VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

Probability Based Genetic Programming
for Multiclass Object Classification

Will Smart, Mengjie Zhang

Technical Report CS-TR-04/7

April 2004
School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: 464 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@Qmcs.vuw.ac.nz

New Zealand http://www.mcs.vuw.ac.nz/research



VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mes.vuw.ac.nz/research

Probability Based Genetic Programming
for Multiclass Object Classification

Will Smart, Mengjie Zhang

Technical Report CS-TR-~04/7
April 2004

Abstract

This paper describes a probability based genetic programming (GP) approach
to multiclass object classification problems. Instead of using predefined multi-
ple thresholds to form different regions in the program output space for different
classes, this approach uses probabilities of different classes, derived from Gaus-
sian distributions, to construct the fitness function for classification. Two fitness
measures, overlap area and weighted distribution distance, have been developed.
The approach is examined on three multiclass object classification problems of
increasing difficulty and compared with a basic GP approach. The results sug-
gest that the new approach is more effective and more efficient than the basic
GP approach. While the area measure was a bit more effective than the distance
measure in most cases, the distance measure was more efficient to learn good
program classifiers.

Keywords Probability based genetic programming, Gaussian distribution, over-
lap area, weighted distribution distance, multiclass object classification.
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Abstract. This paper describes a probability based genetic program-
ming (GP) approach to multiclass object classification problems. Instead
of using predefined multiple thresholds to form different regions in the
program output space for different classes, this approach uses probabili-
ties of different classes, derived from Gaussian distributions, to construct
the fitness function for classification. Two fitness measures, overlap area
and weighted distribution distance, have been developed. The approach is
examined on three multiclass object classification problems of increasing
difficulty and compared with a basic GP approach. The results suggest
that the new approach is more effective and more efficient than the basic
GP approach. While the area measure was a bit more effective than the
distance measure in most cases, the distance measure was more efficient
to learn good program classifiers.

1 Introduction

Classification tasks arise in a very wide range of applications, such as detecting
faces from video images, recognising words in streams of speech, diagnosing med-
ical conditions from the output of medical tests, and detecting fraudulent credit
card fraud transactions [1,2]. In many cases, people (possibly highly trained
experts) are able to perform the classification task well, but there is either a
shortage of such experts, or the cost of people is too high. Given the amount of
data that needs to be classified, automated classification systems are highly de-
sirable. However, creating automated classification systems that have sufficient
accuracy and reliability turns out to be very difficult.

Genetic programming (GP) is a relatively recent and fast developing ap-
proach to automatic programming [3,4]. In GP, solutions to a problem are rep-
resented as computer programs. Darwinian principles of natural selection and
recombination are used to evolve a population of programs towards an effec-
tive solution to specific problems. The flexibility and expressiveness of computer
program representation, combined with the powerful capabilities of evolutionary
search, makes GP an exciting new method to solve a great variety of problems.

GP research has considered a variety of kinds of classifier programs, using
different program representations, including decision tree classifiers and classifi-
cation rule sets [5]. Recently, a new form of classifier representation — numeric



expression classifiers — has been developed using GP [6-9]. This form has been
successfully applied to real world classification problems such as detecting and
recognising particular classes of objects in images [7,8,10,11], demonstrating
the potential of GP as a general method for classification problems.

The output of a numeric expression GP classifier is a numeric value that is
typically translated into a class label. For the simple binary classification case,
this translation can be based on the sign of the numeric value [7,6,8,12-15];
for multiclass problems, finding the appropriate boundary values to separate the
different classes is more difficult. The emphasis of previous approaches was often
on separating the program output space into regions (referred to as the basic GP
approach), with each region indicating a different class. This includes a primary
static method such as object classification map or static range selection [9, 6,
11], dynamic range selection [6], centred and slotted dynamic class boundary
determination methods [14, 15]. Past work has demonstrated the effectiveness
of these approaches, particularly the dynamic methods, on a number of object
classification problems.

In the static methods, the region boundaries of program output space were
fixed and predefined. In the dynamic methods, class boundaries were automati-
cally found during the evolutionary process. While the static methods often need
a hand crafting of good boundaries, the dynamic methods usually involve a long
time search to automatically find good boundaries. Both approaches usually take
very long training times and often result in unnecessarily complex programs, and
sometimes poor performances[11,15].

1.1 Goals

To avoid the above disadvantages, the goal of this paper is to investigate a
new approach to the use of Gaussian distribution and probability in genetic
programming for multiclass classification problems. Rather than setting up class
region boundaries for classification, this approach uses Gaussian distribution
to model the behaviour of each program based on the training examples for
each class. This approach is examined on three multiclass object classification
problems of increasing difficulty and compared with the basic GP approach [11]
on the same problems. Specifically, we are interested in:

How can the fitness function be constructed using the Gaussian distribution?
— How can the classification accuracy be calculated?

— Can this approach do a good enough job on the given problems?

— Will the new approach outperform the basic GP approach for the same
problems?

1.2 Structure

This paper is organised as follows. Section 2 describes genetic programming
applied to classification. Section 3 describes the new fitness function for clas-
sification. Section 4 describes the object classification problems to be applied.
Section 5 presents the results and section 6 gives the conclusions.



2 GP Applied to Multiclass Classification

2.1 Terminals and Functions

Terminals. In this approach, we used two kinds of terminals: feature terminals
and numeric parameter terminals.

Feature terminals form the inputs from the environment. The feature termi-
nals considered in this approach are the means and variances of certain regions in
object cutout images. Two such regions were used, the entire object cutout im-
age and the central square region. This makes four feature terminals. The values
of the feature terminals would remain unchanged in the evolutionary process,
but different objects usually have different feature values.

Notice that these features might not be sufficient for some difficult object clas-
sification problems. However, they have been found reasonable in many problems
and the selection of good features is not the goal of this paper.

Numeric parameter terminals are floating point numbers randomly gener-
ated using a uniform distribution at the beginning of evolution. Unlike feature
terminal, the values of this kind of terminals are the same for all object images.

Functions. In the function set, the four standard arithmetic and a conditional
operation were used to form the function set:

FuncSet = {+,—,*,/,if} (1)

The +, —, / and * operators are addition, subtraction, multiplication and “pro-
tected” division with two arguments. The if function takes three arguments.
If the first argument is negative, the if function returns its second argument;
otherwise, it returns its third argument.

2.2 Fitness Function

In the basic GP approach, We used classification accuracy on the training set as
the fitness function. To calculate the accuracy, we used a variant version of the
program classification map [11] to perform object classification. This variation
situates class regions sequentially on the floating point number line. The object
image will be classified to the class of the region that the program output with
the object image input falls into. Class region boundaries start at some negative
number, and end at the same positive number. Boundaries between the start-
ing point and the end point are allocated with an identical interval of 1.0. For
example, a five class problem would have the following classification map.

Class 1 Class 2 Class 3 Class 4 Class 5

T

-0 -15-10 -05 0 05 10 15 +00

In the new approach, we applied the Gaussian distribution and used prob-

ability to construct the fitness function and to calculate the final classification
accuracy. The details are presented in section 3.

ProgOut



2.3 Parameters and Termination Criteria

The parameter values used in this approach are shown in table 1. The evolution-
ary process is run for a fixed number (maz-generations) of generations, unless
it finds a program that solves the classification perfectly (100% accuracy), at
which point the evolution is terminated early.

Table 1. Parameters used for GP training for the three datasets.

|Parameter Names|Shapes| coins | faces ||Parameter Names|Shapes|coins|faces|

population-size 300 | 500 500 ||reproduction-rate | 10% |10% [10%
initial-max-depth | 3 3 3 cross-rate 60% |60% |60%
max-depth 5 8 8 mutation-rate 30% |30% [30%
max-generations 51 51 51 ||cross-term 15% |15% |15%
object-size 16x16|70x70]92x 112||cross-func 85% | 85% |85%

3 Constructing Fitness Function Using Gaussian Models

In our new approach, we used Gaussian distribution and probability models to
construct the fitness function of each program and used multiple programs to
calculate the accuracy of a genetic program classifier.

For a set of training data, we assume that the behaviour of a program classi-
fier is modelled using multiple Gaussian distributions, each of which corresponds
to a particular class. The distribution of a class is determined by evaluating the
program on the examples of the class in the training set. This was done by tak-
ing the mean and standard deviation of the program outputs for those training
examples for that class.

For presentation convenience, we first use a two-class problem to describe the
fitness measures, then describe the fitness function for multiclass classification
problems and the calculation of classification accuracy.

3.1 Fitness Measures

Figure 1 shows three example sets of normal curves for a two class problem. If
a program can successfully classify all the training examples (the ideal case),
the two curves will be fairly separated (figure 1 ¢); if the two curves are clearly
overlapped, some examples will be incorrectly classified by the program (figure
1 a, b). Clearly, the smaller the overlap, the better the program classifier. Two
measures of overlap have been used: area and distance.

Class1 Class2 Class1 Class 2 Class1 Class 2
A n
@ (b) ©
Fig. 1. Example normal distributions for a two-class problem.

Area Measure. In figure 1, the overlap area is shown in solid black. Assuming
the intersection point of the two normal curves is m (m was found by a binary
search), the area under the left distribution in the region [m, co) plus the area



under the rightmost distribution in the region (—oo, m) forms the overlap area.
Note that to calculate the areas directly is an NP-complete problem and an
approximation must be made, which should be close enough to use.

At the beginning of evolution, the standard normal distribution P(x) (Eq. 2)
is sampled from its centre (0) to some large number 3 (i.e. 20) at regular intervals
a (i.e. 0.04). The area under the distribution at each point z is calculated using
Eq. 3 and the value is stored for later use to simplify the computation.

_exp(=-)
P(z) = o (2)
Az) = ' aP(ai) (3)

When the area under a normal distribution with mean p and standard deviation
o is to be calculated (during evolution), Eq. 4 is used.

A(p, o, x) :A(x;M) (4)

Accordingly, the approximation of the overlap area in figure 1 (a) will be A,:

Ao =1—A(p1,01,m) — A(ua,02,m) (5)

The overlap area has a possible maximal approximation of 1.0 (where the

distributions have the same mean), and a possible minimum of zero (where the
distributions have different means, but both standard deviations are zero).

Distance Measure. We also used a second measure, “weighted distribution
distance” of the two distributions to evaluate the overlap, as shown in Eq. 6.
d:2X|M1_,U/2| (6)
o1 + o2

Under this measure, the worse case is 0, when p; and ps are the same. In
the ideal case, this distance will be very large (go to 00).

In order to make the range of the distance measure the same as for the
area measure (0 best, 1 worst), we used the following standardised distribution
distance measure d, in this approach.

3.2 Fitness Function

For multiclass classification, there are three or more classes. The fitness function
is determined by considering all the overlaps between every two classes. Assum-

ing the number of classes is n, then there will be C2 = nx(n=1)x...x2x1 overlaps
of distributions. The fitness of a program is calculated based on Eq. 7.
cn
fitness = Z M; (8)

i=1



where M; is a fitness measure of the ith overlap of distributions of two classes,
which can be either the area measure (Eq. 5) or the distance measure (Eq. 7).

3.3 Classification Accuracy

Classification accuracy is calculated by the number of objects correctly classified
by a GP system as a percentage of the total number of objects in a data set.
To measure which class a given pattern (object example) belongs to, we used
multiple best programs rather than the single best program in the population.
Assuming [ best programs in the population are used, the probability Prob. of
a given pattern being of class ¢ can be calculated by Eq. 9.

l
Prob, = HP(/LZ',C, TicsTi) (9)
i=1
where P is the normal probability function (Eq. 10), r; is the output result
of program 7 with the pattern to be classified, p; . and o; . are the mean and
standard deviation of the outputs of program ¢ for class c.
_ _ 2
exp(=5#)

oV 2T

Based on Eq. 9, the probability of the pattern being of each class can be
calculated. The class with the largest probability is used as the class of the
pattern.

P(u,o,z) = (10)

4 Data Sets

We used three data sets providing object classification problems of increasing
difficulty in the experiments. Example images are shown in figure 2.

The first set of images (figure 2a) was generated to give well defined objects
against a relatively clean background. The pixels of the objects were produced
using a Gaussian generator with different means and variances for each class.
Three classes of 960 small objects were cut out from those images to form the
classification data set. The three classes are: black circles, grey squares, and light
circles. For presentation convenience, this dataset is referred to as shapes.

The second set of images (figure 2b) contains scanned 5 cent and 10 cent New
Zealand coins. The coins were located in different places with different orienta-
tions and appeared in different sides (head and tail). In addition, the background
was quite cluttered. We need to distinguish different coins with different sides
from the background. Five classes of 576 object cutouts were created: 5 cent
heads, 5 cent tails, 10 cent heads and 10 cent tails, and the cluttered back-
ground. Compared with the shapes data set, the classification problem in this
data set is much harder. Although these are still regular, man-made objects, the
problem is very hard due to the cluttered background and a low resolution.



Fig. 2. Dataset examples: (a) Shapes, (b) Coins, and (c)Faces.

The third data set consists of 40 human faces (figure 2c) taken at differ-
ent times, varying lighting slightly, with different expressions (open/closed eyes,
smiling/non-smiling) and facial details (glasses/no-glasses). These images were
collected from the first four directories of the ORL face database [16]. All the
images were taken against a dark homogeneous background with limited orien-
tations. The task here is to distinguish those faces into the four different people.

For the shapes and the coins data sets, the objects were equally split into
three separate data sets: one third for the training set used directly for learning
the genetic program classifiers, one third for the validation set for controlling
overfitting, and one third for the test set for measuring the performance of the
learned program classifiers. For the faces data set, due to the small number of
images, ten-fold cross validation was applied.

5 Results and Discussion

This section presents a series of results of the new method on the three object
classification data sets. These results are compared with those for the basic
GP approach. For all experiments, we run 50 times with random seeds and the
average results on the test set were presented.

5.1 Overall Results

Table 2 shows a comparison of the best classification results obtained by both
the new method and the basic GP approach using the same sets of features,
functions and parameters. On all the three data sets, the new approach achieved



very good results and always outperformed the basic approach, in terms of both
classification accuracy and training time. This trend is particularly clear for rel-
atively difficult problems such as in the coins and faces data sets. This indicates
that the new approach is more effective than the basic GP approach and is more
efficient to learn good classifiers for these problems.

Table 2. Best results of the new and the basic GP approaches.

|Dataset|Strategy |Generations|T ime (s)|Test Accuracy (%)|
Basic approach 16.06 4.36 99.65
Shapes |New approach 0.86 0.29 99.96
Basic approach 41.54 6.02 89.23
Coins |New approach 19.42 2.93 98.41
Basic approach 8.32 0.37 85.00
Faces |New approach 4.66 0.24 97.75

5.2 Different Programs and Fitness Measures in the New Approach

We used two fitness measures to evaluate the programs and used multiple pro-
grams to obtain the classification results. This section is to compare the two
fitness measures and to investigate how many programs should be used.

Table 3 shows a comparison of the results on the three data sets using different
numbers of programs and the two fitness measures in the new approach.

Table 3. Results for different numbers of programs used and the two fitness measures.

Dataset|Programs| Generations Time (s) Test Accuracy (%)
Used|Fitness Measure|Fitness Measure| Fitness Measure
Distance| Area Distance| Area Distance| Area

1 0.88| 0.86 0.26] 0.29 97.48 99.96
3 0.38| 0.34 0.19| 0.20 99.84 99.83
5 0.14| 0.12 0.15| 0.16 99.81 99.80
Shapes 10 0.04| 0.04 0.14| 0.15 99.79 99.78
20 0.06| 0.06 0.16| 0.18 99.68 99.68
50 0.30| 0.16 0.30| 0.27 99.46 99.46
1 32.98| 33.78 4.55| 5.37 94.23 97.49
3 18.70| 19.42 247 293 97.81 98.41
5 14.96| 15.76 1.96] 2.39 98.12 98.38
Coins 10 14.62| 14.26 2.06| 2.27 98.46 98.60
20 10.82| 9.06 1.60| 1.57 98.40 98.25
50 14.54| 13.32 2.84| 2.90 98.06 98.29
1 5.13| 4.66 0.20 0.24 96.35 97.75
2.09] 1.73 0.08) 0.10 96.95 95.90
5 1.56] 1.49 0.07) 0.09 96.10 96.10
Faces 10 1.03] 0.88 0.05| 0.06 95.45 94.70
20 0.64| 0.68 0.04| 0.06 93.25 93.25
50 0.25| 0.18 0.03| 0.04 91.20 90.30

As can be seen from table 3, different numbers of programs for classification
resulted in different performances. This is particularly true for difficult object



classification problems. It seems that at certain numbers, the method achieved
a high accuracy and spent a short training time, but the numbers leading to
good results for various data sets appeared to be different. It generally needs an
empirical search to obtain such good numbers for different data. However, if this
can improve the performance, such a search is a small price to pay.

In terms of two fitness measures, the results suggest that the area measure
resulted in better performance in accuracy in most cases, but it also took a
bit longer time to learn the good program classifiers. This is mainly because
the computational complexity of the area measure is greater than the distance
measure. Nevertheless, both measures achieved quite good results, which were
better than the basic approach for the same problems.

6 Conclusions

The main goal of this paper was to construct the fitness function using Gaussian
distributions in genetic programming for multiclass object classification prob-
lems. This goal was achieved by introducing two measures for the overlaps of
distributions between every two classes on the training examples. A second goal
was to investigate whether this new approach was better than a basic GP ap-
proach using the same set of features (terminals) and functions. Both approaches
were examined on three object classification problems of increasing difficulty. The
results suggest that the new approach is better than the basic approach in terms
of both classification accuracy and training time.

Two fitness measures, overlap area and distribution distance, were applied
to constructing the fitness function. Both measures achieved much better re-
sults than the basic approach on the three classification problems of increasing
difficulty. Although the overlap area measure resulted in better performance in
most cases, it also took longer time to evolve good program classifiers due to its
greater complexity of computation than the distance measure.

Unlike most existing GP approaches for classification problems, where only
the best learned/evolved program classifier was applied to the object examples to
measure the accuracy, this approach used multiple top programs for classification
and the class with the largest probability is used as the class of the object pattern.

While this approach does not need to manually define the fixed class bound-
aries, it does need to find a good number of programs used for object classifica-
tion. The results suggest that there does not appear to be a reliable way to find
a good number of programs, which is most likely problem dependent and needs
an empirical search. However, if this can greatly improve the performance, such
a search is a small price to pay.

Although developed for multiclass object classification problems, this ap-
proach is expected to be able to be applied to general classification problems.

For the future work, we will further investigate the number of programs
for object classification, investigate the effectiveness of the new approach on
other data sets, and compare this approach with other learning methods such as
decision trees and neural networks.
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