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. Abstract. This paper introduces genetic algorithms for inducing high-level knowledge
from available domain data, succeeding to obtain generalized solutions for a short-stage
multi-channel queuing model. The domain of application, refers to the transportation
problem of transit storage and re-load in seaports. Specifically, when a ship approaches
the port, can be served by more than one service channel, in other words the seaport
represents a queuing system. The seaport system forwards ships and lorries into the port,
moves vehicles and cranes between two positions i.e. warehouses and berths, and finally
loads and unloads cargoes from ships and lorries. Between the two load/unload processes
taking piace in both, ships and lorries, the transit storage process is embedded, thus
forming in fact a three stage multi-channel queuing system. The standard process of
working with such a queuing problem Supposes Poisson distribution in all the service
stages, definition of the service and waiting costs and the construction of an objective
function for finding the best-cost solution. The solution produced above is generalized by
applying a genetic algorithm approach for finding the best seaport configuration (i.e.
optimal number of cranes, warehouses and lorries needed) among a possible set of them,
which will offer the minimum seaport operating cost. The paper demonstrates that, when
a set of possible configurations is effectively coded into a genetic population, the best
solution might be achieved in a reasonably short time and well approximated.

Keyweords: queueing systems, genetic algorithms, computational intelligence, seaport
operating cost optimization, transportation problems.
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1. INTRODUCTION

International trends focus our attention on international trade more than ever before.
Marine transportation systems play a central role in the trade scene, and various complex
problems of port planning and port operations management are marked out as major
issues. The transfer of goods by both, sea and land transportation into a port, is usually
represented by a chain of links. The pattern of arrivals and service times of ships, often
seems to follow well-known probability distributions. This justifies the application of
queuing theory to problems of port operations and capacity investments (Evans, 1986)
with serious positive impact to optimization of port economics and managerial decision
making problems (Janson and Shneerson, 1982), (Chaudhry and Templeton, 1983). The
conventional queuing theory based approach (Saaty, 1961), (Cox and Smith, 1961),
(Takacs, 1962), (Prablu, 1965), (Cohen, 1969), (Conolly, 1975), (Kleintock, 1975),
(Gross and Harris, 1976), requires definition of some more or less standard parameters,
such as arrival pattern of customers, service times, capacity of the system, etc. When a
ship approaches the port, the cargo must be served by more than one “service facilities™,
i.e. the seaport is equivalent to a short-stage queuing system. The seaport system includes
‘the following basic activities:

1. Forwarding ships and land transport vehicles into the port.
2. Moving vehicles and cranes between two positions, i.e. warehouses and berths.
3. Loading /unloading cargo from ships and land transport vehicles.

Between the two loading /unloading stages taking place in both, ships and land transport
vehicles, the transit storage process is embedded, thus forming in fact a three-stage multi-
channel queuing system. : :
Furthermore, a combined transport problem is possible to occur, extending our system
under consideration, into a short-stage multi-channel queuing model. Within this paper,
the standard process of working with the queuing problem described above, supposes a
Poisson distribution in all the service stages, followed by the definition of the service and
waiting costs. An objective function is then formed having as decision variables the
number of cranes, warehouses and lorries needed for finding the best-cost solution. Ar
obvious weakness of the overall approach — addressed but not resolved within this paper -
lies into the accurate definition of the waiting costs for different kinds of ships and
cargoes.

The overall queuing system approach described above is precise and reliable but is
limited from the obvious complexity involved in calculations as stages and service points
increase. In recent years, a large variety of methods has appeared, competitive to standard
optimization techniques and operations research. Most of these methods are heavily
computer-based, data and not model driven (Cherkassky and Mulier, 1998), and contain
search methods based in heuristics or innovative algorithmic schemes (Mars, et. al,
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1996). They are usually characterized under the term of “computational intelligence”
applications (Zimmermann, et. al, 2001), (Chen, 2000), (Nilsson, 1998) and they are
particularly efficient in all domains of application containing high degree of uncertainty,
complexity, vagueness, or lack of precise and complete data. Amongst the whole family
of methods, machine learning (Witten and Frank, 2000), (Pyle 1999), genetic algorithms
(Man et. al, 1999), (Chambers, 1999), as well as, neural networks, soft computing and
fuzzy logic (Konar, 1999) are found in literature to be the most famous and widely. It
should be claimed that the set of computational intelligence tools and techniques
described in detailed within the recent literature, complements the variety of standard
quantitative methods for management contained in the operations research field
(Winston, 1997), (Anderson, et. al, 1999). Note here that computational intelligence is
not exactly competitive to OR techniques, in the sense that when a problem can be
approached through OR always offers a better quality solution. Yet, computational
intelligence should remarkably contribute complementary to OR methods, by reducing
processing times. It also offers the ability for generalization from available data, and the
“intelligence” contained in algorithms and computer programs for efficient, fast and
reliable search of a very large solution space, usually intractable by standard OR
approaches. The increase of the number of research papers focusing on new domains of
application, such as time series forecasting, chaotic data modeling and analysis and
quahtatlve data analysis proves that fact. A strong potential of computational intelligence
is observed in complex real-world domains such as stock exchange forecasting
(Tsakonas, et. al, 2000), fault diagnosis in complex dynamic systems, medical imaging
and signal processing, (Zimmermann, et. al, 2001), etc.

Within this paper the authors propose the utilization of computational intelligence and
operations research, in order to fast and efﬁc1ently produce a generalized solution for the
seaport queuing system described in the previous paragraph. This is done by generalizing
the solution produced from the queuing theory based appioach, by applying a genetic
algorithm approach for finding the best seaport configuration (i.e. optimal number of
cranes, warehouses and lorries needed) among a possible set of them, which will offer the
minimum seaport operating cost. Although -according to queuing theory- the cost
function is well defined within the paper, a mathematical solution of the problem would
likely drive the result into real values, a case that requires further painful computational
effort. Therefore, a one step and easy to implement approach -such as a genetic algorithm
technique- seems more desirable in real-world cases which are constituted of many
parameters and consequently a large solution space. The paper demonstrates that, when a
set of possible configurations is effectively coded into a genetic population, the best
solution might be achieved in a reasonably short time and well approximated.

The rest of the paper is organized as follows:

Section 2 analyzes the operating characteristics of the seaport queuing system. Section 3
presents the mathematical formulation of the model related to the queuing system. In
Section 4 the genetic algorithms based approach is described. Results are extensively
presented and discussed in Section 5. The paper concludes in Section 6, where further
research directions are addressed.
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2. THE OPERATING CHARACTERISTICS OF THE SYSTEM

The queuing system described above is based on two assumptions, which are common to
most applications of queuing theory to port operations:

s . The pattern of arrivals at all three stages of the system follows a Poisson probability
distribution, with the same mean arrival rate X for all stages (“equivalence property” of
multi-stage queuing systems).

o The service time at all three stages of the system follows an exponential probability
distribution. Let 4, ,i=123 be the mean service rate for each channel, at stage

i=1,2,3.

We use the following notation:
N, = the number of service stations at stage i=1,2,3.

e A service station in stage 1 is a crane (or a berth)
® A service station in stage 2 consists of a part of the total storage area sufficient to
hold a representative shipload.
~© A service station in stage 3 is a land transport vehicle.

¢, = the occupancy rate of stage i=1,2,3.

We have: ¢, =—i~—, i=1,2,3.
N4
We also suppose that all the three stages of the queuing system are in statistical

<1,i=1,2,3.

equilibrium. That means: ¢, =
‘ i My
The probability of no units in the stage i= 1,23, is:
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3. THE MODEL

The problem is to determine the number of the required service stations of the three
stages defined above. This case in which service can be supplied to an arriving customer
(cargo), only if all three succeeding service stations are unoccupied (free), is not covered ‘
by the existing models in standard queuing theory. The next step is therefore to develop a
model for the three-stage case, in order to derive a formula to estimate the optimum
number of service stations in each stage. -~ ' :

The objective is to minimize the sum of expected total service cost, E(TSC) (that depends
on the number of service stations) and the expected total waiting cost, E(TWC) (that
depends on the number of customers (cargoes) in the system).

min E(TC)= min{E(TSC*E(TWC) (1)

If C, is the service cost per time period for each service station at stage i=1,2,3 then the
expected total service cost is: '

E(TSC) = N,.C, + N,.C, + N, Cs

Let g, (n),i = 1,2;3 be the function of waiting cost for one cargo per day and let n be the
number of cargoes in each stage of the system. If we assume that g, ,i =123, represent
linear functions, we have:

g,(n)=0,if (0sn<N,)

=C,, (n-N,)if(n>Ny)
g,(n)=0,if @<n<N,)
EC“,Z.(n—Nz),if(n>N2)
g:(1)=0,if 0<n<N;)
' =C,3(n—N;),if (3> N3)

. when C,,,C,2,C,s are the expected waiting costs per time period for each unit, at stages

1,2,3. An obvious weakness of the approach lies into the accurate definition of the
waiting costs for different kinds of ships and cargoes.
The expected total waiting cost is:

 EQWC) = E(g,(n))+ Elg () + Eles ()
.=§gl(n)pnl +§g2(n)‘pn2 +§g3(n)p,!3 =§§ gi(n)'pm'
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=ZCwi' i(n—Ni)'pm‘ =
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The objective function (1) is thus:

3 . 3 N, 3 NN, ¢.N,+1
min E(TC)=min {) C, N, +Z[CM L - Zn.pm] 2 C—py Ty
) i=1 i=1 n=0 i=1 (N i 1)! 1- ¢;

Given: ’?"—Hul nuzuus ’CI’C2>C3 ’Cwl =Cw2’Cw3
Decision variables: N,, N. N

4. GENETIC ALGORITHM

In order to find the “low cost” configuration, a standard genetic algorithm has been
implemented. Genetic algorithms have been generally proved capable of solving
problems where a direct search method is insufficient or non-existent (Chambers 1999).
In the problem discussed through this paper, a mathematical solution of finding the roots
of the cost function (using a high-level tool such as Mathematica') for the simpler
problem presented in the paper (a system of three stages), would offer the real values,
requiring by the user to estimate the integer ones, a procedure which may be hard to
accomplish, due to the fact that the immediate rounding of the real values does not
necessarily offer the best configuration. Moreover, when encountering such complex
functions, having much more than two variables and complex restrictions in the allowed
solution values (as this is the second case in our problem), - computer-assisted
mathematical tools will be probably unable to solve it, even for computing the real values
of the best configuration. On the other hand, for large problems, a direct and exhaustive
search among possible solution space would be an awkward and trivial technique while it
can be proved a very time-consuming and eventually ineffective procedure, as

! Trademark of Wolfram Research Co.222
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demonstrated for the second example in Sections 4 and 5. In the rest of this paragraph
the genetic algorithm specifications built for the needs of this paper are described.

4.1 Encoding

For the chromosome encoding, the algorithm first calculates the maximum value range of
all stages. This range (which is an integer), for each stage, is the difference between
- maximum allowed units and minimum allowed units plus one. It then computes the bits
needed to represent this maximum value range, by usmg the following well-known
formula:
brx:2 g2
where T is the maximum range and b is the number of bits. It creates then a chromosome
consisting of b* S where S is the number of the stages. The latter means that in the
chromosome representation all-stages have an equal number of bits to be represented.
This selection has been decided, in order to ensure the GA-efficiency during basic
operations, i.e. crossover and mutation. As long as different stages have different range of
values, a checking sub-procedure was added after each genetic operation. enabling only
allowed values for each range. Encoding only the permissible range of the stages. and not
the maximum value of these stages, enables the algorithm to handle more general

' problems effectively. For example a case with 10 stages that have a stage with allowable

values between 240 and 248 would require a chromosome of 80 bits (=/0 * log:256) if
coded using the possible values, but it requires only 30 bits in the configuration
presented. In Figure 1, the structure of the chromosome is presented.

[ Stage | | Stage?2 |Stage3 [Stage4 [ ... | Stage m” 1

0 \ 271

ltlol1].. ... T1lo

L—

Figure 1. Chromosomc cncoding,
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4.2 Operators

The operations applied in the genetic algorithm were (1) recombination, (2) crossover
and (3) mutation. The selection procedure was the stochastic sampling with replacement
(SSR). We re-scaled the fitness values afier each epoch in order to avoid premature
convergence, hence speed up the search (Baker, 1987). After experiments with various
operation rates, it was shown that a 0.8 rate of crossover and a 0.2 rate of mutation, for
the populations considered in our examples was an effective operation scheme: (Man
1999).
Figure 2. The Genetic process cycle.

Select Configuration > Crossover
chromosomes from vV

based on generation gap
Check whether ‘ ~ Mutation
offspring genes € H

Population V Rescale Fitness; Check whether
mmmm——- Select fittest of V.E mutated genes € H
]
|: .
S— 3
. Evaluate fitness of E Subpopulation E
3

Trials using different types of crossover showed that using “uniform crossover”
outperformed other crossover types such as “single” or “double point crossover” or our
heuristic “variable crossover” (Tsakonas et. al., 2000), (Tsakonas and Dounias, 2000).
The reason is that the encoding of the chromosome requires few allele size (bits) for
internal stage representation, in which case a uniform crossover may achieve higher
search performance. Changing the generation gap from 0.5 was not encountered, as long
as tuning the rest of the parameters offered an efficient performance. The genetic process
cycle is presented in Figure 2, where a set H is assumed to be consisting of the
permissible values of each stage.
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4.3 Software

A genetic algorithm standalone MDI? application named “QueueGA” was built in order
to support experimentation for this paper. The software is a windowed application
enabling the user to fully describe the problem and freely set the genetic parameters.

Gum
Nuarbar of Slages ﬁ—— .
- Popalation o Use Carrent Population [~
Washouse Name il ' Eeaerstion Gap [es
Truck DakCost  [100 ]
. waitngCont  [1000 ~ Ciwomorome {7773 Genesbion: W \
Senica Rae  [2 : Crazsaver Mack [Griom ~] ‘
Min U = LT S SO VD T
vk P
, Max. Unite l3 & FJ—B___ Mutati EE_
Rt E_ ' e e e e o i e e e e
. - : Solve l
— o |

_Figure 3. System parameters input screen (left), and genetic parameters setup screen (right).

Furthermore the user has the possibility to direct the output to a specified file for further
processing (i.e. graphs, statistics etc.). Figure 3 shows screenshots of two menus. The
reader may download a free version of “QueueGA” in the web in the web address
www2 aegean.gr/QueueGA

5. RESULTS AND DISCUSSION

In the example shown in Table |, a first run of the algorithm is demonstrated, using as
input the data presented on the previous paragraph, i.e. a seaport queue consisting of
cranes, warehouse and trucks. The arrival rate of ships is considered A=3 ships/day. The
program computation makes indeed the problem trivial. It takes less than one second in
" order to find the best solution, therefore it is shown here rather for the proof of the
methodology accuracy.

2 Multi-Document-Interface .




Table I. Parameters of seaport problem
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Stage#| Name | Daily Cost | Working Cost| Service Rate | Min.Units Allowed Max.ilmts Allowed
I Crane 100 1000 2 2 3
2 Warchouse 500 200 4 3 4
3 Truck 40 200 3 2 . 3

Table 2. GA solution for the seaport problem

Name Low Cost Configuration
Crane .3
Warchouse 3
Truck 2
After Generation 100
Cost 2255.03979618163

Table 3. Genetic Algorithm parameters for the seaport problem:.

Genetic Parameters
Chromosome 3
Population s
Generation Gap 0.5
Crossover Mask Variable
Crossover Rate 0.8
Mutation Rate 0.2
Generations 100
Time taken for 100 generations Tess than 1 sec
in P-200MHz
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2000 [ e | Avg.Cost |
4500 doomm et e e L | —M!p;o;tCmﬁgu_ratiT

1 10 19 28 37 46 55 64 73 82 91 100

Figure 4. Average population cost and minimum cost of best chromosome

for seaport problem, cvolving in time.

Tables 2 and 3 refer to the genetic algorithm (GA)-solution and the corresponding GA-
parameters used for the simple seaport problem. The best configuration contains three
cranes three warehouses and two trucks , and after one hundred of generations is found
the optimum cost value of this solution. Finally, Figure 4 represents the variation of the
average population cost and the minimum cost of the best chromosome for the simple
seaport example, as it evolves over time.

In the next example (Table 4), a more complex problem is encountered, consisting of 20
stages, each of them having different allowable minimum and maximum values in the
configuration. Minimum allowable units for the configuration may correspond to existing
infrastructure, and maximum allowable units may depend on the organization's budget.
Arrival rate of jobs is also considered A=3 jobs/day. Less than 100 generations were
needed in order to find the best solution, roughly corresponding to one minute computing
working-time (for a P200MHz PC).

Many real-world problems (e.g. communication routing) may consist of even larger sizes,
rendering the exhaustive search among solutions an ineffective method. In fact, the
possible solution space increases based on the following equation:

N
[1m
1=1
where N is the number of stages, and m; is the values' range of stage /. For example, the

second complex example presented in Table 4, creates a possible solution space
consisting of 696,570,347,520,000 values.
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Table 4. Parameters of a complex example.

Stage#| Name | Daily Cost | Working Cost| Service Rate | Min.Units Allowed | Max. Units Allowed
1 Stage 1 399,28 53717 6.71 5 8
2 Stage 2 438 396,31 6,14 9 17
3 Stage 3 364.7 400,94 12,28 9 16
4 Stage4 | 546.28 439,08 6,52 4 7
5 Stage5 | 240,68 489.63 296 6 14
6 Stage 6 425.1 506,57 5,23 5 9
7 Stage7 | 289.03 533,53 9.99 5 9
8 Stage 8 | 489.35 457,22 8,59 7 12
9 Stage9 | 45571 23529 478 3 7
10 | Stagel0| 21734 284,25 7.31 3 5
1 Stage 11| 504.71 268.6 4.96 5 9
12 | Stagel12] 240.02 44791 8.59 2 10
13 | Stagel3 | 528,36 - 54711 4,28 8 5
14 | Stage14] 525,58 321,74 533 2 5
15 Stage 15| 296.74 376,2 748 4 7
16 |Stagel16| 271.83 31547 4,76 3 11
17 | Stage17| 408,67 400.04 5.48 5 10
18  {Stage 18| 4183828 536,85 8,72 9 16
19 [ Stagel19] 306,74 356,46 2,05 3 4
20 {Stage20| 594.67 55523 7.87 7 12
50000

—agcost
1 e Mtn.Cost Configuration,

1. 106 211 316 421 526 631 736 B41 946

Figure 5. Average population cost and minimum cost of best chromosome

for the complex example, evolving in time.
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Assuming that all these values must be calculated in an exhaustive search for computing
the best solution -requiring a P200MHz PC to work for more than a year- the reader may
acknowledge the efficiency of the GA-approach. Based on the results of this second
example, only 5,040 value computations3 where needed, in less than one minute of time.
in order for the algorithm to find the best solution®.

Table 5. GA solution for the complex example.

Name Min. Clost Configuration (1 nits)
Stage 1 8
Stage 2 16
Stage 3 ' 16
Stage 4 7
Stage § : S 12
Stage 6 5
Stage 7 ) 5
Stage & ‘ 7
. |Stage9 4
Stage 10 4
Stage 11 ] 8
Stage 12 9
Stage 13 ‘ 15
Stage 14 4
Stage 15 4
Stage 16 4
Stage 17 8
Stage 18 16
Stape 19 3
Stage 20 il
After Generation 1000 ‘
Cost ) 9013,302036 |

* The best solution was found after 72th gencration using a population of 70 possible solutions ) =
(chromosomes) - '
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In all cases, the accuracy of the solution is easily ensured, either by incrementing the
population size, or by subsequent runs of the algorithm. Thus, in response to either
human work or computer exhaustive search, genetic algorithms prove capable of
handling domain problem sizes, efficiently, i.e. fast, as well as accurately.

T

Table 6. Genetic Algorithm parameters for the complex problem.

Genetic Parameters

Chromosome 60
Population 70
Generation Gap 0.5
Crossover Mask: Variable
Crossover Rate 08
Mutation Rate 0.2
Generations 1000
Time taken for- 1000 Less than 11 min
generations in P200MHz

Tables 5 and 6 contain additional information about the solution and the corresponding
GA-parameters used for the complex example analyzed before. Finally, Figure 6 again
represents the average population cost and the minimum cost of the best chromosome for
the complex example, as it evolves over time.

6. CONCLUSIONS AND FURTHER RESEARCH

The paper demonstrated how genetic approximation techniques can be embedded into
short-stage multi-channel queuing models applying to seaports. The proposed
. methodology proved efficient, accurate and fast for the requested task. Further research is
directed into many different aspects of theory and applications:

In relation with the genetic approximation methodology used, the authors suggest that an
attempt for tuning of the variable crossover should be made. Due to the small deviations
of all possible configurations from the best one, the variable crossover achieved in
doubling the crossover points only once in the second example. Therefore tuning is
necessary, in order to achieve an even better performance, probably reducing the
necessary error decrease in order to double the points. In the examples presented within
this paper, it had a value of (0.5), meant that the error -which is equal to the best

- It should be noted that the time-consuming computations within a genetic algon'lhin are the objective
values computation.
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cbnﬁguration cost found when the algorithm runs- should be decreased by half to double
the points. This way an almost “uniform-mask™ will be resembled, just before finding the
best stages configuration.

In respect to the queuing system based approach, admissions made within this paper
about major factors involved in the calculations such as, distributions of service,
processing times, etc., should be explored also with possible aliernative initial
configurations.

Generalizing, the suggested genetic algorithm based approach, should be taken into
account in any other similar types of queuing / operations research problems related to
seaport transportation, especially those having high complexity and demanding painful
computational effort. As modern computer capabilities (processing speed, data storage.
memory capacity) increase dramatically over time, most OR techniques combined with
proper computational intelligence algorithms, will soon have the opportunity to produce
accurate computer-aided. solutions for very high complexity domains of application.
Intelligent OR techniques and data-driven methods for management seem to be on the
way to success, and it is very likely that they will soon become the method of choice for
modern operations management era.

<N
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