
Dynanfic Classifiers: Genetic Programnfing and Classifier Systems

Patrick Tufts
Department of Computer Science

Volen Center for Complex Systems
Brandeis University

Waltham, Mass.
emaih zippy@cs.brandeis.edu

Abstract

The Dynamic Classifier System extends the tradi-
tional classifier system by replacing its fixed-width
ternary representation with Lisp expressions. Genetic
programming applied to the classifiers allows the sys-
tem to discover building blocks in a fle~ble, fitness
directed manner.
In this paper, I describe the prior art of problem de-
composition using genetic programming and classifier
systems. I then show how the proposed system builds
oil work in these two areas, extending them in a way
that provides for flexible representation and fitness di-
rected discovery of useful building blocks.

Introduction
Learning systems that engage in sequential activity
face the problem of crediting those steps that lead to a
reward. When the reward is the result of many steps
in a sequence, the problem becomes: what is the most
efficient and reliable way to credit those steps?

In order to form solutions to problems where the
payoff comes after a long sequence of actions, it is
necessary to identify the steps that lead to reward.
Classifier systems (Holland et al., 1987; Wilson, 1994b)
do this using the bucket brigade mechanism (Holland
et al., 1987). The bucket brigade works as follows.
Each time step, the currently active rules (the action
set) pass a fraction of their rewards to the rules that
were active in the preceding time step. If a reward is
received in a given time step, those rules that matched
the input and advocated the action that the system
took share the reward. Given a chain of rules that lead
to a reward, each iteration through the chain passes
some reward one step back. If the chain is n steps
long, then it will take n iterations through the chain
before the first classifier receives any reward.

The bucket brigade is closely related to temporal-
difference (TD) methods (Sutton, 1988), and shares
advantages with them over conventional prediction-
learning schelnes. Like TD learning methods, the

bucket brigade learns incrementally. This means that
it can perform prediction-learning tasks using less
memory and less peak computation than systems that
store all cases and then learn over the entire set at once
(Sutton, 1988).

The bucket brigade has its shortcomings. For exam-
ple, it favors short sequences of rules over long ones.
A classifier system that uses the bucket brigade is thus
unlikely to discover solutions that require more than
four or five steps (Wilson & Goldberg, 1989).

I address this problem by developing a scheme for
rule clustering (Wilson ~ Goldberg, 1989; Shu & Scha-
effer, 1991; Wilson, 1987b; Wilson, 1994b) based on
genetic programming (Koza, 1992). I call this hybrid,
first proposed by Wilson (Wilson, 1994a), the Dynamic
Classifier System (DCS), and show how clustering,
it emerges in DCS, may allow for longer chains and
thus the solution of more complex tasks (Wilson
Goldberg, 1989; Wilson, 1994b).

Classifier Systems
A classifier system is a learning mechanism in which
a collection of initial rules (possibly random) are up-
dated by a genetic algorithm according to a fitness
scheme. Figure 1 lists the basic elements as proposed
by Holland (Holland et al., 1987).

A classifier is a condition/action pair with an asso-
ciated fitness. All classifiers that match the current
inputs form a match set. The system selects its action
from one or more of these classifiers. Learning in a
classifier system occurs through reinforcement, recom-
bination, and reproduction of individual classifiers.

Problem
This section addresses the central problem for both ge-
netic programming and classifier systems--the recog-
nition of steps that solve a task. After showing how
this problem affects learning systems from these two
fields, I describe how the Dynamic Classifier System,
which uses genetic programming within the framework

114

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

¯ finite population of classifiers

¯ set of inputs

¯ set of actions

¯ fitness/reward function

¯ discovery functions: crossover and mutation

¯ classifier reinforcement via the bucket brigade

¯ message list

Figure 1: Elements of a Basic Classifier System.

of classifier systems, can be powerful enough to effi-
ciently recognize those steps that lead to reward.

Building blocks and Genetic Programming

In the genetic programming paradigm, programs are
evolved in a manner analogous to the genetic algo-
rithm. Where tile genetic algorithm uses a fixed-length
linear representation, genetic programming uses one
that is hierarchical and extensible (Koza, 1992).

One problem with genetic progrannning is: how can
useful subtrees in a population be identified and pro-
tected from crossover? Crossover acts to swap two
randomly selected subtrees from two members of the
population. If the swap point occurs within a good
subsolution, the resulting program is likely to be less
fit than its parents (Tufts & Juill4, 1994).

Several methods have been proposed to identify use-
ful subtrees and protect them from crossover.

Automatically Defined Functions Automatically
Defined Functions (ADFs), proposed by Koza (Koza,
1994), introduce a constrained syntax into genetic pro-
gramming. The ADF template constrains members of
the population to have a result-producing branch and
a function definition branch. The difference between
genetic programming without and with ADFs is as fol-
lows:

¯ Without ADFs, each member of the population pro-
duces a result that is then evaluated.

¯ With ADFs, each member produces a result that is
evaluated, and also defines one or more functions.

The problem is that the experimenter must decide
how much regularity to impose on the system in two
ways:

1. the number of ADFs a program can create

2. the set of terminals and functions associated with
each ADF

These two settings determine how tightly the learn-
ing system is constrained to a particular form of so-
lution. As an example, in an experiment where the
system was to learn a four-input multiplexor, Kinnear
constrained each solution to have three ADFs, each
with a different function and terminal set (Kinnear,
1994).

The approach proposed here Mlows the system to
create modules as necessary to form reliable chains.
ADF-style grouping of terminals and functions is ex-
pected to occur as part of the chaining process.

Module Acquisition Module Acquisition (MA) is
system for genetic programming in which random sub-
trees in a population of programs are selected, encapsu-
lated, and placed in a global module library (Angeline
& Pollack, 1993; Angeline, 1994; Kinnear, 1994). The
encapsulation process replaces a subtree in a program
with a function name, and adds the named function
and definition to the library.

During encapsulation, the tree may be trimmed to
an arbitrary depth, creating a parameterized module.
The nodes below the trim point become the arguments
to the newly defined function.

Modules in the library do not evolve. They are kept
in the library as long as they are used by some mem-
ber of the population. The initial encapsulation (Koza,
1992, pp. 110-112) results in a single reference to
the encapsulated module: the reference in the func-
tion from which the subtree was taken. If the module
provides a benefit to new programs when brought in
through the crossover operator, then the number of
references to it in the population will increase.

Module acquisition may be inferior to ADFs for one
learning problem--even four-parity (Kinnear, 1994).
Because module acquisition encapsulates random sub-
trees in the population (that is, there is no fitness-
based selection), it may be less likely to discover useful
subcomponents.

The Dynamic Classifier System is potentially more
efficient at discovering modules because it can identify
the building blocks of those modules through chaining.
Measuring the utility of pieces and creating larger ones
from them may be a better approach than forming en-
tire solutions and then randomly decomposing them
into potential building blocks.

Chain formation in Classifier Systems

The bucket brigade is closely related to Q-learning
(Watkins, 1989) and is in the family of temporal-
difference methods (Sutton, 1984; Sutton, 1988). One

115

of the important aspects that the bucket brigade shares
with these methods is that it is memory efficient. The
bucket brigade operates locally, reinforcing connections
between current rules and their temporally immediate
predecessors. It does this by keeping track of all clas-
sifiers active during the current and the previous time
steps. Classifiers that are in the current action set pass
a fraction of their strengths back to the classifiers that
were in the action set of the previous time step. When
an action results in a reward, the current action set is
reinforced. At every time step, the current action set
is taxed. This tax is given to the classifiers from the
previous time step via the bucket brigade. This trans-
lates into a wave of diminishing reward that passes
back along the chain of classifiers. For a more detailed
description of the reinforcement phase, see (Wilson,
1994b).

Other reinforcement schemes used in learning sys-
terns require a great deal of information about rule ac-
tivation. The reinforcement mechanisms in LEX and
ACT*, for example, keep track of all activated rules
preceding a reward (Wilson, 1987b). Keeping track
all activated rules may not be feasible when a learn-
ing system is operating in a complex, unpredictable
domain (autonomous agents, for example).

Maintaining long chains in a classifier system is
important for problems that require a large num-
ber of steps b’efore receiving a payoff. Some exam-
ples of domains where a large number of steps must
be performed before payoff are: food foraging (Wil-
son, 1987a), chess (Samuel, 1981), and backgammon
(Tesauro, 1992). There are two weaknesses of long
chains: they are hard to maintain (the reinforcement
problem), and they are hard to generate in the first
place (Wilson & Goldberg, 1989). Furthermore, the ge-
netic component of the classifier system and the bucket
brigade may interact in unpredictable ways, leading
to the destabilization of correct solutions (Compiani
et al., 1991).

Prior art dealing with long chains

In this section I describe research into using various
rule-clustering schemes in classifier systems.

Hierarchical Credit Allocation

Hierarchical Credit Allocation (HCA), proposed
Wilson (Wilson, 1987b), is a scheme where classifiers
post and match messages that occur at different levels.
By making the message system into a hierarchy, Wil-
son brings in a way for higher level classifiers to invoke
lower level ones.

There is no notion of a genetic operator working
on hierarchies of classifiers. The hierarchy is only ex-

¯ useful subtree identification

¯ efficient agglomeration of subtrees into fit modules

¯ caching of evaluated results of frequently used sub-
trees

¯ cooperation between members of population

Figure 2: Potential Benefits for GP

ploited in activation and reinforcement. The classifiers
fall into hierarchies depending on what messages they
respond to. There is no operator that can in general
take a sub-hierarchy and insert it into another hierar-
chy.

ttCA is additionally constrained to the same fixed-
length representation used by other classifier systems.
The system proposed here allows the representation to
change dynamically, adapting to the particular prob-
lem. In this respect, the proposed system is similar to
the one proposed in (Wilson, 1994b).

Hierarchically Structured Classifier
System

In a Hierarchically Structured Classifier System
(HCS), described in (Shu & Schaeffer, 1991), classifiers
are grouped into clusters through a relationship opera-
tor. Crossover can occur between individuals in a clus-
ter and also between two clusters. Crossover between
clusters is given a higher probability than crossover
within a cluster.

Individuals are fixed-length representations, and the
initial grouping of classifiers is done randomly. The
fitness of a classifier is directly proportional to the sum
of the fitnesses of classifiers within its cluster.

There is no mutation in HCS. If there are no
schemata in the initial random population to cover the
solution space, there is no way for them to arise.

Additionally, HCS assumes that clustering is benefi-
cial to solving a problem. If applied to tasks in which
clustering is of no benefit (the Boolean Multiplexor, for
instance (Goldberg, 1989, p.293)), HCS would spend
much time on unnecessary operations: calculating the
fitness of clusters and performing crossover between
clusters.

Dynamic Classifiers
The Dynamic Classifier System extends traditional
classifier systems and provides potential benefits for
genetic programming (Figure 2).

The idea is that classifier systems are good at identi-
fying short chains of rules, while genetic programming

116

1. initialize population with Lisp classifiers.

2. set sense vector to current inputs

3. put classifiers that match sense vector into match set
(Section).

4. select action based on classifiers ill match set

5. apply reward (if any) to those classifiers ill match
set that advocated the selected action

6. pass reward back using bucket brigade

7. apply genetic programming to expressions in the cur-
rent match set

8. jump to step 2

Figure 3: DCS Execution Loop

suffers from not having a mechanisna to give credit to
useful subtrees.

At the same time, genetic programming is good at
recognizing the fitness of trees of arbitrarily large size,
while classifier systems using the bucket brigade algo-
rithin have trouble with the analogous task of recog-
nizing the fitness of rule chains of arbitrary length.

Implementation of Dynamic Classifiers

DCS is modeled after ZCS (Wilson, 1994a), which
turn decends from the standard classifier system as
proposed by Holland. DCS differs from predecessors
in that it uses a tree representation for the condition
side of the classifiers. Each classifier has a single action
associated with it. There are other ways to hybridize
genetic programming and classifier systems--multiple
actions per rule, for instance--but this paper will focus
on the model closest to Holland’s.

The genetic operators of crossover and mutation are
the same as those from genetic programming. These
operators are applied to the condition side of the clas-
sifters, producing more complex match rules over time.

The execution loop of the system is shown in Fig-
ure 3. Note that this is essentially the same as that of
ZCS (Wilson, 1994b). The only changes are in the rep-
resentation of the classifier conditions and the genetic
operators that act on them.

Some sample DCS classifiers are shown in Figure 4.
These classifiers are from an application of DCS to the
Animat problem (Wilson, 1987a; Wilson, 1991). Clus-
tering arises from the interaction between crossover
on S-expressions and reinforcement from the bucket
brigade.

(if (not nw-v2) (go-he))
(if (and s-v2 e-vl) (go-sw))
(if (or se-vl nw-vl) (go-e))

(if (or (or (or
(not (not ne-vl)))

nw-v2) nw-v2)
(go-s~))

Figure 4: Some DCS classifiers for the Animat problem

Theoretical improvements of

hierarchical clustering

Dynamic Classifiers are a form of hierarchical rule clus-
tering. As such, they alter the properties of reinforce-
ment within classifier systems by grouping rules to-
gether into single units, clusters. A cluster behaves as
a single rule for the purposes of reinforcement.

The Bucket Brigade

It takes O(n) time to form a chain of length n (Wilson,
1987b). A chain here means a sequence of classifiers
in which a. reward passes from one end to the other.
The length of the chain is the number of classifiers it
contains, and the degree of coupling is given by the
following equation.

Let C1 ̄ .. C~ be the classifiers in a chain, and S(Ci)
be the strength of a given classifier i. Furthermore, let
M be the maximum observed strength of all classifiers
in a population (not just those in the chain) at a given
time step.

Then the theoretical degree of coupling for a given
chain is:

s(c.) - s(c
M (1)

The imbalan.ce of a chain is the difference in strengths
of the first and last classifiers in ~ chain.

The time to bring the first step in an n step chain to
within 90% of the last step as follows (the derivation
given below is based on Wilson’s (Wilson, 1987b)).

Let a bucket brigade sequence of length n be rep-
resented by & list of n elements, each initialized to a
strength of zero. We represent one repetition of the
whole sequence by having each element i pass & frac-
tion of its strength to the previous element in the chain:

Si(t + 1) = Si(t) cSi(t) + cSi+l(t) (2)

where the strength of the last element n, which receives
a payoff R from the environment, is given by

S~(t + 1) = S.(t) - cS.(t) (3)

117

Bucket Brigade with Clustering

If clustering occurs between two classifiers after 7" rein-
forcements, then the time to reinforce a chain of length
n becomes

t = r+ (n- 1) (4)

That is, it takes r steps for Cn and C,,-I to merge into
a single node. The remaining nodes, C,-k (k = 2... 9)
have been reinforced r- k times, respectively. Each
time step after t = r, an additional classifier will cluster
with the ones that preceded it.

Going back to the equation from (Wilson, 1987b),
will now take r+(n-1) steps for the classifiers to form
a single unit--a cluster, here, as opposed to a chain.

Since 7"+ (10- 1) < 150 for r _< 141, whenever
r < 141 a sequence of 10 classifiers will cluster faster
than the bucket brigade can form a chain.

By introducing clustering, it is possible for a chain
of classifiers to become highly coupled and balanced (as
defined earlier).

Summary

In this paper, I described the difficulty of problem de-
composition using classifier and genetic programming
systems. I then introduced the Dynamic Classifier
System (DCS, first proposed by Wilson in (Wilson,
1994a)). I showed how DCS deals with task decom-
position by building on prior work, sketched its imple-
mentation, and surveyed its potential advantages.

References

Angeline, Peter J. (1994). Genetic programming and
emergent intelligence. In Kinnear, Jr., Kenneth E.
(Ed.), Advances in Genetic Programming, chapter 4,
pp. 75-97. MIT Press.

Angeline, Peter J. & Pollack, Jordan (1993). Evolu-
tionary module acquisition. In The Second Annual
Conference on Evolutionary Programming, La Jolla,
California.

Compiani, M., Montanari, D., & Serra, R. (1991).
Learning and bucket brigade dynamics in classifier
systems. In Forrest, Stephanie (Ed.), Emergent Com-
putation (Special Issue of Physica D), pp. 202-212.
MIT/North-Holland.

Goldberg, David E. (1989). Genetic Algorithms in
Search, Optimization and Machine Learning. Addison
Wesley.

Holland, John H., tIolyoak, Keith J., Nisbett,
Richard E., & Thagard, Paul I~. (1987). Induction:
Processes of inference, learning, and discovery. MIT
Press.

Kinnear, Jr., Kenneth E. (1994). Alternatives in au-
tomatic function definition: A eomparison of per-
formanee. In Kinnear, Jr., Kenneth E. (Ed.), Ad-
vances in Genetic Programming, chapter 6, pp. 120-
141. MIT Press.

Koza, John 1~. (1992). Genetic Programming: on the
programming of computers by means of natural selec-
tion. MIT Press.

Koza, John R. (1994). Scalable learning in genetic
progrmnming using automatic function definition. In
Kinnear, Jr., Kenneth E. (Ed.), Advances in Genetic
Programming, chapter 5, pp. 99-117. MIT Press.

Samuel, A. L. (1981). Some studies in machine learn-
ing using the game of checkers. In Feigenbaum, Ed-
ward A. & Feldman, Julian (Eds.), Computers and
Thought, pp. 71-105. McGraw-Hill. Reprint of the
1963 edition.

Shu, Lingyan & Schaeffer, Johnathan (1991). HCS:
Adding hierarchies to classifier systems. In Belew,
Richard K. & Booker, Lashon B. (Eds.), Proceedings
of the Fourth International Conference on Genetic
Algorithms, pp. 339-345, San Mateo, CA. Morgan
Kauffmann.

Sutton, Richard. S. (1984). Temporal Credit Assign-
ment in Reinforcement Learning. PhD thesis, UMass
Amherst.

Sutton, Richard. S. (1988). Learning to predict by the
methods of temporal differences. Machine Learning,
3:9-44.

Tesauro, Gerald (1992). Practical issues in temporal
difference learning. Machine Learning, 8:257-277.

Tufts, Patrick & Juilld, Hugues (1994). Evolving
non-deterministic algorithms for efficient sorting net-
works. Submitted.

Watkins, Christopher John Cornish IIellaby (1989).
Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge University.

Wilson, Stewart W. (1987a). Classifier systems and
the animat problem. Machine Learning, 2(3):199-
228.

Wilson, Stewart W. (1987b). Hierarchical credit al-
location in a classifier system. In Davis, Lawrence
(Ed.), Genetic Algorithms and Simulated Annealing,
Research Notes in Artificial Intelligence, chapter 8,
pp. 104-115. Morgan Kauffmann, Los Altos, CA.

Wilson, Stewart W. (1991). The animat path to AI.
In Meyer, Jean-Arcady & Wilson, Stewart W. (Eds.),
From Animals to Animats, pp. 15-21. MIT Press.

118

Wilson, Stewart W. (1994a). Classifier fitness based
on accuracy. Technical report, The Rowland Institute
for Science. http://netq.rowland.org/art0.html.

Wilson, Stewart W. (1994b). ZCS: A zeroth level
classifier system. Evolutionary Computation, 2(1):1-
18.

Wilson, Stewart W. & Goldberg, David E. (1989).
A critical review of classifier systems. In Schaffer,
J. David (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, San Mateo, CA.
Morgan Kauffmann.

119

