VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

Continuously Evolving Programs in
Genetic Programming Using Gradient
Descent

Will Smart and Mengjie Zhang

Technical Report CS-TR-04/10

July 2004
School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: 464 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@Qmcs.vuw.ac.nz

New Zealand http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

%
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mes.vuw.ac.nz/research

Continuously Evolving Programs in
Genetic Programming Using Gradient
Descent

Will Smart and Mengjie Zhang

Technical Report CS-TR-04/10
July 2004

Abstract

This paper describes an approach to the use of gradient descent search in
genetic programming for continuously evolving genetic programs for object clas-
sification problems. An inclusion factor is introduced to each node except the
root node in a genetic program and gradient descent search is applied to the
inclusion factors. Three new on-zero operators and two new continuous genetic
operators are developed for evolution. This approach is examined and compared
with a basic GP approach on three object classification problems of varying dif-
ficulty. The results suggest that the new approach can evolve genetic programs
continuously. The new method which uses the standard genetic operators and
gradient descent search applied to the inclusion factors substantially outperforms
the basic GP approach which uses the standard genetic operators but does not
use the gradient descent and inclusion factors. However, the new method with
the continuous operators and the gradient descent on inclusion factors decreases
the performance on all the problems.

Author Information

Will Smart is a postgraduate student in computer science and Mengjie Zhang is an academic
staff member in computer science. Both authors are in the School of Mathematical and
Computing Sciences, Victoria University of Wellington, New Zealand.

1 Introduction

Since the early 1990s, there has been a number of reports on applying genetic programming
(GP) techniques to object recognition problems [1, 3, 6, 10, 11, 12, 13]. Typically, these GP
systems used either high level or low level image features as the terminal set, arithmetic and
conditional operators as the function set, and classification accuracy, error rate or similar
measures as the fitness function. During the evolutionary process, selection, crossover and
mutation operators were applied to the genetic beam search to find good solutions.

While the GP approach has achieved some success in a number of application areas, the
performance of the programs evolved in adjacent generations is often instable. This is mainly
because the GP evolutionary beam search process improves the programs in a discontinuous
way.

Gradient descent is a long term established search/learning technique and commonly used
to train multilayer feed forward neural networks [7]. This algorithm can guarantee to find a
local minima for a particular task. While the local minima is not the best solution, it often
meets the request of that task. A main characteristic of gradient descent search is that the
solutions can be improved gradually and steadily in a continuous way:.

Gradient descent search has been applied to numeric terminals [15] or constants [8] of
genetic programs in GP. In these approaches, gradient descent search is locally applied to
individual programs in a particular generation and the constants in a program are updated
in a continuous manner. However, the programs are still globally updated by genetic beam
search in a discontinuous manner.

1.1 Goals

The goal of this paper is to investigate a continuous approach to the use of gradient descent
search for evolving genetic programs in GP. To apply gradient descent to genetic programs,
a new parameter, the inclusion factor, is introduced to each node so that a partial program
tree can be changed according to the gradient of the inclusion factors. To avoid discontinuous
updating of programs in the evolutionary process, a set of new genetic operators are devel-
oped. This approach will be examined on three object classification problems and compared
with the standard GP approach (referred to as the basic GP approach). Specifically, we are
interested in:

e How the inclusion factor can be introduced to a GP node and how this factor can be
updated using gradient descent.

e How the new genetic operators can be developed so that the program performance can
be improved based only on gradient descent search on the inclusion factors.

e Whether the genetic programs can be evolved and improved continuously.

e Whether the GP approach with the inclusion factor to which gradient descent search
is applied outperforms the basic GP approach.

e Whether the GP approach with both the inclusion factor and the new operators out-
performs the basic GP approach.
1.2 Structure

The remainder of the paper is organised as follows. Section 2 presents a brief overview of the
basic GP approach. Section 3 describes the introduction of the inclusion factor and gradient
descent applied to the inclusion factor. Section 4 describes the new genetic operators. Section

5 describes object classification data sets on which the approach is examined. Section 6
presents the experiment configuration and results. Section 7 draws conclusions and describes
future work directions.

2 GP Applied to Object Classification

In the basic GP approach, we used the tree-structure to represent genetic programs [4]. The
ramped half-and-half method was used for generating programs in the initial population and
for the mutation operator [2]. The proportional selection mechanism and the reproduction
[14], crossover and mutation operators [5] were used in the learning and evolutionary process.

2.1 Primitive Sets

For object classification problems, terminals generally correspond to image features. In this
approach, we used pixel level, domain independent statistical features (referred to as pizel
statistics) as terminals and we expect the GP evolutionary process can automatically select
features that are relevant to a particular domain to construct good genetic programs.

Four pixel statistics are used in this approach: the average intensity of the whole object
cutout image, the variance of intensity of the whole object cutout image, the average intensity
of the central local region, and the variance of intensity of the central local region. Since the
range of these four features are quite different, we linearly normalised these feature values
into the range [-1, 1] based on all object image examples to be classified.

In addition, we also used some constants as terminals. These constants are randomly
generated using a uniform distribution. To be consistent with the feature terminals, we also
set the range of the constants as [-1, 1].

The function set uses two standard arithmetic operators to be consistent with the new
approach (see table 1 in section 3.1): addition and multiplication. They have the usual
meanings of addition and multiplication with two arguments.

2.2 Fitness Function

We used classification accuracy on the training set as the fitness function. The classification
accuracy of a genetic program classifier refers to the number of object images that are correctly
classified by the genetic program classifier as a proportion of the total number of object images
in the training set.

In this approach, we used a variant version of the program classification map [14] to
perform object classification. This variation situates class regions sequentially on the floating
point number line. The object image will be classified to the class of the region that the
program output with the object image input falls into. Class region boundaries start at some
negative number, and end at the same positive number. Boundaries between the starting
point and the end point are allocated with an identical interval of 1.0. For example, a five
class problem would have the classification map shown in figure 1.

Class 1 Class 2 Class 3 Class 4 Class 5

-0 -15-10 -05 0 05 10 15 +00

Figure 1: A variation of the program classification map.

The proposed new approach used the same primitive sets and the fitness function as
the basic GP approach. However, the new approach introduced an inclusion factor into the

program nodes, applied gradient descent search to the inclusion factors, and introduced new
continuous operators. This will be described in section 3 and section 4.

3 Gradient Descent Applied to Program Nodes

In order to make genetic programs improve continuously, gradient-descent search is chosen to
make partial changes of the certain parts of genetic programs during evolution. To do this, we
introduced an inclusion factor to the nodes of the genetic programs. This section describes
the properties of inclusion factors and how gradient descent is applied to the inclusion factors.

3.1 Inclusion Factors

This approach introduced an inclusion factor to each node except the root in a program
tree. The inclusion factor of a node is defined as a floating point variable ranged from 0 to
1 and determines the proportion of the node really included in the program. An inclusion
factor with a value of 1 for a node means that the node will be evaluated as normal in the
standard genetic program, while a value 0 means that the node will not be included at all
when the node is evaluated. We expect that with the inclusion factor, certain parts of the
whole program can be updated in a continuous way.

Due to the introduction of inclusion factor, the functions used in the program need to be
redefined. Table 1 shows the return values of the functions with and without the inclusion
factor. In the table, a,, is the evaluated value of the n’th argument and x,, is the inclusion
factor of the n’th argument’s node.

Table 1: Primitive Functions With and Without Inclusion Factors.

Primitive Function without | Function with

functions inclusion factors | inclusion factors

Addition a1+ as T1a1 + Toas

Multiplication | ajas (1+z1(a; — 1))(1 + z2(ag — 1))

Note that only the multiplication and addition functions are used here. The major con-
sideration is that they are relatively easy to implement and they can meet the requirements
of many relatively uncomplex application problems. While they might not be sufficient for
some difficult problems, this is beyond the scope of this paper. This paper will investigate the
idea first and if the idea works sucessfully, we will investigate more functions in the future.

3.2 Gradient-Descent of Inclusion Factors

This section describes how to apply gradient-descent search to inclusion factors to improve
the performance of a genetic program.

In this approach, gradient-descent is applied to changing the values of the inclusion factors.
It is assumed that a continuous cost surface C' can be found to describe the performance of
a program at a particular classification task for all possible values for the inclusion factors.
To improve the system performance, the gradient descent search is applied to taking steps
“downhill” on the C' from the current inclusion factor.

The gradient of C'is found as the vector of partial derivatives with respect to the parameter
values. This gradient vector points along the surface, in the direction of maximum-slope at
the point used in the derivation. Changing the parameters proportionally to this vector

(negatively, as it points to “uphill”) will move the system down the surface C. If we use x;
to represent the value of the ith inclusion factor and y to represent the output of the genetic
program P, then the distance moved (the change of x;) should therefore be:

oC oC 0y
Az = —or - - 0. 1
! ox; Oy Ox; (1)
where « is a search factor. In the rest of this section, we will address the three parts — %—2,
g—i and a.

3.2.1 Cost Surface

We used the sum-squared error as the cost surface C, as shown in equation 2.

- Z;V:1 (yj - YJ)2 2)
2
where Y; is the desired program output for training example j, y; is the actual calculated
program output for training example j, and N is the number of training examples.
Accordingly, the partial derivative of the cost function with respect to the genetic program
for training example j would be:

oc (il
(9—yj = Tj] =Y — Y] (3)

The corresponding desired output Y is calculated as follows:

numcl;ass +1 ()
where class is the class label of the object and numclass is the total number of classes. For
example, for a five class problem as described in section 1, the desired outputs are —2,—1,0,1
and 2 for object classes 1, 2, 3, 4 and 5, respectively.

Y; = class —

3.2.2 Partial Derivative %

;
For presentation convenience, y; will be written as y with the pattern j omitted.

In order to illustrate the calculation of the derivative of the program output by a change
in the value of an inclusion factor, the program shown in figure 2 is used as an example.

Figure 2: An example program.

If we use O; to represent the output of node i, then the partial derivatives of the genetic
program with respect to the inclusion factor x; for node i will be (we use node 5 as an
example):

8y 801 301 303

dxs dxs 003 Oxs
_ 8(%202 + 1‘303)) 3(1 + $4(O4 - 1))(1 + a;5(O5 — 1))
003 x5

— 2y (1+24(04 = 1))(O5 — 1)

Since x3 and x4 are known and O4 and Os can be obtained during evaluation of the
program, the formula is readily calculated.

In this way the appropriate derivative for any inclusion factor, in a program of any depth,
can be found using the chain rule and some simple derived operators.

3.2.3 Search Factor «

The search factor « in equation 1 was defined to be proportional to the inversed sum of the
square gradients on all inclusion factors along the cost surface, as shown in equation 5.

M
o=) ())
=1 v

where M is the number of inclusion factors in the program, and 7 is a learning rate defined
by the user. This equation was found to be adequate in previous research [15], and is reused
here.

3.2.4 Summary of the Gradient Descent Algorithm

e Evaluate the program, save the outputs of all nodes in the program.

e Calculate the partial derivative of the cost function on the program % using equations
3 and 4.
o 9y

Calculate the partial derivatives of the program on inclusion factors Do using the chain
rule and table 1.

Calculate the search factor « using equation 5.

Calculate the change of each inclusion factor using equation 1.

e Update the inclusion factors using (z;)new = =i + Ax;.

The application of gradient-descent on inclusion factors allows for the entire program
space to be searched in a continuous way.

In order to stabilise the gradient-descent search and to reduce the computation cost, not
all inclusion factors are changed on each iteration. Currently the three greatest and three
least components in the gradient vector are used, so a maximum of six parameters are changed
in an iteration.

4 New Genetic Operations for Continuous Evolution

The use of inclusion factor has an important property. When a node has an inclusion factor
of 0, any changes may be made to the node, or its arguments (if it is a function), while no
change will be noticed in the program output. This allows the structure of the program to be

changed in certain ways, while not changing output discontinuously as would normally occur
in the standard GP evolutionary process.

We developed two kinds of operators for continuous variation of programs using this
property of the inclusion factor: on-zero operators and new genetic operators.

4.1 On-Zero Operators

When an inclusion factor reaches zero (or negative and force to zero) through gradient descent,
one of the following operators is selected and applied:

e Deletion: The parent of the node with an inclusion factor of zero is replaced by its
other child, as shown in figure 3(a). Note that this is only applied to parent nodes with
two arguments, one of which has an inclusion factor of zero and the other of one.

e On-zero-mutation: The node with an inclusion factor of zero is replaced by a ran-
domly generated subtree. This operation is shown in figure 3(b).

e On-zero-crossover: The node with an inclusion factor of zero is replaced by a ran-
domly selected subtree from the population. This operation is shown in figure 3(c).

N -\ selected from
1\ Randomly : 0.2 Population

, Generated ~

@ |) | ©

Figure 3: Examples using the “on-zero” operators.

4.2 Continuous Genetic Operators

The operators included in this section are applied to programs in the same circumstance
as the normal genetic operators are in standard GP. Each generation, some proportion of
the population are produced through reproduction (which is the same as in standard GP),

some proportion through the new continuous mutation, and some proportion through the
new continuous crossover.

The new continuous mutation operator is applied to a randomly selected node in a selected
program. A mutation point is randomly chosen and the selected subtree in the program is
replaced with a randomly selected function. The original sub-tree at the mutation point then
forms the right child (one argument) with an inclusion factor of 1. A randomly generated
subtree with an inclusion factor of zero for the subtree root and one for all nodes deeper in
the subtree forms the left child (the other argument). This process is shown in figure 4(a).

In the new continuous crossover operator, a crossover points is randomly chosen from a
selected program in the tournament. Similarly to the new mutation operator, a crossover
point is randomly chosen and the selected subtree in the program is replaced with a random
function and the original subtree at the crossover point then forms the right child (one
argument) with an inclusion factor of 1. Unlike the new mutation operator, a randomly
selected subtree in the tournament with an inclusion factor of zero for the subtree root forms
the (left) child of the function. This process is shown in figure 4(b). The new crossover
operator is quite different from the standard one in that the new operation only produces
one offspring.

\l/ Mutation \l, Crossover
of F1 node : of F1 node

Randomly selected
Function

Randomly selected
Function

0 2\\ Selected from
4, Population

: /
, ‘
\ o 1! Randomly |
N , Generated © ~

Figure 4: Examples using the new continuous genetic operators.

It is important to note that these new operators are different in nature from the standard
genetic operators in that they do not change the return value of the programs (output)
and the original output values remain. In this way, the programs are updated continuously
according to the gradient descent algorithm described in the last section. However, the
program structures were changed by these operators and we expect that the advantages of
the conventional genetic operators can stay during evolution and the structure can be updated
in a continuous way.

5 Data Sets

We used three data sets providing object classification problems of varying difficulty in the
experiments. Example images are shown in figure 5.

Figure 5: Sample image data sets. (a) Shape; (b) Coin; (c) Face.

5.1 Computer Generated Shape Data Set

The first set of images (figure 5a) was generated to give well defined objects against a relatively
clean background. The pixels of the objects were produced using a Gaussian generator with
different means and variances for each class. Three classes of 960 small objects were cut out
from those images to form the classification data set. The three classes are: black circles,
grey squares, and light circles. For presentation convenience, this dataset is referred to as
shape.

5.2 NZ Coin Data Set

The second set of images (figure 5b) contains scanned 5 cent and 10 cent New Zealand coins.
The coins were located in different places with different orientations and appeared in different
sides (head and tail). In addition, the background was cluttered. We need to distinguish
different coins with different sides from the background. Five classes of 801 object cutouts
were created: 160 5-cent heads, 160 5-cent tails, 160 10-cent heads, 160 10-cent tails, and
the cluttered background (161 cutouts). Compared with the shape data set, the classification
problem in this data set is much harder. Although these are still regular, man-made objects,
the problem is very hard due to the noisy background and the low resolution.

5.3 Human Face Data Set

The third data set consists of 40 human faces (figure 5¢) taken at different times, varying
lighting slightly, with different expressions (open/closed eyes, smiling/non-smiling) and facial
details (glasses/no-glasses). These images were collected from the first four directories of the
ORL face database [9]. All the images were taken against a dark homogeneous background
with limited orientations. The task here is to distinguish those faces into the four different
people.

For the shape and the coin data sets, the objects were equally split into three separate data
sets: one third for the training set used directly for learning the genetic program classifiers,
one third for the validation set for controlling overfitting, and one third for the test set for
measuring the performance of the learned program classifiers. For the faces data set, due to
the small number of images, ten-fold cross validation was applied.

6 Experimental Results and Discussion

6.1 Experiment Configuration

The parameter values used in this approach are shown in table 2. The evolutionary process
is run for a fixed number (maz-generations) of generations, unless it finds a program that
solves the classification perfectly (100% accuracy), at which point the evolution is terminated
early.

Table 2: Parameters used for GP training for the three datasets.

| Parameter Names | Shape | coin | face || Parameter Names | Shape | coin | face |
population-size 300 500 500 reproduction-rate 10% 10% | 10%
initial-max-depth 3 4 4 crossover-rate 60% | 60% | 60%
max-depth 5 7 7 mutation-rate 30% | 30% | 30%
max-generations 100 100 100 cross-term 15% | 15% | 15%
object-size 16x16 | 70x70 | 92x112 || learning rate n 1.0 1.0 1.0

The rest of this section presents a series of results of the new approach on the three object
classification data sets. These results are compared with those for the basic GP approach.
For all experiments, we run 50 times with random seeds and the average results on the test
set were presented.

6.2 Overall Results

For presentation convenience, we used the following terms for the three GP approaches:

e GP-Standard: the basic GP approach with the standard genetic operators. No gra-
dient descent is used in this approach.

e GP-Inclusion: inclusion factors are introduced to the GP sytem and the gradient
descent search is applied to the inclusion factors. The standard genetic operators are
used in the evolutionary process. In this approach, the values of the genetic programs
are updated in a continuous way inside a particular generation, but in a discontinuous
way across the whole evolutionary process.

e GP-Continuous: in this approach, gradient-descent is applied to the inclusion factors
and the new/continuous genetic operators are used in the evolutionary process. The
return values of the genetic programs are updated in entirely continuous way.

Table 3: Comparison of results of the GP approaches on the three data sets.

| Dataset | GP used | Generations | Time (s) | Test Accuracy (%) |
GP-Standard 23.02 0.24 98.87
Shape GP-Inclusion 11.18 0.33 99.49
GP-Continuous 61.64 3.94 97.23
GP-Standard 55.20 0.35 66.24
Coin GP-Inclusion 62.72 1.49 72.08
GP-Continuous 56.58 2.12 59.60
GP-Standard 5.94 0.02 79.90
Face GP-Inclusion 5.74 0.04 81.60
GP-Continuous 6.49 0.06 73.40

Table 3 shows the overall results of the three GP approaches. The first row shows that,
the standard GP system achieved 98.87% accuracy on average on the test set of the shape
data set, the average evolutionary training time was 0.24 seconds and average number of
generations taken in the evolutionary training process was 23.02.

For the shape data set, the three GP approaches achieved 98.87%, 99.49% and 97.23% ac-
curacy, respectively, showing that the GP approach with gradient descent on inclusion factors
and the standard genetic operators performed the best and the new continuous GP approach
with gradient descent on inclusion factors and the new continuous operators performed the
worst. The coin and the face data sets show a similar pattern to the shape data set.

The results suggest that the introduction of inclusion factors to the program nodes and
applying gradient descent search to the inclusion factors in genetic programs improves the
performance over the standard GP approach, which is consistent with our hypothesis. This
is mainly because this new approach takes the advantages of both the genetic beam search
and the gradient descent search. While the genetic beam search is still applied to the genetic
programs across the whole evolutionary process globally, the gradient descent search is applied
to the individual programs locally inside a particular generation.

The results also suggest that the replacement of the standard genetic operators with
the new continuous operators weakens the system performance, which is different from our
original hypothesis. While this new method did evolve programs with better fitness gradually
and continuously, it also lost the advantage of the genetic beam search. In other words, this
method in theory only used gradient descent search and degraded the genetic beam search.
In addition, only gradient descent search in GP did not do as good a job as the genetic beam
search only in GP.

The results also suggest that the two new GP approaches need more time to evolve good
genetic programs. In particular, the new continuous GP approach appeared to take much
longer to train the programs. Due to the introduction of the inclusion factors to the genetic
programs and gradient descent search to the inclusion factors, the new approach GP-inclusion
spent more time on a single generation than the standard GP. Due to the introduction of the
new on-zero and new genetic operators, the new approach GP-continuous took even longer
time to evolve good programs in the training process.

6.3 Results on Mutation Operator

To examine the effect of the new continuous mutation operator, we used a reproduction rate
of 10% and all the rest 90% of programs for mutation. In other words, we did not use any
crossover or other operators in the experiment.

Table 4 shows a comparison of the results on the new continuous mutation operator to

10

Table 4: Effect of the new continuous mutation operator.

Dataset Rates for Generations | Time | Test Accuracy
new mutation (s) (%)
0% 15.36 0.67 99.49
25% 13.82 0.59 99.43
Shape 50% 19.94 0.91 99.32
75% 19.68 0.92 99.16
100% 57.60 4.76 97.39
0% 58.84 1.75 69.79
25% 63.10 2.16 70.41
Coin 50% 63.86 2.22 68.60
75% 67.22 2.59 67.32
100% 61.10 2.67 59.44
0% 6.55 0.06 80.50
25% 7.17 0.06 80.10
Face 50% 7.82 0.07 80.55
75% 10.51 0.10 80.20
100% 4.75 0.04 72.35

the standard mutation operator. It does this by sliding the proportion of mutations done
using the new method from none to all.

As can be seen from table 4, if all mutations (100%) are done using the new continuous
operator, the final performance of the system will be reduced. The reduction of performance
is quite substantial in the relatively difficult tasks.

An increase of the rate on the new mutation operator against the standard mutation
operator generally also results in an increase of training time in the evolutionary process.

These results suggest that the new operator has very little positive effect on performance
in terms of the system results. Although it does introduce new genetic materials and give
support to allow the return values of genetic programs updated in a continuous way, it reduces
the system performance overall.

6.4 Results on Crossover Operator

To examine the effect of the new continuous crossover operator, we used a reproduction rate
of 10% and all the rest 90% of programs for crossover. In other words, we did not use any
mutation or other operators in the experiment.

Table 5 shows a comparison of the results on the crossover operator with the standard
crossover operator. It does this by sliding the proportion of crossovers done using the new
crossover operator from none to all.

Similarly to the new mutation operator, if all crossovers (100%) are done using the new
operator, the final performance of the system will be reduced. The reduction of performance
is quite substantial in the relatively difficult problems.

An increase of the rate on the new crossover operator against the standard crossover
operator generally also results in an increase of training time in the evolutionary process.

For the shape data set, as the proportion of crossovers done using the new operator in-
creases, the performance will be lowered. For the two harder data sets, as long as some
crossovers are done using the standard operator, the performance is very similar. In partic-
ular, in the two harder data sets, the new crossover operators did play certain positive role:
if half of the operators were done with the new crossover operator, the performance could be

11

Table 5: Effect of the new continuous crossover operator.

Dataset Rate for Generations | Time | Test Accuracy
new Crossover (s) (%)
0% 13.00 0.26 99.41
25% 18.20 0.45 99.16
Shape 50% 26.26 0.73 98.70
75% 28.50 0.98 98.67
100% 50.60 2.61 96.89
0% 33.42 0.38 61.38
25% 32.04 0.40 59.15
5¢/10c Coin 50% 45.24 0.75 61.40
75% 40.98 0.73 59.96
100% 44.84 1.14 55.66
0% 5.07 0.02 80.65
25% 5.29 0.02 81.15
Face 50% 7.44 0.04 81.20
75% 7.21 0.04 80.05
100% 3.62 0.02 72.05

improved, but the improvement is very little. This suggests that the new continuous crossover
operator can introduce new genetic materials, but this positive effect is very much offset by
the redundancy introduced by the operator.

6.5 Results for On-Zero Operators

To examine the effect of the on-zero operator, we used the following parameter settings: a
reproduction rate of 10%, a rate of 60% on the new crossover operator, and a rate of 30% on
the new mutation operator.

Table 6 shows a comparison of the on-zero operators, deletion, on-zero-crossover and
on-zero-mutation, on the three data sets.

As can be seen from this table, it seems that these operators has little effect on the accu-
racy of the system overall. The most clear trend is that the deletion operator has a small but
positive effect: the system with the deletion operator generally resulted in better performance
than without. This is mainly because the deletion operator simplified the genetic programs
by removing the redundancy of certain branch of a program after the inclusion factor of that
part reaches zero. While the on-zero-crossover and on-zero-mutation operators introduced
new genetic materials to a program, this effect was largely offset by the redundancy.

7 Conclusions

The goal of this paper was to investigated a continuous approach to the use of gradient
descent search for evolving genetic programs in GP. The goal was achieved by introducing
an inclusion factor to the program nodes, applying gradient descent search to the inclusion
factor, and developing and applying new continuous genetic and on-zero operators to the
programs across the evolutionary process.

During the development of this approach, two new methods, standard GP operators with
the gradient descent search applied to the inclusion factors (GP-inclusion) and the new con-
tinuous GP operators with gradient descent search on the inclusion factor (GP-continuous),
were examined and compared with the standard GP approach on three object classification

12

Table 6: Effect of the on-zero operators.

Dataset On-zero operators Generations | Time | Test Accuracy
Delete | Mutation | Crossover (s) (%)

off on 58.68 | 8.09 96.86

off on off 61.18 | 5.89 96.26

on 58.22 | 7.09 96.97

Shape off off 61.64 | 3.94 97.23
on on 60.16 6.35 96.14

on off 56.78 | 3.67 95.35

on 59.02 | 6.32 97.21

off on 39.18 | 3.28 54.31

off on off 50.12 2.84 55.54

on 41.08 | 3.18 55.98

Coin off off 55.38 | 1.81 58.25
on on 51.12 | 3.06 56.01

on off 56.58 | 2.12 59.60

on 50.72 | 3.06 56.34

off on 4.44 | 0.07 72.30

off on off 3.71 0.04 72.20

on 5.29 | 0.08 72.60

Face off off 5.83 0.05 73.30
on on 6.87 | 0.09 73.00

on off 6.49 | 0.06 73.40

on 5.65 | 0.08 72.80

problems of varying difficulty. The GP-inclusion method, which applied the genetic beam
search globally across the whole evolutionary process and applied the gradient descent search
locally to the individual programs inside a particular generation, greatly outperformed the
the standard GP approach. However, the GP-continuous method decrease the performance
on all data sets because it removed advantages of the genetic beam search from the evolution.
The results also suggest that GP with the gradient descent search only cannot perform as
well as the GP with genetic beam search only.

The majority of the new continuous operators developed here had very little positive
effect due to adding new redundancy to the programs. The deletion operator, on the other
hand, did play a positive role during evolution since it removes the unnecessary redundancy
in the programs when the inclusion factor of a certain part becomes zero.

For future work, we will add more functions such as multiplication, protected devision and
conditional operators to the function set. We will also investigate different ways of applying
gradient descent search on inclusion factors and compare this approach with the approach of
applying gradient descent search to numeric terminals only.

References

[1] David Andre. Automatically defined features: The simultaneous evolution of 2-
dimensional feature detectors and an algorithm for using them. In Kenneth E. Kinnear,
editor, Advances in Genetic Programming, pages 477-494. MIT Press, 1994.

[2] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic
Programming: An Introduction on the Automatic Evolution of computer programs and

13

[12]

[13]

its Applications. San Francisco, Calif. : Morgan Kaufmann Publishers; Heidelburg :
Dpunkt-verlag, 1998. Subject: Genetic programming (Computer science); ISBN: 1-
55860-510-X.

Daniel Howard, Simon C. Roberts, and Richard Brankin. Target detection in SAR
imagery by genetic programming. Advances in Engineering Software, 30:303-311, 1999.

John R. Koza. Genetic programming : on the programming of computers by means of
natural selection. Cambridge, Mass. : MIT Press, London, England, 1992.

John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, Mass. : MIT Press, London, England, 1994.

Thomas Loveard and Victor Ciesielski. Representing classification problems in genetic
programming. In Proceedings of the Congress on Evolutionary Computation, volume 2,
pages 1070-1077, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul,
Korea, 27-30 May 2001. IEEE Press.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP research group,
editors, Parallel distributed Processing, Explorations in the Microstructure of Cognition,
Volume 1: Foundations, chapter 8. The MIT Press, Cambridge, Massachusetts, London,
England, 1986.

Conor Ryan and Maarten Keijzer. An analysis of diversity of constants of genetic pro-
gramming. In E. Costa C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, editor, Proceed-
ings of the Sixth European Conference on Genetic Programming (EuroGP-2003), volume
2610 of LNCS, pages 404-413, Essex, UK, 2003. Springer Verlag.

F. Samaria and A. Harter. Parameterisation of a stochastic model for human face identifi-
cation. In 2nd IEEE Workshop on Applications of Computer Vision, Sarasota (Florida),
July 1994. ORL database is available at: www.cam-orl.co.uk/facedatabase.html.

Andy Song, Vic Ciesielski, and Hugh Williams. Texture classifiers generated by genetic
programming. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Green-
wood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of the 2002
Congress on Evolutionary Computation CEC2002, pages 243-248. IEEE Press, 2002.

Walter Alden Tackett. Genetic programming for feature discovery and image discrimina-
tion. In Stephanie Forrest, editor, Proceedings of the 5th International Conference on Ge-
netic Algorithms, ICGA-93, pages 303-309, University of Illinois at Urbana-Champaign,
17-21 July 1993. Morgan Kaufmann.

Jay F. Winkeler and B. S. Manjunath. Genetic programming for object detection. In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 330-335, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple class object
detection. In Norman Foo, editor, Proceedings of the 12th Australian Joint Conference
on Artificial Intelligence (AI’99), pages 180-192, Sydney, Australia, December 1999.
Springer-Verlag Berlin Heidelberg. Lecture Notes in Artificial Intelligence (LNAI Volume
1747).

14

[14]

Mengjie Zhang, Victor Ciesielski, and Peter Andreae. A domain independent window-
approach to multiclass object detection using genetic programming. FURASIP Journal
on Signal Processing, Special Issue on Genetic and Evolutionary Computation for Signal
Processing and Image Analysis, 2003(8):841-859, 2003.

Mengjie Zhang and Will Smart. Genetic programming with gradient descent search
for multiclass object classification. In Maarten Keijzer, Una-May O’Reilly, Simon M.
Lucas, Ernesto Costa, and Terence Soule, editors, Genetic Programming 7th Furopean
Conference, FuroGP 2004, Proceedings, volume 3003 of LNCS, pages 399-408, Coimbra,
Portugal, 5-7 April 2004. Springer-Verlag.

15

