.00 99.97 £+ 0.12

3| 0.030 0.06 0.44 23.90 99.97 £ 0.12

0.100 0.04 0.43 4.23 99.97 + 0.12

Coins 0.300 0.00 0.41 0.41 99.96 + 0.14
0.003 5.72 3.16 21.99 99.16 £ 0.87

0.010 5.06 2.82 21.69 99.19 £ 0.82

5/ 0.030 5.22 2.88 21.32 99.17 £ 0.98

0.100 3.78 2.08 21.69 99.29 + 0.91

0.300 0.70 0.65 1.71 99.04 + 1.02

0.003 2.12 0.36 5.93 96.45 £ 8.73

0.010 2.12 0.36 5.93 96.45 £ 8.73

Faces 4/ 0.030 2.07 0.35 5.91 96.40 + 8.78
0.100 1.96 0.33 5.93 96.15 £ 9.02

0.300 1.55 0.28 4.86 95.30 £ 9.77

problems in a single GP run, then combine the subproblems to solve the multi-
class problem. This goal was achieved in the CBD method, which allows many
component binary classification problems to be solved in one run of the GP
process.

A secondary goal was to evaluate the new method on a variety of problems of
varying difficulty, comparing it with two other methods. This goal was achieved
by a series of experiments comparing the new method with a basic GP approach
(PCM) and a previous probabilistic GP method (PM). The new method was
seen to outperform both methods when applied to most data sets.

Like many existing GP approaches for multiclass classification problems, the
new method can solve a problem of any number of classes in a single GP run.
However, unlike most of these approaches, each evolved program produced in
the new method is not required to solve the entire multiclass problem. Instead,
each program only needs to solve a single component binary subproblem to gain
good fitness. The fitness function gives each program a fitness related to its best
performance for a binary subproblem.

A mathematically derived method was found to determine the most probable
class of a test example, based on the results of a number of expert programs for
solving those binary classification subproblems.

The new method requires a parameter, which specifies when a component
problem is considered solved. While it does not appear to have a reliable way to
obtain a good value for this parameter for different problems which usually needs
empirical search, our experiments suggest that 0.01 is a good starting point.



Although developed for multiclass object classification problems, this ap-
proach is expected to be able to be applied to general classification problems.

In future work, we will investigate the new method on other general clas-
sification problems and compare the performance with other long established
methods such as decision trees and neural networks.

References

1. John R. Koza. Genetic programming : on the programming of computers by means
of natural selection. Cambridge, Mass. : MIT Press, London, England, 1992.

2. John R. Koza. Genetic Programming I1I: Automatic Discovery of Reusable Pro-
grams. Cambridge, Mass. : MIT Press, London, England, 1994.

3. Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Ge-
netic Programming: An Introduction on the Automatic Evolution of computer pro-
grams and its Applications. Morgan Kaufmann Publishers, 1998.

4. Thomas Loveard and Victor Ciesielski. Representing classification problems in ge-
netic programming. In Proceedings of the Congress on Evolutionary Computation,
volume 2, pages 1070-1077. 2001. IEEE Press.

5. Andy Song, Vic Ciesielski, and Hugh Williams. Texture classifiers generated by
genetic programming. In David B. Fogel, et al. editors, Proceedings of the 2002
Congress on Evolutionary Computation, pages 243-248. IEEE Press, 2002.

6. Walter Alden Tackett. Genetic programming for feature discovery and image dis-
crimination. In Stephanie Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, pages 303—309. 1993. Morgan Kaufmann.

7. Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple class
object detection. In Norman Foo, editor, Proceedings of the 12th Australian Joint
Conference on Artificial Intelligence, pages 180-192, Sydney, Australia, December
1999. Springer-Verlag. LNAI 1747.

8. Mengjie Zhang and Will Smart. Multiclass object classification using genetic pro-
gramming. In Guenther R. Raidl, et al. editors, Applications of Evolutionary Com-
puting, Volume 3005, LNCS, pages 367-376, 2004. Springer Verlag.

9. Daniel Howard, S. C. Roberts, and R. Brankin. Target detection in SAR imagery
by genetic programming. Advances in Engineering Software, 30:303—311, 1999.

10. Will Smart and Mengjie Zhang. Probability based genetic programming for mul-
ticlass object classification. In Proceedings PRICAI 2004, LNAI Vol. 3157, pages
251-261, Springer-Verlag, 2004.

11. Mengjie Zhang, Victor Ciesielski, and Peter Andreae. @A domain indepen-
dent window-approach to multiclass object detection using genetic programming.
EURASIP Journal on Signal Processing, Special Issue on Genetic and Evolutionary
Computation for Signal Processing and Image Analysis, 2003(8):841-859, 2003.

12. F. Samaria and A. Harter. Parameterisation of a stochastic model for human
face identification. In 2nd IEEE Workshop on Applications of Computer Vi-
sion, Sarasota (Florida), July 1994. ORL database is available at: www.cam-
orl.co.uk/facedatabase.html.

13. Will Smart and Mengjie Zhang. Classification strategies for image classification in
genetic programming. In Donald Bailey, editor, Proceeding of Image and Vision
Computing Conference, pages 402-407, New Zealand, 2003.



